Numerical Solution of Partial Differential Equations

Endre Süli

Mathematical Institute
University of Oxford 2021

Lecture 3

Finite difference approximation of a two-point b.v.p.

We illustrate the method of finite difference approximation on a simple two-point boundary-value problem for a second-order linear (ordinary) differential equation:

$$
\begin{align*}
& -u^{\prime \prime}+c(x) u=f(x), \quad x \in(0,1) \\
& u(0)=0, \quad u(1)=0 \tag{1}
\end{align*}
$$

where f and c are real-valued functions, which are defined and continuous on the interval $[0,1]$ and $c(x) \geq 0$ for all $x \in[0,1]$.

The first step

The first step in the construction of a finite difference scheme for this boundary-value problem is to define the mesh.

The first step

The first step in the construction of a finite difference scheme for this boundary-value problem is to define the mesh.

Let N be an integer, $N \geq 2$, and let $h=1 / N$ be the mesh-size; the mesh-points are $x_{i}=i h, i=0, \ldots, N$.

The first step

The first step in the construction of a finite difference scheme for this boundary-value problem is to define the mesh.

Let N be an integer, $N \geq 2$, and let $h=1 / N$ be the mesh-size; the mesh-points are $x_{i}=i h, i=0, \ldots, N$.

We define the set of interior mesh-points:

$$
\Omega_{h}:=\left\{x_{i}: i=1, \ldots, N-1\right\}
$$

the set of boundary mesh-points:

$$
\Gamma_{h}:=\left\{x_{0}, x_{N}\right\},
$$

and the set of all mesh-points:

$$
\bar{\Omega}_{h}:=\Omega_{h} \cup \Gamma_{h} .
$$

The second step

Suppose that u is sufficiently smooth (e.g. $u \in C^{4}([0,1])$).

The second step

Suppose that u is sufficiently smooth (e.g. $u \in C^{4}([0,1])$). Then, by Taylor series expansion,

$$
\begin{aligned}
u\left(x_{i \pm 1}\right) & =u\left(x_{i} \pm h\right) \\
& =u\left(x_{i}\right) \pm h u^{\prime}\left(x_{i}\right)+\frac{h^{2}}{2} u^{\prime \prime}\left(x_{i}\right) \pm \frac{h^{3}}{6} u^{\prime \prime \prime}\left(x_{i}\right)+\mathcal{O}\left(h^{4}\right)
\end{aligned}
$$

so that

$$
\begin{aligned}
& D_{x}^{+} u\left(x_{i}\right):=\frac{u\left(x_{i+1}\right)-u\left(x_{i}\right)}{h}=u^{\prime}\left(x_{i}\right)+\mathcal{O}(h) \\
& D_{x}^{-} u\left(x_{i}\right):=\frac{u\left(x_{i}\right)-u\left(x_{i-1}\right)}{h}=u^{\prime}\left(x_{i}\right)+\mathcal{O}(h)
\end{aligned}
$$

and

$$
\begin{aligned}
D_{x}^{+} D_{x}^{-} u\left(x_{i}\right) & =D_{x}^{-} D_{x}^{+} u\left(x_{i}\right) \\
& =\frac{u\left(x_{i+1}\right)-2 u\left(x_{i}\right)+u\left(x_{i-1}\right)}{h^{2}} \\
& =u^{\prime \prime}\left(x_{i}\right)+\mathcal{O}\left(h^{2}\right) .
\end{aligned}
$$

D_{x}^{+}and D_{x}^{-}are called the forward and backward first divided difference operator, respectively, and $D_{x}^{+} D_{x}^{-}\left(=D_{x}^{-} D_{x}^{+}\right)$is called the (symmetric) second divided difference operator.
D_{x}^{+}and D_{x}^{-}are called the forward and backward first divided difference operator, respectively, and $D_{x}^{+} D_{x}^{-}\left(=D_{x}^{-} D_{x}^{+}\right)$is called the (symmetric) second divided difference operator.

Thus we replace the second derivative $u^{\prime \prime}$ in the differential equation by the second divided difference $D_{x}^{+} D_{x}^{-} u\left(x_{i}\right)$; hence,

$$
\begin{align*}
& -D_{x}^{+} D_{x}^{-} u\left(x_{i}\right)+c\left(x_{i}\right) u\left(x_{i}\right) \approx f\left(x_{i}\right), \quad i=1, \ldots, N-1, \\
& \quad u\left(x_{0}\right)=0, \quad u\left(x_{N}\right)=0 . \tag{2}
\end{align*}
$$

D_{x}^{+}and D_{x}^{-}are called the forward and backward first divided difference operator, respectively, and $D_{x}^{+} D_{x}^{-}\left(=D_{x}^{-} D_{x}^{+}\right)$is called the (symmetric) second divided difference operator.

Thus we replace the second derivative $u^{\prime \prime}$ in the differential equation by the second divided difference $D_{x}^{+} D_{x}^{-} u\left(x_{i}\right)$; hence,

$$
\begin{align*}
& -D_{x}^{+} D_{x}^{-} u\left(x_{i}\right)+c\left(x_{i}\right) u\left(x_{i}\right) \approx f\left(x_{i}\right), \quad i=1, \ldots, N-1 \\
& \quad u\left(x_{0}\right)=0, \quad u\left(x_{N}\right)=0 \tag{2}
\end{align*}
$$

Now (2) motivates us to seek the approximate solution U as the solution of the system of difference equations:

$$
\begin{align*}
& -D_{x}^{+} D_{x}^{-} U_{i}+c\left(x_{i}\right) U_{i}=f\left(x_{i}\right), \quad i=1, \ldots, N-1 \\
& \quad U_{0}=0, \quad U_{N}=0 \tag{3}
\end{align*}
$$

This is a system of $N-1$ linear algebraic equations for the $N-1$ unknowns, $U_{i}, i=1, \ldots, N-1$.

