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Elliptic boundary-value problems
A second-order linear PDE for a function u = u(x , y):

a(x , y)
∂2u

∂x2
+ 2b(x , y)

∂2u

∂x∂y
+ c(x , y)

∂2u

∂y2

+ d(x , y)
∂u

∂x
+ e(x , y)

∂u

∂y
= f (x , y) is

ELLIPTIC if b2 − ac < 0;

PARABOLIC if b2 − ac = 0;

HYPERBOLIC if b2 − ac > 0.

Ellipticity amounts to requiring that a and c are of the same sign, say
a > 0 and c > 0 (or a < 0 and c < 0), and ac − b2 > 0, which is
equivalent (by Sylvester’s criterion) to demanding that

A =

(
a b
b c

)
is a positive definite matrix, i.e. ξTAξ > 0 for all ξ ∈ R2 \ {0}.
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Example (Elliptic equations)

(a) Laplace’s equation: ∆u = 0;

(b) Poisson’s equation −∆u = f ;
(c) More generally, let Ω be a bounded open set in Rn, and consider the
(linear) second-order partial differential equation

−
n∑

i ,j=1

∂

∂xj

(
ai ,j(x)

∂u

∂xi

)
+

n∑
i=1

bi (x)
∂u

∂xi
+ c(x)u = f (x), x ∈ Ω,

where the coefficients ai ,j , bi , c and f are such that

ai ,j ∈ C 1(Ω), i , j = 1, . . . , n;

bi ∈ C (Ω), i = 1, . . . , n;

c ∈ C (Ω), f ∈ C (Ω), and
n∑

i ,j=1

ai ,j(x)ξiξj ≥ c̃
n∑

i=1

ξ2
i ∀ ξ = (ξ1, . . . , ξn) ∈ Rn, ∀ x ∈ Ω;

here c̃ is a positive constant independent of x and ξ.
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An elliptic equation is usually supplemented with one of the following
boundary conditions:

(a) u = g on ∂Ω (Dirichlet boundary condition);

(b) ∂u
∂ν = g on ∂Ω, where ν denotes the unit outward normal vector to
∂Ω (Neumann boundary condition);

(c) ∂u
∂ν + σu = g on ∂Ω, where σ(x) ≥ 0 on ∂Ω (Robin boundary cond.);

(d) A more general version of (b) and (c) is

n∑
i ,j=1

ai ,j
∂u

∂xi
cosαj + σ(x)u = g on ∂Ω,

where αj is the angle between the unit outward normal vector ν to
∂Ω and the Oxj axis (oblique derivative boundary cond.).
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Classical solutions

Consider the homogeneous Dirichlet boundary-value problem:

−
n∑

i,j=1

∂

∂xj

(
ai,j(x)

∂u

∂xi

)
+

n∑
i=1

bi (x)
∂u

∂xi
+ c(x)u = f (x) for x ∈ Ω, (1)

u = 0 on ∂Ω, (2)

where ai,j , bi , c and f are as stated earlier.

A function u ∈ C 2(Ω) ∩ C (Ω) satisfying (1) and (2) is called a classical solution
of this problem.

The theory of partial differential equations tells us that (1), (2) has a unique
classical solution, provided that ai,j , bi , c , f and ∂Ω are sufficiently smooth.
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Weak solutions

If these smoothness requirements on the coefficients are violated, the
classical theory of partial differential equations is inappropriate.

Example

Take, for example, Poisson’s equation on the cube Ω = (−1, 1)n in Rn,
subject to a zero Dirichlet boundary condition:

−∆u = sgn
(

1
2 −|x |

)
, x ∈ Ω,

u = 0, x ∈ ∂Ω.

