
Abstract

[46] Therefore the parallelograms made by $G E$ and $G H$, by HI and HO , by ON and $O M$, etc. taken indefinitely, will always be continued proportionals in the ratio of the lines HA to GA. Therefore, from the theorem that is the foundation of this method, as $G H$, the difference of the terms of the progression, is to the smaller term $G A$, so will be the first term of the progression of parallelograms, that is, the parallelogram made by $E G$ and $G H$, to the rest of the parallelograms taken infinitely, that is, by the adequation of Archimedes, to the space contained by $H I$, the asymptote $H R$, and the curve IND extended infinitely. But as $H G$ is to $G A$ so, taking as a common side the line $G E$, is the parallelogram made by $G E$ and $G H$ to the parallelogram made by $G E$ and $G A$. Therefore, as the parallelogram made by $G E$ and $G H$ is to that infinite figure whose base is $H I$, so is the same parallelogram made by $G E$ and $G H$ to the parallelogram made by $G E$ and $G A$; therefore the parallelogram made by $G E$ and $G A$, which is the given rectilinear space, adequates to the aforesaid figure. To which if there is added the parallelogram made by $G E$ and $G H$, which on account of the minute divisions vanishes and goes to nothing, there remains the truth, which may be easily confirmed by a more lengthy Archimedean demonstration, that the parallelogram $A E$ in this kind of hyperbola, is equal to the space contained between the base $G E$, the asymptote $G R$, and the curve $E D$, infinitely produced. Nor is it onerous to extend this discovery to all hyperbolas of this kind, except, as I said, one.

3.2.2 Brouncker and the rectangular hyperbola, c. 1655

The quadrature of the Apollonian, or rectangular, hyperbola $\left(y=x^{-1}\right)$ had eluded Fermat, but some partial results had been found by de Saint Vincent as early as 1625. When de Saint Vincent's work was eventually published in his massive Opus geometricum in 1647, his fellow Jesuit Alphonse Antonio de Sarasa noted that certain areas under the hyperbola are related to each other in the same way as logarithms, but at this stage this was no more than an empirical observation.

A numerical quadrature of the hyperbola was finally discovered by William Brouncker in the early 1650s while he was working with Wallis on the related problem of the quadrature of the circle (see 3.2.3). Brouncker's quadrature was published in 1668 in the third volume of the Philosophical transactions of the Royal Society, the first mathematical result to be published in a scientific journal. (Brouncker himself was the first president of the Royal Society, which had been founded in 1660.)

Though an able mathematician, Brouncker was never forthcoming about his methods, and offered only diagrams and results, without any intermediate calculations. He did however, offer the first and almost only seventeenth-century attempt at a convergence proof.

Brouncker's quadrature of the hyperbola

from Brouncker, 'The squaring of the hyperbola by an infinite series of rational numbers',
Philosophical transactions of the Royal Society, 3 (1668), 645-647

Notation

Although Brouncker adopted Descartes' superscript notation for powers, he retained Harriot's a rather than Descartes' x.

[^0]
(645)
 Numb.34.
 PHILOSOPHICAL TRANSACTIONS.

Monday, April 13.1668

The Contents.

The Squaring of the Hyperbola by an infirite feries of Rational
Numbers, together with its Demonflation, by the Right Honourable the Lord Vifcount Brouncker. An Extratt of a Letter fent from Danzick, touching fome Chymical, Medicinal and Anatomical particulars. Iwo Letters, written by Dr. John Wallis to the Publifher; One, concernisg the Variety of the Annual High-Tides in refpect to feveral places: the other, concerning fome Miftakes of a Book ontitaled SPECIMINA MATHEMATICA Francifci Dulaurens, efpecially touching a certain Probleme, affrm'd to have been propofed by Dr. Wallis to the Mathematicians of all Europe, for a folution. An Account of fome obfervations concerning the crue Time of the Tydes, by Mr. Hen. Philips. An Account of three Books: I. W.SENGWERDIUS PH.D.de Tarancula. II.REGNERI de GR AEF M.D. Epitola de nonnullis circa Partes Genitales Inventis Novis. III. FOH ANNIS van HORNE N.D. Obfervationum fuarum circa Partes Genitales in utroque fexu, PRODROMUS.

The Squaring of the Hyperbola, by an irfinite feries of Rational Numbers, together with its Demonfration, by that Eminent Mathematician, the Right Honourable the Lord Vifcount Brouncker.

WHat the Acure Dr. Jobn Wallis had intimated, fome years fince, in the Dedication of his Anfiver to M. Meibomius de propertionibus, vid. That the World one day would learn from the Noble Lord Browner, the Quadrature of the Hyperbole; the Ingenious Reader may fee performed in the fubjoyned operation, which its Excellent Aurhor wis now pleafed to communicate, as followeth in his own words;

(646)

My Method for Squaring the Hyperbola is tbis :

LEt AB be one A/ymptote of the Hyperbola EdC; and let AE and BC be parallel to thother: Letalfo $\mathrm{A} E$ be to BC as 2 to I ; and let the Parallelogram ABDE equal 1. See Fig. 1. And note, that the Lett.r x every where !tands for Multiplication.