This is a system of $N-1$ linear algebraic equations for the $N-1$ unknowns, $U_{i}, i=1, \ldots, N-1$. Using matrix notation,

$$
A U=F
$$

where A is the $(N-1) \times(N-1)$ matrix

$$
U=\left(U_{1}, U_{2}, \ldots, U_{N-2}, U_{N-1}\right)^{\mathrm{T}}
$$

and

$$
F=\left(f\left(x_{1}\right), f\left(x_{2}\right), \ldots, f\left(x_{N-2}\right), f\left(x_{N-1}\right)\right)^{\mathrm{T}} .
$$

Existence and uniqueness of a solution

We begin the analysis of the finite difference scheme (3) by showing that it has a unique solution. It suffices to show that the matrix A is non-singular (i.e. $\operatorname{det} A \neq 0$), and therefore invertible.

Existence and uniqueness of a solution

We begin the analysis of the finite difference scheme (3) by showing that it has a unique solution. It suffices to show that the matrix A is non-singular (i.e. $\operatorname{det} A \neq 0$), and therefore invertible.

We shall develop a technique which we shall, in subsequent sections, extend to the finite difference approximation of PDEs.

Existence and uniqueness of a solution

We begin the analysis of the finite difference scheme (3) by showing that it has a unique solution. It suffices to show that the matrix A is non-singular (i.e. $\operatorname{det} A \neq 0$), and therefore invertible.

We shall develop a technique which we shall, in subsequent sections, extend to the finite difference approximation of PDEs.

For this purpose, we introduce, for two functions V and W defined at the interior mesh-points $x_{i}, i=1, \ldots, N-1$, the inner product

$$
(V, W)_{h}=\sum_{i=1}^{N-1} h V_{i} W_{i}
$$

which resembles the $L_{2}((0,1))$-inner product

$$
(v, w)=\int_{0}^{1} v(x) w(x) \mathrm{d} x
$$

The argument is based on mimicking, at the discrete level, the following procedure based on integration-by-parts, noting that the solution of the boundary-value problem (1) satisfies the homogeneous boundary conditions $u(0)=0$ and $u(1)=0$:

$$
\begin{align*}
\int_{0}^{1}\left(-u^{\prime \prime}(x)+c(x) u(x)\right) u(x) \mathrm{d} x & =\int_{0}^{1}\left|u^{\prime}(x)\right|^{2}+c(x)|u(x)|^{2} \mathrm{~d} x \\
& \geq \int_{0}^{1}\left|u^{\prime}(x)\right|^{2} \mathrm{~d} x \tag{4}
\end{align*}
$$

because $c(x) \geq 0$ for all $x \in[0,1]$.

The argument is based on mimicking, at the discrete level, the following procedure based on integration-by-parts, noting that the solution of the boundary-value problem (1) satisfies the homogeneous boundary conditions $u(0)=0$ and $u(1)=0$:

$$
\begin{align*}
\int_{0}^{1}\left(-u^{\prime \prime}(x)+c(x) u(x)\right) u(x) \mathrm{d} x & =\int_{0}^{1}\left|u^{\prime}(x)\right|^{2}+c(x)|u(x)|^{2} \mathrm{~d} x \\
& \geq \int_{0}^{1}\left|u^{\prime}(x)\right|^{2} \mathrm{~d} x \tag{4}
\end{align*}
$$

because $c(x) \geq 0$ for all $x \in[0,1]$. Thus if, for example, $f \equiv 0$ on $[0,1]$, then $-u^{\prime \prime}+c(x) u \equiv 0$ on $[0,1]$, and therefore by (4) also $u^{\prime} \equiv 0$ on $[0,1]$.

The argument is based on mimicking, at the discrete level, the following procedure based on integration-by-parts, noting that the solution of the boundary-value problem (1) satisfies the homogeneous boundary conditions $u(0)=0$ and $u(1)=0$:

$$
\begin{align*}
\int_{0}^{1}\left(-u^{\prime \prime}(x)+c(x) u(x)\right) u(x) \mathrm{d} x & =\int_{0}^{1}\left|u^{\prime}(x)\right|^{2}+c(x)|u(x)|^{2} \mathrm{~d} x \\
& \geq \int_{0}^{1}\left|u^{\prime}(x)\right|^{2} \mathrm{~d} x \tag{4}
\end{align*}
$$

because $c(x) \geq 0$ for all $x \in[0,1]$. Thus if, for example, $f \equiv 0$ on $[0,1]$, then $-u^{\prime \prime}+c(x) u \equiv 0$ on $[0,1]$, and therefore by (4) also $u^{\prime} \equiv 0$ on $[0,1]$. Consequently, u is a constant function on $[0,1]$, but because $u(0)=0$ and $u(1)=0$, necessarily $u \equiv 0$ on $[0,1]$.

The argument is based on mimicking, at the discrete level, the following procedure based on integration-by-parts, noting that the solution of the boundary-value problem (1) satisfies the homogeneous boundary conditions $u(0)=0$ and $u(1)=0$:

$$
\begin{align*}
\int_{0}^{1}\left(-u^{\prime \prime}(x)+c(x) u(x)\right) u(x) \mathrm{d} x & =\int_{0}^{1}\left|u^{\prime}(x)\right|^{2}+c(x)|u(x)|^{2} \mathrm{~d} x \\
& \geq \int_{0}^{1}\left|u^{\prime}(x)\right|^{2} \mathrm{~d} x \tag{4}
\end{align*}
$$

because $c(x) \geq 0$ for all $x \in[0,1]$. Thus if, for example, $f \equiv 0$ on $[0,1]$, then $-u^{\prime \prime}+c(x) u \equiv 0$ on $[0,1]$, and therefore by (4) also $u^{\prime} \equiv 0$ on $[0,1]$. Consequently, u is a constant function on $[0,1]$, but because $u(0)=0$ and $u(1)=0$, necessarily $u \equiv 0$ on $[0,1]$. Hence, the only solution to the homogeneous boundary-value problem is the function $u(x) \equiv 0, x \in[0,1]$.

