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The implicit scheme: stability, consistency and convergence

Consider the closed interval [a, b] of the real line, with a < b, and let
T > 0. We shall be concerned with the finite difference approximation of
the initial-boundary-value problem

∂2u

∂t2
− c2∂

2u

∂x2
= f (x , t) for (x , t) ∈ (a, b)× (0,T ],

u(x , 0) = u0(x) for x ∈ [a, b],

∂u

∂t
(x , 0) = u1(x) for x ∈ [a, b],

u(a, t) = 0 and u(b, t) = 0 for t ∈ [0,T ].

(1)

Here, f is assumed to be a continuous real-valued function defined on
(a, b)× [0,T ], u0 and u1 are supposed to be continuous real-valued
functions defined on [a, b], and we shall assume compatibility of the initial
data with the boundary conditions, in the sense that u0 and u1 are required
to vanish at both x = a and x = b. As before, c > 0 is the wave speed.
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For M ≥ 2, we define ∆t := T/M, and for J ≥ 2 the spatial step is taken
to be ∆x := (b − a)/J. We let xj := a + j∆x for j = 0, 1, . . . , J and
tm := m∆t for m = 0, 1, . . . ,M.

On the space-time mesh {(xj , tm) : 0 ≤ j ≤ J, 0 ≤ m ≤ M} we consider
the finite difference scheme

Um+1
j − 2Um

j + Um−1
j

∆t2
− c2 U

m+1
j+1 − 2Um+1

j + Um+1
j−1

∆x2
= f (xj , tm+1) for

{
j = 1, . . . , J−1,
m = 1, . . . ,M−1,

U0
j = u0(xj) for j = 0, 1, . . . , J,

U1
j = U0

j + ∆t u1(xj) for j = 1, 2, . . . ,J−1,

Um
0 = 0 and Um

J = 0 for m = 1, . . . ,M.

(2)
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The second numerical initial condition, featuring in equation (2)3, stems

from the observation that if ∂2u
∂t2 ∈ C ([a, b]× [0,T ]) then

u(xj ,∆t)− U0
j

∆t
=

u(xj ,∆t)− u(xj , 0)

∆t

=
∂u

∂t
(xj , 0) +O(∆t) = u1(xj) +O(∆t);

thus, by ignoring the O(∆t) term and replacing u(xj ,∆t) by its numerical
approximation U1

j we obtain (2)3.

Once the values of Um−1
j and Um

j , for j = 0, . . . , J, have been computed
(or have been specified by the initial data, in the case of m = 1), the
subsequent values Um+1

j , j = 0, . . . , J, need to be computed by solving a

system of J − 1 linear algebraic equations for the J − 1 unknowns Um+1
j ,

j = 0, . . . , J − 1, for m = 0, . . . ,M − 1. The finite difference scheme (2) is
therefore called the implicit scheme for the initial-boundary-value problem.
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Stability of the implicit scheme.

Consider the inner products

(U,V ) :=
J−1∑
j=1

∆x Uj Vj ,

(U,V ] :=
J∑

j=1

∆x Uj Vj ,

and the associated norms, respectively, ‖ · ‖ and ‖·]|, defined by

‖U‖ := (U,U)
1
2 and ‖U]| := (U,U]

1
2 .
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Note that for two mesh functions A and B defined on the computational
mesh {xj : j = 1, . . . , J − 1} one has that (please check this!)

(A− B,A) =
1

2
(‖A‖2 − ‖B‖2) +

1

2
‖A− B‖2.

Thus, by taking A = Um+1 − Um and B = Um − Um−1, we have

(Um+1 − 2Um + Um−1,Um+1 − Um)

=
1

2
(‖Um+1 − Um‖2 − ‖Um − Um−1‖2) +

1

2
‖Um+1 − 2Um + Um−1‖2.

Similarly as above, for two mesh functions A and B defined on the
computational mesh {xj : j = 1, . . . , J} we have that

(A− B,A] =
1

2
(‖A]|2 − ‖B]|2) +

1

2
‖A− B]|2.
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Hence, by performing a summation by parts and then taking
A = D+

x Um+1 and B = D+
x Um we have(

−D+
x D−x Um+1,Um+1 − Um

)
= (D−x Um+1,D−x (Um+1 − Um)]

= (D−x Um+1 − D−x Um,D−x Um+1]

=
1

2
(‖D−x Um+1]|2 − ‖D−x Um]|2)

+
1

2
‖D−x (Um+1 − Um)]|2.

