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The discrete maximum principle

Theorem (Discrete maximum principle for the 6-scheme)

The 0-scheme for the Dirichlet initial-boundary-value problem for the heat
equation, with 0 < 6 <1 and pu(1 —6) < % yields a sequence of numerical
approximations {UJm}J‘:07_“7J; m=0,..,M Satisfying

Unin < Ujm < Unax
where
Urnin = min {mi”{U(T}%’:o’ mi"{UJO}JJ:m min{UT}AmAZO}

and

Uax = max {max{ UM, max{U%}_q, max{ UT}[‘,,/’:O}.




PRrROOF: We rewrite the 0-scheme as

(1+20p) Ut = 0 (Ut + Ut
(1= 0 (U + Uy + 1= 21— 0)] U,
and recall that, by hypothesis,

O >0 (1-60)u>0, 1-2(1—-0)u>0.
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Suppose that U attains its maximum value at an internal mesh point
Ujf"+1, 1<j<J—1, 0<m< M—1. If this is not the case, the proof is
complete.



PRrROOF: We rewrite the #-scheme as
(1+20p) Ut = 0 (Ut + Ut
(1= ) (UF + UPy) + [L—2(1 — 0)u] U,
and recall that, by hypothesis,
O >0 (1-60)u>0, 1-2(1—-0)u>0.

Suppose that U attains its maximum value at an internal mesh point
Ujf"+1, 1<j<J—1, 0<m< M—1. If this is not the case, the proof is
complete.

We define

* m—+1 +1 m m m
Ur = maX{Uj+1 ) U_,;l » Y41 Uj—la UJ }



Then,

(14 20p) U < 200" +2(1 — 0)uU*
+[1—2(1-0)u]U* = (14 26u) U™,

and therefore
U_fTH-l < U*
/] < U~
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Then,

(14 20p) U < 200" +2(1 — 0)uU*
+[1—2(1-0)u]U* = (14 26u) U™,

and therefore
umtt < U*
/] < U~.

However, also,
* m+1
Ut < umtt,
as Ujerl is assumed to be the overall maximum value. Hence,

urtt = U,



Thus the maximum value is also attained at all mesh points neighbouring
(Xj, tm+1) present in the scheme.
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reached, in a finite number of steps.
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Thus the maximum value is also attained at all mesh points neighbouring
(Xj, tm+1) present in the scheme.

The same argument applies to these neighbouring points, and we can then
repeat this process until the boundary at x =aor x=boratt=0is
reached, in a finite number of steps.

The maximum is therefore attained at a boundary point.

Similarly, the minimum is attained at a boundary point. ¢



In summary then, for
1
1-0)< =
pl=0) =3

the 0-scheme satisfies the discrete maximum principle.



In summary then, for
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the 0-scheme satisfies the discrete maximum principle.
This is clearly more demanding than the ¢»-stability condition:
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In summary then, for
1
1-6)< =
pl=0) =3

the 0-scheme satisfies the discrete maximum principle.
This is clearly more demanding than the ¢»-stability condition:

(1l —20) < for 0<0<

N
I\)h—l

For example, the Crank-Nicolson scheme is unconditionally stable in the />
norm, yet it only satisfies the discrete maximum principle when
= e S L



Convergence of the #-scheme in the maximum norm

We close our discussion of finite difference schemes for the heat equation

in one space-dimension with the convergence analysis of the #-scheme for
the Dirichlet initial-boundary-value problem.
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Convergence of the #-scheme in the maximum norm

We close our discussion of finite difference schemes for the heat equation
in one space-dimension with the convergence analysis of the #-scheme for
the Dirichlet initial-boundary-value problem.

We begin by rewriting the scheme as follows:

(1+200) U = o (U + U
+(1-0)p(UN+U) +[1—2(1—0)u] U
The scheme is considered subject to the initial condition

U =uo(x), Jj=1,....J-1,

and the boundary conditions

g™t = Altmar). UTH = B(tmer), m=0,... .M 1.