For the finite difference approximation of the boundary-value problem, if we can show by an analogous argument that the homogeneous system of linear algebraic equations corresponding to $f\left(x_{i}\right)=0, i=1, \ldots, N-1$, has the trivial solution $U_{i}=0, i=0, \ldots, N$, as its unique solution, then the desired invertibility of the matrix A will directly follow.

For the finite difference approximation of the boundary-value problem, if we can show by an analogous argument that the homogeneous system of linear algebraic equations corresponding to $f\left(x_{i}\right)=0, i=1, \ldots, N-1$, has the trivial solution $U_{i}=0, i=0, \ldots, N$, as its unique solution, then the desired invertibility of the matrix A will directly follow.

Our key tool is a summation-by-parts identity, which is the discrete counterpart of the integration-by-parts identity

$$
\left(-u^{\prime \prime}, u\right)=\left(u^{\prime}, u^{\prime}\right)=\left\|u^{\prime}\right\|_{L_{2}((0,1))}^{2}=\int_{0}^{1}\left|u^{\prime}(x)\right|^{2} \mathrm{~d} x
$$

satisfied by the function u, obeying the homogeneous boundary conditions $u(0)=0, u(1)=0$, used in (4) above.

Summation by parts identity

Lemma

Suppose that V is a function defined at the mesh-points $x_{i}, i=0, \ldots, N$, and let $V_{0}=V_{N}=0$; then,

$$
\begin{equation*}
\left(-D_{x}^{+} D_{x}^{-} V, V\right)_{h}=\sum_{i=1}^{N} h\left|D_{x}^{-} V_{i}\right|^{2} \tag{5}
\end{equation*}
$$

Proof.

By the definitions of $(\cdot, \cdot)_{h}$ and $D_{x}^{+} D_{x}^{-} V_{i}$ we have that

$$
\begin{aligned}
\left(-D_{x}^{+} D_{x}^{-} V, V\right)_{h} & =-\sum_{i=1}^{N-1} h\left(D_{x}^{+} D_{x}^{-} V_{i}\right) V_{i} \\
& =-\sum_{i=1}^{N-1} \frac{V_{i+1}-V_{i}}{h} V_{i}+\sum_{i=1}^{N-1} \frac{V_{i}-V_{i-1}}{h} V_{i} \\
& =-\sum_{i=2}^{N} \frac{V_{i}-V_{i-1}}{h} V_{i-1}+\sum_{i=1}^{N-1} \frac{V_{i}-V_{i-1}}{h} V_{i} \\
& =-\sum_{i=1}^{N} \frac{V_{i}-V_{i-1}}{h} V_{i-1}+\sum_{i=1}^{N} \frac{V_{i}-V_{i-1}}{h} V_{i} \\
& =\sum_{i=1}^{N} \frac{V_{i}-V_{i-1}}{h}\left(V_{i}-V_{i-1}\right)=\sum_{i=1}^{N} h\left|D_{x}^{-} V_{i}\right|^{2}
\end{aligned}
$$

In the transition to the 3rd line we shifted the index in the first sum; in the transition to the 4th line used that $V_{0}=V_{N}=0$.

Returning to the finite difference scheme (3), let V be as in the above lemma and note that as, by hypothesis, $c(x) \geq 0$ for all $x \in[0,1]$, we have

$$
\begin{align*}
(A V, V)_{h} & =\left(-D_{x}^{+} D_{x}^{-} V+c V, V\right)_{h} \\
& =\left(-D_{x}^{+} D_{x}^{-} V, V\right)_{h}+(c V, V)_{h} \tag{6}\\
& \geq \sum_{i=1}^{N} h\left|D_{x}^{-} V\right|^{2} .
\end{align*}
$$

Returning to the finite difference scheme (3), let V be as in the above lemma and note that as, by hypothesis, $c(x) \geq 0$ for all $x \in[0,1]$, we have

$$
\begin{align*}
(A V, V)_{h} & =\left(-D_{x}^{+} D_{x}^{-} V+c V, V\right)_{h} \\
& =\left(-D_{x}^{+} D_{x}^{-} V, V\right)_{h}+(c V, V)_{h} \tag{6}\\
& \geq \sum_{i=1}^{N} h \mid D_{x}^{-} V V^{2} .
\end{align*}
$$

Thus, if $A V=0$ for some V, then $D_{x}^{-} V_{i}=0, i=1, \ldots, N$.

Returning to the finite difference scheme (3), let V be as in the above lemma and note that as, by hypothesis, $c(x) \geq 0$ for all $x \in[0,1]$, we have

$$
\begin{align*}
(A V, V)_{h} & =\left(-D_{x}^{+} D_{x}^{-} V+c V, V\right)_{h} \\
& =\left(-D_{x}^{+} D_{x}^{-} V, V\right)_{h}+(c V, V)_{h} \tag{6}\\
& \geq \sum_{i=1}^{N} h\left|D_{x}^{-} V_{i}\right|^{2} .
\end{align*}
$$

Thus, if $A V=0$ for some V, then $D_{x}^{-} V_{i}=0, i=1, \ldots, N$. Because $V_{0}=V_{N}=0$, this implies that $V_{i}=0, i=0, \ldots, N$.