By taking the (·, ·) inner product of (2)1 with Um+1 − Um and using the
identities stated above we therefore obtain:

1

2

(∥∥∥∥Um+1 − Um

∆t

∥∥∥∥2

−
∥∥∥∥Um − Um−1

∆t

∥∥∥∥2
)

+
1

2
∆t2

∥∥∥∥Um+1 − 2Um + Um−1

∆t2

∥∥∥∥2

+
1

2
c2(‖D−

x Um+1]|2 − ‖D−
x Um]|2) +

1

2
c2 ∆t2

∥∥∥∥D−
x

(
Um+1 − Um

∆t

)]∣∣∣∣2
= (f (·, tm+1),Um+1 − Um).

(3)
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In the special case when f is identically zero the equality (3) gives∥∥∥∥Um+1 − Um

∆t

∥∥∥∥2

+ c2‖D−x Um+1]|2 ≤
∥∥∥∥Um − Um−1

∆t

∥∥∥∥2

+ c2‖D−x Um]|2. (4)

Let us define the nonnegative expression

M2(Um) :=

∥∥∥∥Um+1 − Um

∆t

∥∥∥∥2

+ c2‖D−x Um+1]|2.

With this notation (4) becomes

M2(Um) ≤M2(Um−1), for all m = 1, . . . ,M − 1,

and therefore

M2(Um) ≤M2(U0), for all m = 1, . . . ,M − 1.
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One can verify (please check this!) that the mapping

U 7→ max
m∈{0,...,M−1}

[M2(Um)]1/2

is a norm on the linear space of mesh functions U defined on the
space-time mesh {(xj , tm) : j = 0, 1, . . . , J, m = 0, 1, . . . ,M} such that
Um

0 = Um
J = 0 for all m = 0, 1, . . . ,M.

Thus we have shown that when f is identically zero the implicit scheme
(2) is (unconditionally) stable in this norm.

Note: Unfortunately, the implicit scheme only satisfies an energy inequality
rather than an energy equality when f ≡ 0.
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We now return to the general case when f is not identically zero. Our
starting point is the equality (3) and we focus our attention on the term
on its right-hand side. By the Cauchy–Schwarz inequality,

(f (·, tm+1),Um+1 − Um) ≤ ‖f (·, tm+1)‖ ‖Um+1 − Um‖

=
√

∆t T ‖f (·, tm+1)‖
√

∆t

T

∥∥∥∥Um+1 − Um

∆t

∥∥∥∥
≤ ∆t T

2
‖f (·, tm+1)‖2 +

∆t

2T

∥∥∥∥Um+1 − Um

∆t

∥∥∥∥2

,

(5)

where in the transition to the last line we used the elementary inequality

αβ ≤ 1

2
α2 +

1

2
β2, for α, β ∈ R.

10 / 25



Substituting (5) into (3) we deduce that(
1− ∆t

T

)(∥∥∥∥Um+1 − Um

∆t

∥∥∥∥2

+ c2‖D−x Um+1]|2
)

≤
∥∥∥∥Um − Um−1

∆t

∥∥∥∥2

+ c2‖D−x Um]|2 + ∆t T ‖f (·, tm+1)‖2.

(6)

By recalling the definition of M2(Um) we can rewrite (6) in the following
compact form:(

1− ∆t

T

)
M2(Um) ≤M2(Um−1) + ∆t T ‖f (·, tm+1)‖2

for m = 1, 2, . . . ,M − 1.
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As, by assumption, M ≥ 2, it follows that ∆t := T/M ≤ T/2, whereby
∆t/T ≤ 1/2. By noting that

1− x ≥ 1

1 + 2x
∀ x ∈

[
0, 1

2

]
,

it follows with x = ∆t/T that

M2(Um) ≤
(

1 +
2 ∆t

T

)
M2(Um−1) + ∆t T

(
1 +

2 ∆t

T

)
‖f (·, tm+1)‖2

≤
(

1 +
2 ∆t

T

)
M2(Um−1) + 2 ∆t T ‖f (·, tm+1)‖2

for m = 1, 2, . . . ,M − 1.
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We need the following result, which is easily proved by induction.

Lemma

Suppose that M ≥ 2 is an integer, {am}M−1
m=0 and {bm}M−1

m=1 are
nonnegative real numbers, α > 0, and

am ≤ α am−1 + bm for m = 1, 2, . . . ,M − 1.

Then,

am ≤ αma0 +
m∑

k=1

αm−kbk for m = 1, 2, . . . ,M − 1.
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We shall apply Lemma 1 with

am =M2(Um), bm = 2 ∆t T ‖f (·, tm+1)‖2, α = 1 +
2 ∆t

T

to deduce that, for m = 1, 2, . . . ,M − 1,

M2(Um) ≤
(

1 +
2 ∆t

T

)m

M2(U0) + 2 ∆t T
m∑

k=1

(
1 +

2 ∆t

T

)m−k

‖f (·, tk+1)‖2.

