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Random DNNs hidden layer outputs
Norm of hidden layer outputs

The DNN with weight matrices W (`) and bias vectors b(`) with
Gaussian entries N (0, σ2w ) and N (0, σ2b)

h(`) = W (`)z(`) + b(`), z(`+1) = φ(h`)), ` = 0, . . . , L− 1,

has computable map R(ρ) of how the correlation between two
inputs evolve through the layers. The stability of a point and its
perturbation is determined by
χ := ∂R(ρ)

∂ρ |ρ=1 = σ2w
∫
Dz [φ′(

√
q∗z)2].

I χ le1: locally stable and points which are sufficiently
correlated all converge, with depth, to the same point.

I χ > 1: small perturbations are unstable with nearby points
become uncorrelated with depth.

https://arxiv.org/pdf/1606.05340.pdf
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Stability of pre-activation lengths (Pennington et al. 18’)
The “Edge of Chaos Curve” for φ(·) = tanh(·).

https://arxiv.org/pdf/1802.09979.pdf
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DNN Jacobian
Input-Output map: behaviour of small perturbations

The Jacobian of the feed forward net is given by

J =
∂z(L)

∂x (0)
= ΠL−1

`=0D
(`)W (`)

where D(`) is diagonal with entries D
(`)
ii = φ′(h

(`)
i ).

Moreover, for the sum of squares loss, the gradient is computed as

δ` = D`(W (`))T δ`+1 and δL = D(L)gradh(L)L.

which gives the formula for computing the δ` for each layer as

δ` =
(

ΠL−1
k=`D

(k)(W (k))T
)
D(L)gradh(L)L.

and the resulting gradient gradθL with entries as

∂L
∂W (`)

= δ`+1 · hT` and
∂L
∂b(`)

= δ`+1
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Average singular value
Correlation stability and exploding / vanishing gradient

In the infinite width limit, the average trace of (DW )T (DW ) is the
average of the singular values

χ = N−1
〈

Tr((DW)>DW)
〉

The growth of a perturbation is given by the expected mean
singular value of JT J from one layer to the next which is given by

χ = σ2w

∫
(2π)−1/2φ′

(√
q(?)z

)2

e−z
2/2dz .

Consider the spectrum of JT J more fully, in particular how it varies
around its expected value.
https://arxiv.org/pdf/1606.05340.pdf
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Spectrum of the Jacobian pt. 1(Pennington et al. 18’)
How to compute the product of D(`)W (`)

Computing the spectrum of products of matrices, e.g. for

J = ∂z(L)

∂x(0)
= ΠL−1

`=0D
(`)W (`) where D

(`)
ii = φ′(h

(`)
i ).

Stieltjes and S Transforms

For z ∈ C/R the Stieltjes Transform, Gρ(z), of a probability distribution
and its inverse are given by

Gρ(z) =

∫
R

ρ(t)

z − t
dt and ρ(λ) = −π−1 lim

ε→0+
Imag(Gρ(λ+ iε)).

The Stieltjes Transform and moment generating function are related by

Mρ(z) := zGρ(z) − 1 =
∑∞

k=1
mk

zk
, and the S Transform is defined as

Sρ(z) = 1+z
zM−1

ρ (z)
. The S Transform has the property that if ρ1 and ρ2 are

freely independent then Sρ1ρ2 = Sρ1Sρ2 .

https://arxiv.org/pdf/1802.09979.pdf
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Spectrum of the Jacobian pt. 2(Pennington et al. 18’)
Moment generating functions

The S Transform of JJT with J = ∂z(L)

∂x(0)
= ΠL−1

`=0D
(`)W (`) is then

given by
SJJT = SLD2SLWTW .

This can be computed through the moments MJJT (z) =
∑∞

k=1
mk

zk
,

MD2(z) =
∑∞

k=1
µk
zk

, where

µk =
∫

(2π)−1/2φ′
(√

q(?)z
)2k

e−z
2/2dz .

In particular: m1 = (σ2wµ1)L and
m2 = (σ2wµ1)2LL(µ−12 µ21 + L−1 − 1− s1).
Importantly, σ2wµ1 = χ is the growth factor we observed with the
edge of chaos, requiring χ = 1 to avoid rapid convergence of
correlations to fixed points.
https://arxiv.org/pdf/1802.09979.pdf
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Nonlinear activation stability (Pennington et al. 18’)
Examples of moment generating functions

Where MD2(z) =
∑∞

k=1
µk

zk
with µk =

∫
(2π)−1/2φ′

(√
q(?)z

)2k
e−z

2/2dz .