Returning to the finite difference scheme (3), let V be as in the above lemma and note that as, by hypothesis, $c(x) \geq 0$ for all $x \in[0,1]$, we have

$$
\begin{align*}
(A V, V)_{h} & =\left(-D_{x}^{+} D_{x}^{-} V+c V, V\right)_{h} \\
& =\left(-D_{x}^{+} D_{x}^{-} V, V\right)_{h}+(c V, V)_{h} \tag{6}\\
& \geq \sum_{i=1}^{N} h\left|D_{x}^{-} V_{i}\right|^{2} .
\end{align*}
$$

Thus, if $A V=0$ for some V, then $D_{x}^{-} V_{i}=0, i=1, \ldots, N$. Because $V_{0}=V_{N}=0$, this implies that $V_{i}=0, i=0, \ldots, N$. Hence $A V=0$ if and only if $V=0$.

Returning to the finite difference scheme (3), let V be as in the above lemma and note that as, by hypothesis, $c(x) \geq 0$ for all $x \in[0,1]$, we have

$$
\begin{align*}
(A V, V)_{h} & =\left(-D_{x}^{+} D_{x}^{-} V+c V, V\right)_{h} \\
& =\left(-D_{x}^{+} D_{x}^{-} V, V\right)_{h}+(c V, V)_{h} \tag{6}\\
& \geq \sum_{i=1}^{N} h\left|D_{x}^{-} V\right|^{2}
\end{align*}
$$

Thus, if $A V=0$ for some V, then $D_{x}^{-} V_{i}=0, i=1, \ldots, N$. Because $V_{0}=V_{N}=0$, this implies that $V_{i}=0, i=0, \ldots, N$. Hence $A V=0$ if and only if $V=0$.

It therefore follows that A is a non-singular matrix, and thereby (3) has a unique solution, $U=A^{-1} F$.

We record this result in the next theorem.

Theorem

Suppose that c and f are continuous real-valued functions defined on the interval $[0,1]$, and $c(x) \geq 0$ for all $x \in[0,1]$; then, the finite difference scheme (3) possesses a unique solution U.

We record this result in the next theorem.
Theorem
Suppose that c and f are continuous real-valued functions defined on the interval $[0,1]$, and $c(x) \geq 0$ for all $x \in[0,1]$; then, the finite difference scheme (3) possesses a unique solution U.

We note in passing that, thanks the Lax-Milgram theorem (cf. the Lecture Notes), the boundary-value problem (1) has a unique (weak) solution under the hypotheses on c and f assumed in the above theorem.

Stability, consistency, and convergence

Next, we investigate the approximation properties of the finite difference scheme (3).

Stability, consistency, and convergence

Next, we investigate the approximation properties of the finite difference scheme (3). A key ingredient in our analysis is that the scheme (3) is stable (or discretely well-posed) in the sense that "small" perturbations in the data result in "small" perturbations in the corresponding finite difference solution.

Stability, consistency, and convergence

Next, we investigate the approximation properties of the finite difference scheme (3). A key ingredient in our analysis is that the scheme (3) is stable (or discretely well-posed) in the sense that "small" perturbations in the data result in "small" perturbations in the corresponding finite difference solution.

To prove this, we define the discrete L_{2}-norm

$$
\|U\|_{h}:=(U, U)_{h}^{1 / 2}=\left(\sum_{i=1}^{N-1} h\left|U_{i}\right|^{2}\right)^{1 / 2}
$$

and the discrete Sobolev norm

$$
\left.\|U\|_{1, h}:=\left.\left(\|U\|_{h}^{2}+\| D_{x}^{-} U\right]\right|_{h} ^{2}\right)^{1 / 2}
$$

where

$$
\| V]\left.\right|_{h} ^{2}:=\sum_{i=1}^{N} h\left|V_{i}\right|^{2}
$$

Using this notation, the inequality (6) can be rewritten as follows:

$$
\begin{equation*}
\left.(A V, V)_{h} \geq \| D_{x}^{-} V\right] \|_{h}^{2} . \tag{7}
\end{equation*}
$$

Using this notation, the inequality (6) can be rewritten as follows:

$$
\begin{equation*}
\left.(A V, V)_{h} \geq \| D_{x}^{-} V\right]\left.\right|_{h} ^{2} \tag{7}
\end{equation*}
$$

In fact, by employing a discrete version of the Poincaré-Friedrichs inequality, stated in the next lemma, we shall be able to prove that

$$
(A V, V)_{h} \geq c_{0}\|V\|_{1, h}^{2}
$$

where c_{0} is a positive constant, independent of h.

Using this notation, the inequality (6) can be rewritten as follows:

$$
\begin{equation*}
\left.(A V, V)_{h} \geq \| D_{x}^{-} V\right]\left.\right|_{h} ^{2} \tag{7}
\end{equation*}
$$

In fact, by employing a discrete version of the Poincaré-Friedrichs inequality, stated in the next lemma, we shall be able to prove that

$$
(A V, V)_{h} \geq c_{0}\|V\|_{1, h}^{2}
$$

where c_{0} is a positive constant, independent of h.

Lemma (Discrete Poincaré-Friedrichs inequality)

Let V be a function defined on the mesh $\left\{x_{i}, i=0, \ldots, N\right\}$, and such that $V_{0}=V_{N}=0$; then, there exists a positive constant c_{\star}, independent of V and h, such that

$$
\begin{equation*}
\left.\|V\|_{h}^{2} \leq c_{\star} \| D_{x}^{-} V\right]\left.\right|_{h} ^{2} \tag{8}
\end{equation*}
$$

for all such V.