We note that(
1 +

2 ∆t

T

)m

≤
(

1 +
2 ∆t

T

)M

=

(
1 +

2 ∆t

T

) T
∆t

≤ e2,

where the last inequality follows from the inequality

(1 + 2x)
1
x ≤ e2 ∀ x ∈

(
0, 1

2

]
,

with x = ∆t/T , which follows by noting that log(1 + x) ≤ x for all x ≥ 0.
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Thus we deduce the following stability result for the implicit scheme (2).

Theorem

The implicit finite difference approximation (2) of the initial-boundary-
value problem, on a finite difference mesh of spacing ∆x = (b − a)/J with
J ≥ 2 in the x-direction and ∆t = T/M with M ≥ 2 in the t-direction, is
(unconditionally) stable in the sense that, for m = 1, . . . ,M − 1,

M2(Um) ≤ e2M2(U0) + 2 e2 T
m∑

k=1

∆t ‖f (·, tk+1)‖2 ,

independently of the choice of ∆x and ∆t.
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Consistency of the implicit scheme.

We define the consistency error of the scheme for m = 1, . . . ,M − 1 by

Tm+1
j :=

um+1
j − 2umj + um−1

j

∆t2
−c2

um+1
j+1 − 2um+1

j + um+1
j−1

∆x2
−f (xj , tm+1),

{
j = 1, . . . , J − 1,
m = 1, . . . ,M − 1,

and

T 1
j :=

u1
j − u0

j

∆t
− u1(xj), j = 1, . . . , J − 1,

where umj := u(xj , tm).
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As

f (xj , tm+1) =
∂2u

∂t2
(xj , tm+1)− c2 ∂

2u

∂x2
(xj , tm+1) and u1(xj) =

∂u

∂t
(xj , 0),

it follows that

Tm+1
j : =

(
um+1
j − 2umj + um−1

j

∆t2
− ∂2u

∂t2
(xj , tm+1)

)

− c2

(
um+1
j+1 − 2um+1

j + um+1
j−1

∆x2
− ∂2u

∂x2
(xj , tm+1)

)

for j = 1, . . . , J − 1 and m = 1, . . . ,M − 1 and

T 1
j =

u1
j − u0

j

∆t
− ∂u

∂t
(xj , 0)

for j = 1, . . . , J − 1.
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By Taylor series expansion of umj = u(xj , tm) and um−1
j = u(xj , tm−1)

about the point (xj , tm+1) we have that

um+1
j − 2umj + um−1

j

∆t2
− ∂2u

∂t2
(xj , tm+1)

=
1

3
∆t

(
∂3u

∂t3
(xj , ηm)− 4

∂3u

∂t3
(xj , ηm−1)

)
,

where ηm−1 ∈ [tm−1, tm+1] and ηm ∈ [tm, tm+1], provided that the third
partial derivative of u w.r.t. t is a continuous function on [a, b]× [0,T ].
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Similarly, by Taylor series expansion of um+1
j+1 = u(xj+1, tm+1) and

um+1
j−1 = u(xj−1, tm+1) about the point (xj , tm+1) we find that

um+1
j+1 − 2um+1

j + um+1
j−1

∆x2
− ∂2u

∂x2
(xj , tm+1) =

1

12
∆x2 ∂

4u

∂x4
(ξj , tm+1),

where ξj ∈ [xj−1, xj+1], provided that the fourth partial derivative of u
with respect to x is a continuous function on [a, b]× [0,T ].

Hence,

|Tm+1
j | ≤ 1

12
c2∆x2M4x +

5

3
∆tM3t ,

{
j = 1, . . . , J − 1,
m = 1, . . . ,M − 1,

(7)

where

M4x := max
(x ,t)∈[a,b]×[0,T ]

∣∣∣∣∂4u

∂x4
(x , t)

∣∣∣∣ and M3t := max
(x ,t)∈[a,b]×[0,T ]

∣∣∣∣∂3u

∂t3
(x , t)

∣∣∣∣ .