Recall that m1 = χL is the expected value of the spectrum of JJT ;
while the variance of the spectrum of JJT is given by
σ2
JJT

= m2 −m2
1 = L(µ2µ

−2
1 − 1− s1), where

for W Gaussian s1 = −1 and for W orthogonal s1 = 0.
Linear φ(·): q∗ = σ2wq

∗ + σ2b, has fixed point (σw , σb) = (1, 0).
ReLU φ(·): q∗ = 1

2σ
2
wq
∗ + σ2b, has fixed point (σw , σb) = (

√
2, 0).

Hard Tanh and Erf have curves as fixed points χ(σw , σb).
https://arxiv.org/pdf/1802.09979.pdf
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Distribution of activations φ′(z) (Pennington et al. 18’)
µk =

∫
(2π)−1/2φ′

(√
q(?)z

)2k
e−z2/2dz.

https://arxiv.org/pdf/1802.09979.pdf
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Controlling the variance of the Jacobian spectra (Murray et al. 21’)
Symmetric with prescribed linear region around the origin

Definition (scaled-bounded activations)

We refer to the set of activation functions φ : R→ R which satisfy
the following properties as scaled-bounded activations.

1. Continuous.

2. Odd, meaning that φ(z) = −φ(−z) for all z ∈ R.

3. Linear around the origin and bounded: in particular there
exists a, k ∈ R>0 such that φ(z) = kz for all z ∈ [−a, a] and
φ(z) ≤ ak for all z ∈ R.

4. Twice differentiable at all points z ∈ R\D, where D ⊂ R is a
finite set. Furthermore |φ′(z)| ≤ k for all z ∈ R\D.

https://arxiv.org/abs/2105.07741
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Correlation map and variance convergence (Murray et al. 21’)
Increasing the linear region drives the Jacobian spectra to 1

Theorem (Murray 21’)

Let φ be a scaled-bounded activation, σ2b > 0, χ1 :=
σ2wE[φ′(

√
q∗Z )2] = 1 where q∗ > 0 is a fixed point of Vφ. Let

inputs x satisfy ||x||22 = q∗.
Then as y := σ2b/a

2 → 0, both

maxρ∈[0,1]|Rφ,q∗(ρ)− ρ|,
∣∣µ2/µ21 − 1

∣∣→ 0,

with rates available in Murray 21’.

Note that this is independent of details of φ(·) outside its linear
region [−a, a]. Best performance is observed with a ∼ 3, or
preferably a decreasing from about 5 to 2 during training.
https://arxiv.org/abs/2105.07741
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Training very DNNs with Shtanh (Murray et al. 21’)
Improved accuracy with dynamic linearity decay

Test accuracy of a trained very deep feed forward net on CIFAR-10.

https://arxiv.org/abs/2105.07741
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Distribution of Jacobian spectra (Pennington et al. 18’)
Observed universality of spectra based on φ(·)

https://arxiv.org/pdf/1802.09979.pdf

Random matrix theory perspectives on DNN initialization 13

https://arxiv.org/pdf/1802.09979.pdf


Summary of random DNN initialisation
Dependence between σw , σb, φ(·)

I Poole et al. 16’ showed pre-activation output is well modelled
as Gaussian with variance q∗ determined by σw , σb, φ(·).
Moreover, the correlation between two inputs follows a similar
map with correlations converging to a fixed point, with the
behaviour determined in part by χ where χ = 1 avoids
correlation to the same point, or nearby points diverging.
https://arxiv.org/pdf/1606.05340.pdf

I Pennington et al 18’ showed more generally how to compute
the moments for the Jacobian spectra, where χ = 1 is needed
to avoid exponential growth or shrinkage with depth of
gradients.
https://arxiv.org/pdf/1802.09979.pdf
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Further associated reading 1 of 2
Related results

I Identifying natural depth scales of information propagation
https://arxiv.org/pdf/1611.01232.pdf

I Further details on the role of activation functions
https://arxiv.org/pdf/1902.06853.pdf

I Principles for selecting activation functions
https://arxiv.org/pdf/2105.07741.pdf
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Further associated reading 2 of 2
Convergence of representations at each layer of a neural network to a Gaussian Process & wider reading

I Early results on correlation of inputs (Chapter 2 in particular)
https://www.cs.toronto.edu/~radford/ftp/thesis.pdf

I Rigorous treatment of Gaussian Process perspective, infinite
width https://arxiv.org/pdf/1711.00165.pdf

I Rigorous treatment of Gaussian Process perspective, finite
width https://arxiv.org/pdf/1804.11271.pdf

I Higher order terms and width proportional to depth scaling
https://arxiv.org/pdf/2106.10165.pdf

I Specifics for random ReLU nets
https://arxiv.org/pdf/1801.03744.pdf

https://arxiv.org/pdf/1803.01719.pdf
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