Proof. Thanks to the definition of $D_{x}^{-} V_{i}$ and by use of the Cauchy-Schwarz inequality,

$$
\left|V_{i}\right|^{2}=\left|\sum_{j=1}^{i} h\left(D_{x}^{-} V_{j}\right)\right|^{2} \leq\left(\sum_{j=1}^{i} h\right) \sum_{j=1}^{i} h\left|D_{x}^{-} V_{j}\right|^{2}=i h \sum_{j=1}^{i} h\left|D_{x}^{-} V_{j}\right|^{2}
$$

Proof. Thanks to the definition of $D_{x}^{-} V_{i}$ and by use of the Cauchy-Schwarz inequality,

$$
\left|V_{i}\right|^{2}=\left|\sum_{j=1}^{i} h\left(D_{x}^{-} V_{j}\right)\right|^{2} \leq\left(\sum_{j=1}^{i} h\right) \sum_{j=1}^{i} h\left|D_{x}^{-} V_{j}\right|^{2}=i h \sum_{j=1}^{i} h\left|D_{x}^{-} V_{j}\right|^{2}
$$

Thus, because $\sum_{i=1}^{N-1} i=\frac{1}{2}(N-1) N$ and $N h=1$, we have that

$$
\begin{aligned}
\|V\|_{h}^{2} & =\sum_{i=1}^{N-1} h\left|V_{i}\right|^{2} \leq \sum_{i=1}^{N-1} i h^{2} \sum_{j=1}^{i} h\left|D_{x}^{-} V_{j}\right|^{2} \\
& \leq \frac{1}{2}(N-1) N h^{2} \sum_{j=1}^{N} h\left|D_{x}^{-} V_{j}\right|^{2} \\
& \left.\leq \frac{1}{2} \| D_{x}^{-} V\right]\left.\right|_{h} ^{2} .
\end{aligned}
$$

Proof. Thanks to the definition of $D_{x}^{-} V_{i}$ and by use of the Cauchy-Schwarz inequality,

$$
\left|V_{i}\right|^{2}=\left|\sum_{j=1}^{i} h\left(D_{x}^{-} V_{j}\right)\right|^{2} \leq\left(\sum_{j=1}^{i} h\right) \sum_{j=1}^{i} h\left|D_{x}^{-} V_{j}\right|^{2}=i h \sum_{j=1}^{i} h\left|D_{x}^{-} V_{j}\right|^{2}
$$

Thus, because $\sum_{i=1}^{N-1} i=\frac{1}{2}(N-1) N$ and $N h=1$, we have that

$$
\begin{aligned}
\|V\|_{h}^{2} & =\sum_{i=1}^{N-1} h\left|V_{i}\right|^{2} \leq \sum_{i=1}^{N-1} i h^{2} \sum_{j=1}^{i} h\left|D_{x}^{-} V_{j}\right|^{2} \\
& \leq \frac{1}{2}(N-1) N h^{2} \sum_{j=1}^{N} h\left|D_{x}^{-} V_{j}\right|^{2} \\
& \left.\leq \frac{1}{2} \| D_{x}^{-} V\right]\left.\right|_{h} ^{2} .
\end{aligned}
$$

We note that the constant $c_{\star}=1 / 2$ in the inequality (8).

Using the inequality (8) to bound the right-hand side of the inequality (7) from below we obtain

$$
\begin{equation*}
(A V, V)_{h} \geq \frac{1}{c_{\star}}\|V\|_{h}^{2} . \tag{9}
\end{equation*}
$$

Using the inequality (8) to bound the right-hand side of the inequality (7) from below we obtain

$$
\begin{equation*}
(A V, V)_{h} \geq \frac{1}{c_{\star}}\|V\|_{h}^{2} \tag{9}
\end{equation*}
$$

Adding the inequality (7) to the inequality (9) we arrive at the inequality

$$
\left.(A V, V)_{h} \geq\left.\left(1+c_{\star}\right)^{-1}\left(\|V\|_{h}^{2}+\| D_{x}^{-} V\right]\right|_{h} ^{2}\right)
$$

Using the inequality (8) to bound the right-hand side of the inequality (7) from below we obtain

$$
\begin{equation*}
(A V, V)_{h} \geq \frac{1}{c_{\star}}\|V\|_{h}^{2} \tag{9}
\end{equation*}
$$

Adding the inequality (7) to the inequality (9) we arrive at the inequality

$$
\left.(A V, V)_{h} \geq\left.\left(1+c_{\star}\right)^{-1}\left(\|V\|_{h}^{2}+\| D_{x}^{-} V\right]\right|_{h} ^{2}\right)
$$

Letting $c_{0}=\left(1+c_{\star}\right)^{-1}$ it follows that

$$
\begin{equation*}
(A V, V)_{h} \geq c_{0}\|V\|_{1, h}^{2} \tag{10}
\end{equation*}
$$

Now the stability of the finite difference scheme (3) easily follows.
Theorem
The scheme (3) is stable in the sense that

$$
\begin{equation*}
\|U\|_{1, h} \leq \frac{1}{c_{0}}\|f\|_{h} . \tag{11}
\end{equation*}
$$

Now the stability of the finite difference scheme (3) easily follows.
Theorem
The scheme (3) is stable in the sense that

$$
\begin{equation*}
\|U\|_{1, h} \leq \frac{1}{c_{0}}\|f\|_{h} . \tag{11}
\end{equation*}
$$

Proof. From (10) and (3) we have that

$$
\begin{aligned}
c_{0}\|U\|_{1, h}^{2} & \leq(A U, U)_{h}=(f, U)_{h} \leq\left|(f, U)_{h}\right| \\
& \leq\|f\|_{h}\|U\|_{h} \leq\|f\|_{h}\|U\|_{1, h},
\end{aligned}
$$

and hence (11). \square

Using this stability result it is easy to derive an estimate of the error between the exact solution u, and its finite difference approximation, U.

