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Finite difference approximation of elliptic BVP’s

In Lecture 3 we discussed the finite difference approximation of
a two-point boundary-value problem. Here we shall carry out a similar
analysis for the elliptic boundary-value problem

−∆u + c(x)u = f (x) in Ω,

u = 0 on ∂Ω,
(1)

where Ω = (0, 1)× (0, 1), c is a continuous function on Ω and c(x) ≥ 0.

We shall consider two separate cases:

First we shall assume that f ∈ C (Ω). In this case, the error analysis
proceeds as in Lecture 3.

In Lecture 5 we shall then consider the case when f is only in L2(Ω).
In this case the boundary-value problem (1) does not have a classical
solution – only a weak solution exists; a different analytical technique
is then needed to explore the convergence of the scheme.
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The case when f ∈ C (Ω)

Definition of the mesh

Let N be an integer, N ≥ 2, and let h = 1/N; the mesh-points are (xi , yj),
i , j = 0, . . . ,N, where xi = ih, yj = jh. These mesh-points form the mesh

Ωh := {(xi , yj) : i , j = 0, . . . ,N}.

We consider the set of interior mesh-points

Ωh := {(xi , yj) : i , j = 1, ...,N − 1},

and the set of boundary mesh-points Γh := Ωh \ Ωh.
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Definition of the finite difference scheme

−(D+
x D−

x Ui ,j + D+
y D−

y Ui ,j) + c(xi , yj)Ui ,j = f (xi , yj) for (xi , yj) ∈ Ωh,

U = 0 on Γh.

(2)
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In an expanded form, this can be written as follows:

−
{
Ui+1,j − 2Ui ,j + Ui−1,j

h2
+

Ui ,j+1 − 2Ui ,j + Ui ,j−1

h2

}
+ c(xi , yj)Ui ,j = f (xi , yj), (3)

for i , j = 1, . . . ,N − 1,

Ui ,j = 0 if i = 0, i = N or if j = 0, j = N. (4)
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A typical row of A has 5 non-zero entries, corresponding to the
5 values of U in the finite difference stencil shown in Figure. 1.
The sparsity structure of A is shown in Figure 2.
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Existence and uniqueness of solutions

Next we show that the finite difference scheme (2) has a unique solution.

For two functions, V and W , defined on Ωh, we introduce the inner
product

(V ,W )h =
N−1∑
i=1

N−1∑
j=1

h2Vi ,jWi ,j ,

which resembles the L2-inner product

(v ,w) =

∫
Ω
v(x , y)w(x , y)dx dy .
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Lemma

Suppose that V is a function defined on Ωh and that V = 0 on Γh; then,

(−D+
x D−

x V ,V )h + (−D+
y D−

y V ,V )h

=
N∑
i=1

N−1∑
j=1

h2|D−
x Vi ,j |2 +

N−1∑
i=1

N∑
j=1

h2|D−
y Vi ,j |2.

(5)

Proof. The identity (5) is a direct consequence of the corresponding
univariate summation-by-parts result for −D+

x D−
x shown in Lecture 3,

and the analogous identity for −D+
y D−

y . �
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Returning to the analysis of the finite difference scheme (2), we shall now
proceed in much the same way as in the univariate case in Lecture 3.

As
c(x , y) ≥ 0 on Ω, by the summation-by-parts formula (5) we have that

(AV ,V )h = (−D+
x D−

x V − D+
y D−

y V + cV ,V )h

= (−D+
x D−

x V ,V )h + (−D+
y D−

y V ,V )h + (cV ,V )h

≥
N∑
i=1

N−1∑
j=1

h2|D−
x Vi ,j |2 +

N−1∑
i=1

N∑
j=1

h2|D−
y Vi ,j |2,

(6)

for any V defined on Ωh such that V = 0 on Γh.
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This implies, just as in the one-dimensional analysis presented in Section
3, that A is a non-singular matrix.