Suppofing the Reader knows, that EA. a_{3}. K H. $\beta n . \mathrm{d} \rho . \gamma x . \delta \lambda . \varepsilon \mu$. C.B.\&.c. are in an Harmonic feries, or a fcrics reciproca primanorum fiu arithmetice proportionalium (otherwife he is referr'd for fatisfaction to the $57,88,89,90,91,92,93$, 94, 95, prop. Arithm. Infinitor. Wallifij:)

I fay $\mathrm{ABCdEA}=\frac{1}{1 \times 2}+\frac{1}{3 \times 4}+\frac{1}{5 \times 6}+\frac{1}{7 \times 8}+\frac{1}{9 \times 10} 8 \mathrm{c}$.

$$
\begin{aligned}
& \mathrm{EdCDE}=\frac{1}{2 \times 3}+\frac{1}{4 \times 5}+\frac{1}{6 \times 7}+\frac{1}{8 \times 9}+\frac{1}{10 \times 11} \text { \&c. \{ininfinitum. } \\
& \mathrm{EdCyE}=\frac{1}{2 \times 3 \times 4}+\frac{1}{4 \times 5 \times 6}+\frac{1}{6 \times 7 \times 8}+\frac{1}{8 \times 9 \times 10} \text { \&ic. }
\end{aligned}
$$

For (in Fig. 2, ช 3 3) the Parallclog. And (in Fig.4.) the Triangt.

$$
\begin{aligned}
& \mathrm{CA}=\frac{1}{1 \times 2}\left|\mathrm{EdC}=\frac{1}{2 \times 3 \times 4}=\frac{\square \mathrm{dD}-\square \mathrm{dF}}{2}\right| \quad \text { Notc. } \\
& \begin{array}{l|l}
\mathrm{d} D=\frac{1}{2 \times 3} & \mathrm{dF}=\frac{1}{3 \times 4} \\
\mathrm{br}=\frac{1}{4 \times 5} & \mathrm{bn}=\frac{1}{5 \times 6} \\
\mathrm{fG}=\frac{1}{6 \times 7} & \mathrm{f} k=\frac{1}{7 \times 8}
\end{array} \\
& \text { a } q=\frac{1}{8 \times 9}: a p=\frac{1}{9 \times 10} \\
& \text { c } s=\frac{1}{\text { IOXII }} \quad \mathrm{cm}=\frac{1}{\text { IIXI }^{2}} \\
& e t=\frac{1}{12 \times 13} e l=\frac{1}{13 \times 14}
\end{aligned}
$$

$$
\begin{aligned}
& \text { And }
\end{aligned}
$$

(647)

And that therefore in the firt feries half the firt term is greater than the fum of the two next, and half this fum of the fecond and chird greater than the fum of the four next, and half the fum of thofe four greater than the fum of the next eight, of c. i_{n} infnitum. For $\frac{1}{2} d D=b r+6 n$; but $b_{n}>f G$, therefore $\frac{1}{2} d D>b r+f G, G \sigma$. And in the fecond feries half the bint term is lefs then the fum of the two next, and sccoms half this fum lefs then the fum of the four next, © σ c in infinitum.
That the frit fcries are the
That the firlt feries are the cven terms, viz. the $2^{4}, 4^{\text {th }}, 6^{\text {th }}, 8^{n}, 10^{\text {th }}, \sigma^{c} c$. and the

 taken at pleafure, $\frac{1}{a+a}$ is the laft, $\frac{a}{a+1}$ is the fum of all thofeterms from the beginning, and $\frac{1}{a+1}$ the fum of che reft to the end.
That $\frac{-1}{\rightarrow}$ of the firft terme in the third feries is lefs than the fum of the two nest, and a quarcer of this fum, lefs than the fum of the four next, and one fourth of this lalt fum lefs than the next eighr, I thus demonftrate.
Let $a=$ the 3^{d} or laft number of any term of the firt Column, viz. of Divifors,

$$
\begin{aligned}
& \frac{1}{a x-1}=\frac{1}{a-2}=\frac{16 a^{3}-48 a^{2}+56 a-24}{a^{3}-3 a^{2}+2 a}=\frac{16 a^{6}-9 a^{3}+232 a^{4}-288 a^{3}+18 a^{2}-48 a}{}=A \\
& \left.\begin{array}{l}
\frac{1}{2 a} \frac{2 a-1}{2 a-2}=\frac{1}{8 a^{-}-12 a^{2}+4 a} \\
\left.\frac{1}{21-2}-\frac{1}{2 a-3} x^{2 a-4}=-\frac{1}{i a^{3}-36 a^{2}+52 a-2 t}\right\}
\end{array}\right\}=\frac{16 a^{3}-48 a^{2}+56 a-24}{64 a^{6}-38+a^{5}+880 a^{4}-960 a^{5}+496 a-96}=B
\end{aligned}
$$

And 48a-192a3 $+2401^{5}-96 a=$ Excefs of the Numerator abavic De romis:
But-- The affirm.
That is, $48 \mathrm{a}^{4}+240 \mathrm{a}^{2}>192 a^{3}+96 a$

Therefore $\mathrm{B}>: \mathrm{A}$.
Therefore: of nyy number of A. or Terms; is lefs than their fo many refpective B. that is, than twice fo many of the next Terms. \mathscr{O} Hod, corc.

Aaala
By

[^0]: Stedall, Jacqueline. Mathematics Emerging: A Sourcebook 1540-1900, Oxford University Press, Incorporated, 2008. ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/oxford/detail.action?docID=415528.
 Created from oxford on 2021-10-22 12:10:27.