Using this stability result it is easy to derive an estimate of the error between the exact solution u, and its finite difference approximation, U. We define the global error, e, by

$$
e_{i}:=u\left(x_{i}\right)-U_{i}, \quad i=0, \ldots, N .
$$

Using this stability result it is easy to derive an estimate of the error between the exact solution u, and its finite difference approximation, U. We define the global error, e, by

$$
e_{i}:=u\left(x_{i}\right)-U_{i}, \quad i=0, \ldots, N
$$

Obviously $e_{0}=0, e_{N}=0$, and

$$
\begin{aligned}
A e_{i} & =A u\left(x_{i}\right)-A U_{i}=A u\left(x_{i}\right)-f\left(x_{i}\right) \\
& =-D_{x}^{+} D_{x}^{-} u\left(x_{i}\right)+c\left(x_{i}\right) u\left(x_{i}\right)-f\left(x_{i}\right) \\
& =u^{\prime \prime}\left(x_{i}\right)-D_{x}^{+} D_{x}^{-} u\left(x_{i}\right), \quad i=1, \ldots, N-1 .
\end{aligned}
$$

Using this stability result it is easy to derive an estimate of the error between the exact solution u, and its finite difference approximation, U. We define the global error, e, by

$$
e_{i}:=u\left(x_{i}\right)-U_{i}, \quad i=0, \ldots, N
$$

Obviously $e_{0}=0, e_{N}=0$, and

$$
\begin{aligned}
A e_{i} & =A u\left(x_{i}\right)-A U_{i}=A u\left(x_{i}\right)-f\left(x_{i}\right) \\
& =-D_{x}^{+} D_{x}^{-} u\left(x_{i}\right)+c\left(x_{i}\right) u\left(x_{i}\right)-f\left(x_{i}\right) \\
& =u^{\prime \prime}\left(x_{i}\right)-D_{x}^{+} D_{x}^{-} u\left(x_{i}\right), \quad i=1, \ldots, N-1 .
\end{aligned}
$$

Thus,

$$
\begin{align*}
& A e_{i}=\varphi_{i}, \quad i=1, \ldots, N-1 \tag{12}\\
& e_{0}=0, \quad e_{N}=0
\end{align*}
$$

where $\varphi_{i}:=u^{\prime \prime}\left(x_{i}\right)-D_{x}^{+} D_{x}^{-} u\left(x_{i}\right)$ is the consistency error (sometimes also called the truncation error).

By applying ineq. (11) to the finite difference scheme (12):

$$
\begin{equation*}
\|u-U\|_{1, h}=\|e\|_{1, h} \leq \frac{1}{c_{0}}\|\varphi\|_{h} . \tag{13}
\end{equation*}
$$

By applying ineq. (11) to the finite difference scheme (12):

$$
\begin{equation*}
\|u-U\|_{1, h}=\|e\|_{1, h} \leq \frac{1}{c_{0}}\|\varphi\|_{h} . \tag{13}
\end{equation*}
$$

It remains to bound $\|\varphi\|_{h}$. We showed that, if $u \in C^{4}([0,1])$, then

$$
\varphi_{i}=u^{\prime \prime}\left(x_{i}\right)-D_{x}^{+} D_{x}^{-} u\left(x_{i}\right)=\mathcal{O}\left(h^{2}\right)
$$

By applying ineq. (11) to the finite difference scheme (12):

$$
\begin{equation*}
\|u-U\|_{1, h}=\|e\|_{1, h} \leq \frac{1}{c_{0}}\|\varphi\|_{h} . \tag{13}
\end{equation*}
$$

It remains to bound $\|\varphi\|_{h}$. We showed that, if $u \in C^{4}([0,1])$, then

$$
\varphi_{i}=u^{\prime \prime}\left(x_{i}\right)-D_{x}^{+} D_{x}^{-} u\left(x_{i}\right)=\mathcal{O}\left(h^{2}\right)
$$

i.e. there exists a positive constant C, independent of h, such that

$$
\left|\varphi_{i}\right| \leq C h^{2}
$$

By applying ineq. (11) to the finite difference scheme (12):

$$
\begin{equation*}
\|u-U\|_{1, h}=\|e\|_{1, h} \leq \frac{1}{c_{0}}\|\varphi\|_{h} . \tag{13}
\end{equation*}
$$

It remains to bound $\|\varphi\|_{h}$. We showed that, if $u \in C^{4}([0,1])$, then

$$
\varphi_{i}=u^{\prime \prime}\left(x_{i}\right)-D_{x}^{+} D_{x}^{-} u\left(x_{i}\right)=\mathcal{O}\left(h^{2}\right)
$$

i.e. there exists a positive constant C, independent of h, such that

$$
\left|\varphi_{i}\right| \leq C h^{2}
$$

Consequently,

$$
\begin{equation*}
\|\varphi\|_{h}=\left(\sum_{i=1}^{N-1} h\left|\varphi_{i}\right|^{2}\right)^{1 / 2} \leq C h^{2} \tag{14}
\end{equation*}
$$

By applying ineq. (11) to the finite difference scheme (12):

$$
\begin{equation*}
\|u-U\|_{1, h}=\|e\|_{1, h} \leq \frac{1}{c_{0}}\|\varphi\|_{h} . \tag{13}
\end{equation*}
$$

It remains to bound $\|\varphi\|_{h}$. We showed that, if $u \in C^{4}([0,1])$, then

$$
\varphi_{i}=u^{\prime \prime}\left(x_{i}\right)-D_{x}^{+} D_{x}^{-} u\left(x_{i}\right)=\mathcal{O}\left(h^{2}\right)
$$

i.e. there exists a positive constant C, independent of h, such that

$$
\left|\varphi_{i}\right| \leq C h^{2}
$$

Consequently,

$$
\begin{equation*}
\|\varphi\|_{h}=\left(\sum_{i=1}^{N-1} h\left|\varphi_{i}\right|^{2}\right)^{1 / 2} \leq C h^{2} \tag{14}
\end{equation*}
$$

Combining the inequalities (13) and (14), it follows that

$$
\begin{equation*}
\|u-U\|_{1, h} \leq \frac{C}{c_{0}} h^{2} \tag{15}
\end{equation*}
$$