19 / 25



Similarly, by Taylor series expansion of um+1
j+1 = u(xj+1, tm+1) and

um+1
j−1 = u(xj−1, tm+1) about the point (xj , tm+1) we find that

um+1
j+1 − 2um+1

j + um+1
j−1

∆x2
− ∂2u

∂x2
(xj , tm+1) =

1

12
∆x2 ∂

4u

∂x4
(ξj , tm+1),

where ξj ∈ [xj−1, xj+1], provided that the fourth partial derivative of u
with respect to x is a continuous function on [a, b]× [0,T ]. Hence,

|Tm+1
j | ≤ 1

12
c2∆x2M4x +

5

3
∆tM3t ,

{
j = 1, . . . , J − 1,
m = 1, . . . ,M − 1,

(7)

where

M4x := max
(x ,t)∈[a,b]×[0,T ]

∣∣∣∣∂4u

∂x4
(x , t)

∣∣∣∣ and M3t := max
(x ,t)∈[a,b]×[0,T ]

∣∣∣∣∂3u

∂t3
(x , t)

∣∣∣∣ .

19 / 25



It remains to bound T 1
j . This time, by performing a Taylor series

expansion, but now with an integral remainder term, we get that

T 1
j =

1

∆t

∫ ∆t

0
(∆t − t)

∂2u

∂t2
(xj , t)dt, (8)

and therefore

|T 1
j | ≤

1

2
∆t M2t , j = 1, . . . , J − 1,

where

M2t := max
(x ,t)∈[a,b]×[0,T ]

∣∣∣∣∂2u

∂t2
(x , t)

∣∣∣∣ .

Having bounded the consistency error we are now ready to investigate the
convergence of the implicit scheme.
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Convergence of the implicit scheme

In the rest of the section we shall explore the convergence of the finite
difference scheme (2). To this end, we define the global error

emj := u(xj , tm)− Um
j ,

{
j = 0, . . . , J,
m = 0, . . . ,M.

It follows from the definitions of Tm+1
j and T 1

j that

em+1
j − 2emj + em−1

j

∆t2
− c2

em+1
j+1 − 2em+1

j + em+1
j−1

∆x2
= Tm+1

j ,

for j = 1, . . . , J − 1 and m = 1, . . . ,M − 1, and

e1
j = e0

j + ∆t T 1
j , j = 1, . . . , J − 1.

Furthermore, e0
j = 0 for j = 0, 1, . . . , J, and em0 = emJ = 0 for

m = 1, . . . ,M.
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Hence, the global error e satisfies an identical finite difference scheme as
U, but with f (xj , tm+1) replaced by Tm+1

j , U0
j = u0(xj) replaced by

e0
j = 0, and u1(xj) replaced by T 1

j .

Theorem 2 with Um replaced by em, U0 replaced by e0 and f (xj , tk+1)
replaced by T k+1

j for j = 1, . . . , J − 1 and k = 1, . . . ,M − 1, gives that

M2(em) ≤ e2M2(e0) + 2 e2 T
m∑

k=1

∆t
∥∥∥T k+1

∥∥∥2
, for m = 1, . . . ,M − 1.

It remains to bound the terms on the r.h.s. of this inequality.
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Now, because (J − 1)∆x ≤ (b − a), it follows from (7) that

max
1≤k≤m

∥∥∥T k+1
∥∥∥2

= max
1≤k≤m

J−1∑
j=1

∆x |T k+1
j |2

≤ (b − a)

[
1

12
c2∆x2M4x +

5

3
∆tM3t

]2

.

Similarly,

M2(e0) ≤ (b − a)

[
1

2
∆t M2t

]2

+ c2(b − a)

[
1

2
∆t2M1x2t

]2

.
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Hence, finally,

M2(em) ≤ e2(b − a)

[
1

2
∆t M2t

]2

+ c2e2(b − a)

[
1

2
∆t2M1x2t

]2

+ 2e2 T 2(b − a)

[
1

12
c2∆x2M4x +

5

3
∆tM3t

]2

for m = 1, . . . ,M − 1.

Thus, provided that M2t , M1x2t , M4x and M3t are all finite, we have that

max
m∈{1,...,M−1}

[M2(um − Um)]
1
2 = O(∆x2 + ∆t).

Note: The convergence of the scheme is unconditional ; i.e., there is no
limitation on the size of the time step ∆t in terms of the spatial mesh-size
∆x for the convergence of the sequence of numerical approximations to
the solution of the wave equation to occur as ∆x ,∆t → 0.
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In Lecture 14 we shall study the explicit finite difference scheme for the
wave equation. We will show that, in contrast with the implicit scheme,
the explicit scheme is only conditionally stable, and its convergence will
therefore also shown to be conditional; specifically, we shall require that

c ∆t

∆x
≤ c0 < 1,

where c0 is a positive constant and c > 0 is the wave speed, appearing as
the coefficient of ∂2u

∂x2 in the wave equation.

Note: On the other hand, in contrast with the implicit scheme, when f ≡ 0
the explicit scheme will be shown to satisfy a discrete energy equality.
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