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of x , and the square of this sum instead of xx , and its cube instead of x3, and so on for
others, if it is x that I want to eliminate; or [343] instead, if it is y , by putting in its place
v + √

ss − xx , and the square, cube, etc. of this sum in place of yy , or y3 etc. In such a
way that there always remains after this an equation in which there is no more than a
single unknown quantity x or y .

If CE is an ellipse, andMA is the segment of its diameter to which CM is applied as
an ordinate, and which has r for its latus rectum, and q for the transverse diameter, one
has by Proposition 13 of Book I of Apollonius xx = ry − r

q yy , where eliminating xx

there remains ss − vv + 2vy − yy = ry − r
q yy . Or rather, yy +qry−2qvy+qvv−qss

q−r is equal

to nothing. For it is better in this case to consider the whole sum together in this way,
than to make one part equal to another.

[…]

Descartes went on to explain that the equation thus found is to be used to discover v or
s. Further, he argued, if P is the point required, then the circle through C with P as the
centre will touch the curve without cutting it, and so the equation between y , v , and s
will have two equal roots.

[347] As if, for example, I say that the first equation found above, namely
yy +qry−2qvy+qvv−qss

q−r must take the same form as that produced by making e equal

to y and multiplying y − e by itself, from which there comes yy − 2ey + ee, so that one
may compare each of their terms separately, and say that because the first, which is yy
is just the same in one as in the other, the second which is in one qry−2qvy

q−r , is equal to

the second of the other, which is −2ey , from which, seeking the quantity v , which is
the line PA, we have v = e − r

q e + 1
2 r , or rather, because we have supposed e equal

to y , we have v = y − r
q y + 1

2 r . And [348] thus one may find s from the third term

ee = qvv−qss
q−r but because the quantity v sufficiently determines the point P , which is

the only one we were seeking, one has no need to go further.

3.2 METHODS OF QUADRATURE

3.2.1 Fermat’s quadrature of higher hyperbolas, early 1640s

Aproblemofmuchwider concern thanfinding tangentswas that of quadrature: literally,
finding a square equal to a given space or, in modern terms, finding an area. Attempts at
quadrature were many and varied, giving rise to numerous special methods for special
cases. Here we can present only a few examples, chosen to illustrate some of the more
important ideas that were beginning to emerge during the seventeenth century. For
ease of reading in what follows we will borrow modern notation for summations and
for equations of curves.
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3.2. methods of quadrature 79

By 1636, both Roberval and Fermat knew that the value of
∑X

x=0 x
n is approximately

Xn

n+1 when n is a positive integer and x is taken at sufficiently small intervals between
0 and X . Both used this relationship to find the quadrature of curves of the form
y = xn . Fermat continued to explore such questions privately during the early 1640s,
and appears to have found methods of quadrature also for curves of the form ym =
xn (higher parabolas) and ym = x−n (higher hyperbolas), but unfortunately it is
impossible to date his work precisely. We know that he corresponded with Torricelli on
the subject in 1644, but the letters themselves are now lost.

Only in 1658–59 did Fermat bring his results together in a treatise headed ‘De
aequationum localium transmutatione …cui annectitur proportionis geometricae in
quadrandis infinitis parabolis et hyperbolis usus’ (‘On the transformation of equations
of place …to which is adjoined the use of geometric progressions for squaring infinite
parabolas and hyperbolas’). This was almost certainly written in response to Wallis’s
Arithmetica infinitorum of 1656, which treated similar problems in a rather different
way. By the late 1650s, however, Fermat’s results were no longer new, and the treatise
remained unpublished until 1679, long after his death.

The procedure below is from the opening of ‘De aequationum localium’. It can be
applied to any curve of the form y = x−n except when n = 1, the case Fermat described
as the hyperbola of Apollonius. The method is based on dividing the required area into
strips whose bases increase in geometric progression. Because of the rapid fall of the
curve the areas of the corresponding rectangles decrease, also in geometric progression.
Fermat knew (from Euclid IX.35) how to sum a finite geometric progression and, like
Viète before him, extended the result to an infinite progression by taking the ‘last’ term
to be zero.

In many respects Fermat’s proof remains strongly reminiscent of the Greek mathe-
matics to which he made such frequent reference: it is entirely geometric, and couched
throughout in the Euclidean language of ratio. In other ways, however, he went far
beyond the classical methods of exhaustion and contradiction. In August 1657 he had
complained that Wallis could just as well have handled quadratures in the traditional
Archimedean way,2 yet in his own treatment he discussed the Archimedean method
only to dismiss it and move on. His summation of a geometric progression with an
infinite number of terms was an idea learned from Viète, not from Euclid. And just as
in his tangent method he had introduced quantities that were allowed to vanish once
they had served their purpose, here too he used a similar procedure: the parallelogram
EGH plays a crucial role in his argument, but when no longer needed it simply ‘goes to
nothing’ (‘abit in nihilum’).