In fact, a more careful treatment of the remainder term in the Taylor series expansion on p. 4 reveals that

$$
\varphi_{i}=u^{\prime \prime}\left(x_{i}\right)-D_{x}^{+} D_{x}^{-} u\left(x_{i}\right)=-\frac{h^{2}}{12} u^{I V}\left(\xi_{i}\right), \quad \xi_{i} \in\left[x_{i-1}, x_{i+1}\right]
$$

In fact, a more careful treatment of the remainder term in the Taylor series expansion on p. 4 reveals that

$$
\varphi_{i}=u^{\prime \prime}\left(x_{i}\right)-D_{x}^{+} D_{x}^{-} u\left(x_{i}\right)=-\frac{h^{2}}{12} u^{I V}\left(\xi_{i}\right), \quad \xi_{i} \in\left[x_{i-1}, x_{i+1}\right]
$$

Thus

$$
\left|\varphi_{i}\right| \leq h^{2} \frac{1}{12} \max _{x \in[0,1]}\left|u^{I V}(x)\right|
$$

In fact, a more careful treatment of the remainder term in the Taylor series expansion on p. 4 reveals that

$$
\varphi_{i}=u^{\prime \prime}\left(x_{i}\right)-D_{x}^{+} D_{x}^{-} u\left(x_{i}\right)=-\frac{h^{2}}{12} u^{I V}\left(\xi_{i}\right), \quad \xi_{i} \in\left[x_{i-1}, x_{i+1}\right] .
$$

Thus

$$
\left|\varphi_{i}\right| \leq h^{2} \frac{1}{12} \max _{x \in[0,1]}\left|u^{I V}(x)\right|
$$

and hence

$$
C=\frac{1}{12} \max _{x \in[0,1]}\left|u^{I V}(x)\right|
$$

in inequality (14).

In fact, a more careful treatment of the remainder term in the Taylor series expansion on p. 4 reveals that

$$
\varphi_{i}=u^{\prime \prime}\left(x_{i}\right)-D_{x}^{+} D_{x}^{-} u\left(x_{i}\right)=-\frac{h^{2}}{12} u^{I V}\left(\xi_{i}\right), \quad \xi_{i} \in\left[x_{i-1}, x_{i+1}\right] .
$$

Thus

$$
\left|\varphi_{i}\right| \leq h^{2} \frac{1}{12} \max _{x \in[0,1]}\left|u^{I V}(x)\right|
$$

and hence

$$
C=\frac{1}{12} \max _{x \in[0,1]}\left|u^{I V}(x)\right|
$$

in inequality (14). Recalling that $c_{0}=\left(1+c_{\star}\right)^{-1}$ and $c_{\star}=1 / 2$, we deduce that $c_{0}=2 / 3$. Substituting the values of the constants C and c_{0} into inequality (15) it follows that

$$
\|u-U\|_{1, h} \leq \frac{1}{8} h^{2}\left\|u^{I V}\right\|_{C([0,1])}
$$

Thus we have proved the following result.

Theorem

Let $f \in C([0,1]), c \in C([0,1])$, with $c(x) \geq 0$ for all $x \in[0,1]$, and suppose that the corresponding (weak) solution of the boundary-value problem (1) belongs to $C^{4}([0,1])$; then

$$
\begin{equation*}
\|u-U\|_{1, h} \leq \frac{1}{8} h^{2}\left\|u^{I V}\right\|_{C([0,1])} \tag{16}
\end{equation*}
$$

Some general observations

The analysis of the finite difference scheme (3) contains the key steps of a general error analysis for finite difference approximations of (elliptic) partial differential equations:

Some general observations

The analysis of the finite difference scheme (3) contains the key steps of a general error analysis for finite difference approximations of (elliptic) partial differential equations:

Consider the finite difference scheme:

$$
\begin{array}{ll}
\mathcal{L}_{h} u=f_{h}, & \text { in } \Omega_{h}, \\
\mathcal{B}_{h} u=g_{h}, & \text { on } \Gamma_{h} .
\end{array}
$$

(1) The first step is to prove the stability of the scheme in an appropriate mesh-dependent norm. A typical stability result for a finite difference scheme is

$$
\begin{equation*}
\left\|\left.\|U\|\right|_{\Omega_{h}} \leq C_{1}\left(\left\|f_{h}\right\|_{\Omega_{h}}+\left\|g_{h}\right\|_{\Gamma_{h}}\right),\right. \tag{17}
\end{equation*}
$$

where $\|\|\cdot\|\|_{\Omega_{h}},\|\cdot\|_{\Omega_{h}}$ and $\|\cdot\|_{\Gamma_{h}}$ are mesh-dependent norms involving mesh-points of Ω_{h} (or $\bar{\Omega}_{h}$) and Γ_{h}, respectively, and C_{1} is a positive constant, independent of h.
(2) The second step is to estimate the size of the consistency error,

$$
\begin{aligned}
\varphi_{\Omega_{h}} & :=\mathcal{L}_{h} u-f_{h}, & & \text { in } \Omega_{h}, \\
\varphi_{\Gamma_{h}} & :=\mathcal{B}_{h} u-g_{h}, & & \text { on } \Gamma_{h} .
\end{aligned}
$$

(in the case of the finite difference scheme (1) $\varphi_{\Gamma_{h}}=0$, and therefore $\varphi_{\Gamma_{h}}$ never appeared explicitly in our error analysis).
(2) The second step is to estimate the size of the consistency error,

$$
\begin{aligned}
\varphi_{\Omega_{h}} & :=\mathcal{L}_{h} u-f_{h}, & & \text { in } \Omega_{h}, \\
\varphi_{\Gamma_{h}} & :=\mathcal{B}_{h} u-g_{h}, & & \text { on } \Gamma_{h} .
\end{aligned}
$$