The consistency error for the #-scheme is defined by

m+1 m m

Tm — /A (1-6) ity — 20 +uy
J At (Ax)?
+1 +1 +1
uJ{il B 2qu + uﬂl

(Ax)? ’

where u = u(x;, tm),



The consistency error for the #-scheme is defined by

m+l __  m m m m
e e AR 2 S s
J At (Ax)?
m+1 m+1 m+1
Uiy 20 U

(Ax)? ’
where u" = u(x;, tm), and therefore

(1+26) ”JmJrl = by (UJTEI + UJ(TL—’]_-1> + (1 =0)u (“1%1 + “f’ll)
+[1=2(1 - 0)p] v + AT



Define the global error, that is the discrepancy at a mesh-point between
the exact solution and its numerical approximation, by
m

e = u(xj, tm) — U/
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e = u(xj, tm) — U/

It then follows that

et =0, et =0,e =0 j=0,...,J

and

(1+ 20 ¢ = O (11 + €1 ) + (1= ) 2y + 7a)
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Define the global error, that is the discrepancy at a mesh-point between
the exact solution and its numerical approximation, by

e = u(xj, tm) — U/
It then follows that
et =0, et =0,e =0 j=0,...,J
and
(1+26p) ejf"H = 0u (ef’f{l + ef’f{l) +(1—-0)pu (el +emy)
+[1—2(1 - 0)u] e + AtT".
We define,

E™= max || and T" = max |T/"|
0<j<J 0<j<J



As, by hypothesis,
Op>0, (1-0)p>0, 1-2(1-0)u>0,
we have that

(1+20p)E™ < 20uE™ + E™ + AtT™.
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As, by hypothesis,
O >0, (1-0)u>0, 1-2(1-0)u>0,
we have that
(14 20p)E™Y < 20uE™ 4 E™ + AtT™.

Hence,
E™ML < EM 4 AtT™.
As E0 =0, upon summation,

m—1

E"<AtY T”
n=0
<mAt max T"
0<n<m-1
<T max max | T{"|,

0<m<M-1 1<j<Jj-1 '/
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As, by hypothesis,
O >0, (1-0)u>0, 1-2(1-0)u>0,
we have that
(14 20p)E™Y < 20uE™ 4 E™ + AtT™.

Hence,
EMTL < E™ L AtT™.

As E0 =0, upon summation,

m—1
E™ < At E T"
n=0
<mAt max T"
0<n<m-1
<T max max |T/"],
0<m<M—1 1<j<J—1
which then implies that
max max [u(xj,tm) — U"| < T max max | T"].
0<j<J 0<m<M 1<j<J—1 0<m<M-1

10 / 17



Recall from Lecture 9 that the consistency error of the #-scheme is

{ O ((Ax)? + (At)?) for 0 =1/2,

7= 0((ax)? + At) for 0 #1/2.

J
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Recall from Lecture 9 that the consistency error of the 0-scheme is

{ O ((Ax)? + (At)?) for 0 =1/2,

7= 0((ax)? + At) for 6 +£1/2.

J

For the explicit/implicit Euler schemes, for which

T" =0 ((Ax)* + At),

one has the following bound on the global error:

; — UM < . 2
Joax  max u(xj, tm) — U] < Const. ((Ax)* + At),

while for the Crank—Nicolson scheme, which has consistency error

" =0 ((Ax)? + (At)?),

one has

tm) — UM < : 2 %).
orgnlagj OSrr:nagM lu(xj, tm) — U"| < Const. ((Ax)* + (At)?)

11 / 17



Finite difference approximation in two space-dimensions
Consider the heat equation

du 0%u  D%u
5_@+875/2’ (X,y)GQ.— (a,b)x(c,d), tG(O, T],

subject to the initial condition
u(x,y,0) = uo(x,y),  (x,y) €la, b] x[c,d],
and the Dirichlet boundary condition

ulgq = B(x,y, t), (x,y) €09, te(0,T],

where 0N is the boundary of Q.
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Finite difference approximation in two space-dimensions

Consider the heat equation

ou 0*u  0%u
a_ﬁ+87)/2’ (x,y) € Q:=(a,b) x (c,d), t€(0,T],

subject to the initial condition

u(x,y,0) = wo(x,y),  (x,y) €la b] x[c,dl,
and the Dirichlet boundary condition

ulgq = B(x,y, t), (x,y) €0Q, te(0,T],

where 0N is the boundary of Q.