Indeed if AV = 0, then (6) yields:

D−
x Vi ,j =

Vi ,j − Vi−1,j

h
= 0,

i = 1, . . . ,N,
j = 1, . . . ,N − 1;

D−
y Vi ,j =

Vi ,j − Vi ,j−1

h
= 0,

i = 1, . . . ,N − 1,
j = 1, . . . ,N.

As V = 0 on Γh, these imply that V ≡ 0. Thus AV = 0 if and only if
V = 0. Hence A is non-singular, and U = A−1F is the unique solution of
(2).Thus the unique solution of the finite difference scheme (2) may be
found by solving the system of linear algebraic equations AU = F .
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Stability and convergence of the finite difference scheme
In order to prove the stability of the finite difference scheme (2), we
introduce the mesh–dependent norms

‖U‖h := (U,U)
1/2
h ,

and

‖U‖1,h := (‖U‖2
h + ‖D−

x U]|2x + ‖D−
y U]|2y )1/2,

where

‖D−
x U]|x :=

 N∑
i=1

N−1∑
j=1

h2|D−
x Ui ,j |2

1/2

and

‖D−
y U]|y :=

N−1∑
i=1

N∑
j=1

h2|D−
y Ui ,j |2

1/2

.

‖ · ‖1,h is the discrete version of the Sobolev norm ‖ · ‖H1(Ω).
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With this new notation, the inequality (6) can be rewritten in the following
compact form:

(AV ,V )h ≥ ‖D−
x V ]|2x + ‖D−

y V ]|2y . (7)

Using the discrete Poincaré–Friedrichs inequality stated in the next lemma,
we shall be able to deduce that

(AV ,V )h ≥ c0‖V ‖2
1,h,

where c0 is a positive constant.
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Lemma (Discrete Poincaré–Friedrichs inequality)

Suppose that V is a function defined on Ωh and such that V = 0 on Γh;
then, there exists a constant c∗, independent of V and h, such that

‖V ‖2
h ≤ c∗

(
‖D−

x V ]|2x + ‖D−
y V ]|2y

)
(8)

for all such V .
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Proof.
The inequality (8) is a straightforward consequence of its univariate
counterpart proved in Lecture 3;

indeed, for each fixed j , 1 ≤ j ≤ N − 1,

N−1∑
i=1

h|Vi ,j |2 ≤
1

2

N∑
i=1

h|D−
x Vi ,j |2. (9)

Analogously, for each fixed i , 1 ≤ i ≤ N − 1,

N−1∑
j=1

h|Vi ,j |2 ≤
1

2

N∑
j=1

h|D−
y Vi ,j |2. (10)

We first multiply (9) by h and sum through j , 1 ≤ j ≤ N − 1, then
multiply (10) by h and sum through i , 1 ≤ i ≤ N − 1, and finally add
these two inequalities to obtain

2 ‖V ‖2
h ≤

1

2

(
‖D−

x V ]|2x + ‖D−
y V ]|2y

)
.

Hence we arrive at (8) with c∗ = 1
4 . �
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Now the inequalities (7) and (8) imply that

(AV ,V )h ≥
1

c∗
‖V ‖2

h.

Finally, combining this inequality with (7) and recalling the definition of
the norm ‖ · ‖1,h, we obtain

(AV ,V )h ≥ c0‖V ‖2
1,h, (11)

where c0 = (1 + c∗)−1.

Using the inequality (11) we can now prove the stability of the finite
difference scheme (2).
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Theorem

The finite difference scheme (2) is stable in the sense that

‖U‖1,h ≤
1

c0
‖f ‖h. (12)

Proof. The proof is identical to that of the analogous stability inequality
from Lecture 3 in the univariate case. From (11) and (2) we have that

c0‖U‖2
1,h ≤ (AU,U)h = (f ,U)h ≤

∣∣(f ,U)h
∣∣

≤ ‖f ‖h‖U‖h ≤ ‖f ‖h‖U‖1,h,

and hence we arrive at the desired inequality (12). �
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Convergence in the class of classical solutions

Next, we turn to the study of accuracy of the finite difference scheme (2).