(in the case of the finite difference scheme (1) $\varphi_{\Gamma_{h}}=0$, and therefore $\varphi_{\Gamma_{h}}$ never appeared explicitly in our error analysis). If

$$
\left\|\varphi_{\Omega_{h}}\right\|_{\Omega_{h}}+\left\|\varphi_{\Gamma_{h}}\right\|_{\Gamma_{h}} \rightarrow 0 \quad \text { as } \quad h \rightarrow 0
$$

for a sufficiently smooth solution u of the boundary-value problem, we say that the scheme is consistent.
(2) The second step is to estimate the size of the consistency error,

$$
\begin{aligned}
\varphi_{\Omega_{h}} & :=\mathcal{L}_{h} u-f_{h}, & & \text { in } \Omega_{h}, \\
\varphi_{\Gamma_{h}} & :=\mathcal{B}_{h} u-g_{h}, & & \text { on } \Gamma_{h} .
\end{aligned}
$$

(in the case of the finite difference scheme (1) $\varphi_{\Gamma_{h}}=0$, and therefore $\varphi_{\Gamma_{h}}$ never appeared explicitly in our error analysis). If

$$
\left\|\varphi_{\Omega_{h}}\right\|_{\Omega_{h}}+\left\|\varphi_{\Gamma_{h}}\right\|_{\Gamma_{h}} \rightarrow 0 \quad \text { as } \quad h \rightarrow 0
$$

for a sufficiently smooth solution u of the boundary-value problem, we say that the scheme is consistent. If p is the largest positive integer such that

$$
\left\|\varphi_{\Omega_{h}}\right\| \Omega_{\Omega_{h}}+\left\|\varphi_{\Gamma_{h}}\right\|_{\Gamma_{h}} \leq C_{2} h^{p} \quad \text { as } \quad h \rightarrow 0
$$

(where C_{2} is a positive constant independent of h) for all sufficiently smooth u, the scheme is said to have order of accuracy (or order of consistency) p.

The finite difference scheme is said to provide a convergent approximation to the solution u of the boundary-value problem in the norm $\|\|\cdot\| \mid\|_{\Omega_{h}}$, if

$$
\|\|u-U\|\|_{\Omega_{h}} \rightarrow 0 \quad \text { as } h \rightarrow 0 .
$$

The finite difference scheme is said to provide a convergent approximation to the solution u of the boundary-value problem in the norm $\|\|\cdot\|\| \Omega_{h}$, if

$$
\|u-U\| \|_{\Omega_{h}} \rightarrow 0 \quad \text { as } h \rightarrow 0 .
$$

If q is the largest positive integer such that

$$
\|u-U\| \|_{\Omega_{h}} \leq C h^{q} \quad \text { as } h \rightarrow 0
$$

(where C is a positive constant independent of the mesh-size h), then the scheme is said to have order of convergence q.

We deduce the following fundamental theorem.

Abstract

Theorem Suppose that the finite difference scheme is stable (i.e. the inequality (17) holds for all f_{h} and g_{h} and the corresponding numerical solution U) and that the scheme is a consistent approximation of the boundary-value problem; then the finite difference scheme is a convergent approximation of the boundary-value problem, and the order of convergence q is not smaller then the order of accuracy (order of consistency) p.

Proof. We define the global error $e:=u-U$. Then,

$$
\mathcal{L}_{h} e=\mathcal{L}_{h}(u-U)=\mathcal{L}_{h} u-\mathcal{L}_{h} U=\mathcal{L}_{h} u-f_{h} .
$$

Thus

$$
\mathcal{L}_{h} e=\varphi_{\Omega_{h}}
$$

and similarly,

$$
\mathcal{B}_{h} e=\varphi_{\Gamma_{h}}
$$

Proof. We define the global error $e:=u-U$. Then,

$$
\mathcal{L}_{h} e=\mathcal{L}_{h}(u-U)=\mathcal{L}_{h} u-\mathcal{L}_{h} U=\mathcal{L}_{h} u-f_{h} .
$$

Thus

$$
\mathcal{L}_{h} e=\varphi_{\Omega_{h}}
$$

and similarly,

$$
\mathcal{B}_{h} e=\varphi_{\Gamma_{h}}
$$

By stability of the scheme it then follows that

$$
\|\|u-U\|\| \Omega_{h}=\| \| e\| \|_{\Omega_{h}} \leq C_{1}\left(\left\|\varphi_{\Omega_{h}}\right\| \Omega_{\Omega_{h}}+\left\|\varphi_{\Gamma_{h}}\right\| \Gamma_{h}\right),
$$

and hence the stated result with $q \geq p$, thanks to the assumed consistency of order p of the scheme.

Proof. We define the global error $e:=u-U$. Then,

$$
\mathcal{L}_{h} e=\mathcal{L}_{h}(u-U)=\mathcal{L}_{h} u-\mathcal{L}_{h} U=\mathcal{L}_{h} u-f_{h} .
$$

Thus

$$
\mathcal{L}_{h} e=\varphi_{\Omega_{h}}
$$

and similarly,

$$
\mathcal{B}_{h} e=\varphi_{\Gamma_{h}} .
$$

By stability of the scheme it then follows that

$$
\|\|u-U\|\| \Omega_{h}=\|\mid\| e\| \|_{\Omega_{h}} \leq C_{1}\left(\left\|\varphi_{\Omega_{h}}\right\| \Omega_{h}+\left\|\varphi_{\Gamma_{h}}\right\| \Gamma_{h}\right),
$$

and hence the stated result with $q \geq p$, thanks to the assumed consistency of order p of the scheme.
In other words,

$$
\text { stability }+ \text { consistency } \Rightarrow \text { convergence. }
$$

This abstract result is at the heart of the convergence analysis of finite difference approximations of PDEs.