We begin by considering the explicit Euler finite difference scheme for this
problem.
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The explicit Euler scheme

Let
52Uy = Ui1j — 2Uj + Uiy,

and
5}2,U,:,' = U,"J'_;_l — QUU + U;J_l.
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The explicit Euler scheme

Let
62U := Ups1j — 2U; + Ui,

and
5)2/UU = U,'7j+1 — 2UU + U,',_,'_l.

Let, further, Ax := (b—a)/Jx, Ay :=(d —c)/Jy, At := T /M, and define
X; = a+ iAx, i=0,...,Jy,

yj = c+jAy, J=0,...,J,,
tm = mAL, m=0,...,M.

13 / 17



The explicit Euler finite difference scheme for the unsteady heat equation
on the space-time domain € x [0, T] is then:

m+-1 m 2 2
U,-j — U,-J- B ozum 5yU,5?’

x=ij

At (Ax)2 ~ (Ay)?’

fori=1,...,0c—1,j=1,...,0,—1, m=0,1,...,M—1,
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The explicit Euler finite difference scheme for the unsteady heat equation
on the space-time domain € x [0, T] is then:

m+-1 m 2 2
U,-j — U,-j B ozum 5yU,57’

x=ij

At (Ax)? ~ (Ay)*

fori=1,...,x—1,j=1,...,J,—1, m=0,1,...,M — 1, subject to
the initial condition

Up =uw(xiy), i=0,....0, j=0,....J,
and the boundary condition

Uj' = B(xi, yj; tm), at the boundary mesh points, for m=1,..., M.

14 / 17



The implicit Euler scheme

Let Ax := (b—a)/Jx, Ay :=(d —c)/J,, At := T /M, and define

x; = a+ iAx, i=0,...,J,
yj = c+JjAy, Jj=0,....J,
tm = mAL, m=20,..., M.
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The implicit Euler scheme

Let Ax := (b—a)/Jx, Ay :=(d —c)/J,, At := T /M, and define

x; = a+ iAx, i=0,...,J,
yj = c+jAy, Jj=0,....J,
tm = mAL, m=20,..., M.

The implicit Euler finite difference scheme for the problem is then

m+1 _ ym 21 m+1 2 1 m+1
U,-J- U,-J- oz U’ (5in]

X7y

At (Ax)2 0 (Ay)p

fori=1,...,0c—1,j=1,...,0, -1, m=0,1,....,M—1,

15 / 17



subject to the initial condition
Up =uw(xiy), i=0,....0 j=0,....J,
and the boundary condition

U&"H = B(xi, yj, tm+1), at the boundary mesh points,
form=0,....,M—1.

16 / 17



The 6-scheme

Let Ax = (b—a)/Jx, Ay :=(d —c)/J,, At:=T/M, and, for
6 € [0, 1], consider the finite difference scheme

m+1 2 2 21 ym+1 2 m+1
Ufj _U';n :(1_9)(5XU,§" 5YUI!J?1> <5foj +6YUU )

At X2 " (Bay) a7 " (By)

fori=1,...,0c—1,j=1,...,0, -1, m=01,....,M—1,
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The 6-scheme

Let Ax = (b—a)/Jx, Ay :=(d —c)/J,, At:=T/M, and, for
6 € [0, 1], consider the finite difference scheme

m+1 2 2 21 m+1 21 m+1
UPR =R g (B9, BYS RUPT 85U
At (Ax)2 ~ (Ay)? (Ax)?  (Ay)?

fori=1,...,k—1,j=1,...,J,—1, m=0,1,...,M — 1, subject to
the initial condition

U}J)-: uo(xi,yj), 1=0,...,J, j=0,...,J,,
and the boundary condition

Ug’Jrl = B(Xi, ¥j, tmt1), at the boundary mesh points,
form=0,..., M —1.
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