We define the global error, e, by

ei ,j := u(xi , yj)− Ui ,j , 0 ≤ i , j ≤ N.

Assuming that u ∈ C 4(Ω), Taylor expansions with remainder terms in the
x and y directions give:

Aei ,j = Au(xi , yj)− AUi ,j = Au(xi , yj)− fi ,j

= ∆u(xi , yj)− (D+
x D−

x u(xi , yj) + D+
y D−

y u(xi , yj))

=

[
∂2u

∂x2
(xi , yj)− D+

x D−
x u(xi , yj)

]
+

[
∂2u

∂y2
(xi , yj)− D+

y D−
y u(xi , yj)

]

= −h2

12

∂4u

∂x4
(ξi , yj)−

h2

12

∂4u

∂y4
(xi , ηj), 1 ≤ i , j ≤ N − 1,

where ξi ∈ [xi−1, xi+1], ηj ∈ [yj−1, yj+1].
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We define the consistency error (or truncation error) of the finite
difference scheme (2) by

ϕi ,j := Au(xi , yj)− fi ,j .

Then, by the calculations above,

ϕi ,j = −h2

12

(
∂4u

∂x4
(ξi , yj) +

∂4u

∂y4
(xi , ηj)

)
, 1 ≤ i , j ≤ N − 1,

and

Aei ,j = ϕi ,j , 1 ≤ i , j ≤ N − 1,

e = 0 on Γh.
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Thanks to the stability result (12), we therefore have that

‖u − U‖1,h = ‖e‖1,h ≤
1

c0
‖ϕ‖h. (13)

To arrive at a bound on the global error e = u − U in the norm ‖ · ‖1,h it
therefore remains to bound ‖ϕ‖h and insert the resulting bound in the
right-hand side of (13). Indeed, by noting that

|ϕi ,j | ≤
h2

12

∥∥∥∥∥∂4u

∂x4
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Theorem

Let f ∈ C (Ω), c ∈ C (Ω), with c(x , y) ≥ 0, (x , y) ∈ Ω, and suppose that
the corresponding weak solution of the boundary-value problem (1)
belongs to C 4(Ω); then

‖u − U‖1,h ≤
5h2

48

∥∥∥∥∥∂4u

∂x4

∥∥∥∥∥
C(Ω)

+

∥∥∥∥∥∂4u

∂y4

∥∥∥∥∥
C(Ω)

 . (15)

Proof. Recall that c0 = (1 + c∗)−1, c∗ = 1
4 , so that 1/c0 = 5

4 , and
combine (13) and (14). �
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According to this result, the five-point difference scheme (2) for the
boundary-value problem (1) is second-order convergent, provided that
u ∈ C 4(Ω).

As in the univariate case, we have deduced second-order convergence of
the finite difference scheme from its stability and its second-order
consistency, under the assumption that the exact solution u is sufficiently
smooth, i.e. that u ∈ C 4(Ω). Therefore, because c ∈ C (Ω) by hypothesis,
necessarily f = −∆u + cu ∈ C (Ω).
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In general, however, even if f and c are smooth functions, the
corresponding solution, u, of (1) will not be a smooth function because
the boundary, Γ, of the domain, Ω = (0, 1)2, is not a smooth curve.

Thus, the hypothesis u ∈ C 4(Ω) is unrealistic.

Our analysis has another limitation: it was performed under the
assumption that f ∈ C (Ω), which was required in order to ensure that
the values of the function f are correctly defined at the mesh-points. In
applications one often encounters PDEs where f is not continuous on Ω,
but discontinuous (e.g. p.w. continuous) or just f ∈ L2(Ω).

Theorem 2.3 implies that if f ∈ L2(Ω), the boundary-value problem has a
unique weak solution, so it is natural to ask whether one can still construct
an accurate finite difference approximation of the weak solution. We shall
explore this question in Lecture 5.
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