 (∗)

This problem has no classical solution, u ∈ C 2(Ω) ∩ C (Ω), for otherwise
∆u would be a continuous function on Ω, which is not possible because
sgn(1/2−|x |) is not a continuous function on Ω.
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Definition (Weak solution)

Let ai ,j ∈ C (Ω), i , j = 1, . . . , n, bi ∈ C (Ω), i = 1, . . . , n, c ∈ C (Ω), and let
f ∈ L2(Ω). A function u ∈ H1

0 (Ω) satisfying

n∑
i ,j=1

∫
Ω
ai ,j(x)

∂u

∂xi

∂v

∂xj
dx +

n∑
i=1

∫
Ω
bi (x)

∂u

∂xi
v dx +

∫
Ω
c(x)uv dx

=

∫
Ω
f (x)v(x)dx ∀ v ∈ H1

0 (Ω)

is called a weak solution of (1), (2).
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Example

Suppose that Ω = (a, b)× (c , d) ⊂ R2 and let f ∈ L2(Ω). We wish to
state the weak formulation of the elliptic boundary-value problem

−∆u + u = f in Ω,

u = 0 on ∂Ω.

Solution. Note that −∆u = − div(∇u) and∫
Ω

(−∆u) v dx = −
∫

Ω
div(∇u) v dx =

∫
Ω
∇u · ∇v dx

for all v ∈ H1
0 (Ω) by the divergence theorem.

Hence, the weak formulation of the boundary-value problem is: find
u ∈ H1

0 (Ω) such that∫
Ω
∇u · ∇v + u v dx =

∫
Ω
f v dx ∀v ∈ H1

0 (Ω).
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Introduction to the theory of finite difference schemes
Let Ω be a bounded open set in Rn and suppose that we wish to solve the
boundary-value problem

Lu = f in Ω,

Bu = g on Γ := ∂Ω,
(3)

where L is a linear partial differential operator, and B is a linear operator
which specifies the boundary condition.

For example,

Lu ≡ −
n∑

i ,j=1

∂

∂xj

(
ai ,j(x)

∂u

∂xi

)
+

n∑
i=1

bi
∂u

∂xi
+ cu,

and

Bu ≡ u (Dirichlet boundary condition),

or

Bu ≡ ∂u

∂ν
(Neumann boundary condition),

or some other boundary condition.
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In general, it is impossible to determine the solution of the boundary-value
problem (3) in exactly.

We shall therefore develop a simple and general numerical technique for
the approximate solution of (3), called the finite difference method.

The construction of a finite difference scheme consists of two steps:

first, the approximation of the computational domain by a
finite set of points; and

second, the approximation of the derivatives appearing in the
differential equation and in the boundary condition by divided
differences (difference quotients).
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The first step

Suppose that we have ‘approximated’ Ω = Ω ∪ Γ by a finite set of points

Ωh = Ωh ∪ Γh,

where Ωh ⊂ Ω and Γh ⊂ Γ.

Ωh is called a mesh;

Ωh is the set of interior mesh-points; and

Γh the set boundary mesh-points.

The parameter h = (h1, . . . , hn) measures the ‘fineness’ of the mesh (here
hi denotes the mesh-size in the coordinate direction Oxi ): the smaller
max1≤i≤n hi is, the finer the mesh.
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The second step

Having constructed the mesh, we replace the derivatives in L by divided
differences, and we approximate the boundary condition in a similar
fashion. This yields the finite difference scheme

LhU(x) = fh(x), x ∈ Ωh,

BhU(x) = gh(x), x ∈ Γh,
(4)

where fh and gh are suitable approximations of f and g .
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Now (4) is a system of linear algebraic equations involving the values of U
at the mesh-points, and can be solved by Gaussian elimination or an
iterative method, provided that it has a unique solution.

The sequence
{U(x) : x ∈ Ωh}

is an approximation to
{u(x) : x ∈ Ωh},

the values of the exact solution at the mesh-points.
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There are two fundamental problems to be considered:

the first, and most basic, is the problem of approximation, that is,
whether (4) approximates the boundary-value problem (3) in some
sense, and whether its solution {U(x) : x ∈ Ωh} approximates
{u(x) : x ∈ Ωh}, the values of the exact solution at the mesh-points.

the second concerns the effective solution of the discrete problem (4)
using techniques from Numerical Linear Algebra.

Here we shall be primarily concerned with the first of these two problems
— the question of approximation — although we shall also briefly consider
the question of iterative solution of systems of linear algebraic equations
by a simple iterative method.
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