2. Wallis 1658, letter 12.
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80 chapter 3. foreshadowings of calculus

Fermat’s quadrature of a hyperbola
from Fermat,Varia opera, 1679, 44–46
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82 chapter 3. foreshadowings of calculus

translation

ON THE TRANSFORMATION AND EMENDATION
OF EQUATIONS OF PLACE

in order to compare curves in various ways with each other, or
with straight lines

to which is adjoined
the use of geometric progressions

in the quadrature of infinite parabolas or hyperbolas

Archimedes made use of geometric progressions only for the quadrature of one
parabola. In the remaining comparisons of heterogeneous quantities he restricted
himself merely to arithmetic progressions. Whether because he found geometric
progressions less appropriate? Or because the required method with the particular
progression used for squaring the first parabola could scarcely be extended to the oth-
ers? I have certainly recognized, and proved, progressions of this kind very productive
for quadratures, and my discovery, by which one may square both parabolas and hy-
perbolas by exactly the samemethod, I by no means unwillingly communicate to more
modern geometers.

I attribute to geometric progressions only what is very well known, on which this
whole method is based.

The theorem is this:Given any geometric progressionwhose termsdecrease infinitely,
as the difference of two [consecutive] terms constituting theprogression is to the smaller
of them, so is the greatest term of the progression to all the rest taken infinitely.

This established, there is proposed first the quadrature of hyperbolas. Moreover we
define hyperbolas as infinite curves of various kinds, like DSEF , of which this is a
property, that having placed at any given angle RAC its asymptotes, AR, AC , extended
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3.2. methods of quadrature 83

infinitely if one pleases but not cut by the curve, and taking whatever straight lines,GE ,
HI , ON , MP , RS, etc. parallel to one asymptote, we suppose that a certain power of
the line AH to the same power of the line AG is as a power of the line GE , whether the
same or different from the preceding one, to that same power of the lineHI ; moreover
we understand the powers to be not [45] only squares, cubes, square-squares, etc. of
which the exponents are 2, 3, 4, etc. but also simple lines, whose power is one. I say,
therefore, that all hyperbolas of this kind indefinitely, with one exception, which is
that of Apollonius, or the first, can be squared with the help of the same and always
applicable method of geometric progressions.

Let there be, if one likes, a hyperbola of which it is the property that the square
of the line HA to the square of the line AG is always as the line GE to the line HI ,
and that the square of OA to the square of AH is as the line HI to the line ON , etc.
I say that the infinite space whose base is GE , and with the curve ES for one side,
but for the other the infinite asymptote GOR, is equal to a given rectilinear space. It is
supposed that the terms of a geometric progression can be extended infinitely, of which
the first is AG, the second AH , the third AO, etc. infinitely, and these approach each
other by approximation as closely as is needed, so that by the method of Archimedes
the parallelogrammade by GE and GH adequates, as Diophantus says, to the irregular
four-sided shape GHE , or very nearly equals.

GE times GH .

Likewise, the first of the straight line intervals of the progression GH ,HO,OM , and so
on, are similarly very nearly equal amongst themselves, so that we can conveniently use
the method of exhaustion, and by Archimedean circumscriptions and inscriptions the
ratio to be demonstrated can be established, which it is sufficient to have shown once,
nor do I wish to repeat or insist more often on a method already sufficiently known to
any geometer.

This said, since AH to AO is as AG to AH , so also will AO to AM be as AG to AH .
So also will be the interval GH to HO, and the interval HO to HM , etc. Moreover the
parallelogram made by EG and GH will be to the parallelogram made by HI and HO,
as the parallelogram made by HI and HO to the parallelogram made by NO and OM ,
for the ratio of the parallelogram made by GE and GH to the parallelogram made by
HI andHO is composed from the ratio of the lineGE to the lineHI , and from the ratio
of the line GH to the lineHO; and as GH is toHO, so is AG to AH , as we have shown.
Therefore the ratio of the parallelogram made by EG and GH to the parallelogram
made by HI and HO is composed from the ratio GE to HI , and from the ratio AG to
AH , but asGE is toHI so by construction will be the square ofHA to the square of GA,
or because of proportionality, as the line AO to the line GA. Therefore the ratio of the
parallelogram made by EG and GH to the parallelogram made by HI and HO, will be
composed of the ratios AO to AG, and AG to AH ; but the ratio AO to AH is composed
of these two. Therefore the parallelogram made by GE and GH is to the parallelogram
made by HI and HO, as OA to HA; or as HA to AG.

Similarly it can be proved that the parallelogram made by HI and HO is to the
parallelogram made by ON and OM , as AO to HA, but the three lines that constitute
the ratios of the parallelogams, namelyAO,HA,GA, are proportionals by construction.
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