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First-order hyperbolic equations:
initial-boundary-value problem and energy estimate

Let Ω be a bounded open set in Rn, n ≥ 1, with boundary Γ = ∂Ω, and let
T > 0. In Q = Ω× (0,T ], we consider the initial boundary-value problem

∂u

∂t
+

n∑
i=1

bi (x)
∂u

∂xi
+ c(x , t)u = f (x , t), x ∈ Ω, t ∈ (0,T ], (1)

u(x , t) = 0, x ∈ Γ−, t ∈ [0,T ], (2)

u(x , 0) = u0(x) x ∈ Ω, (3)

where
Γ− = {x ∈ Γ : b(x) · ν(x) < 0},

b = (b1, . . . , bn) and ν(x) denotes the unit outward normal to Γ at x ∈ Γ.
Γ− will be called the inflow boundary. Its complement, Γ+ = Γ \ Γ−, will
be referred to as the outflow boundary.
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It is important to note that unlike elliptic equations where a boundary
condition is prescribed on the whole of ∂Ω, and parabolic equations and
second-order hyperbolic equations, such as the wave equation considered
in the previous lecture, where a boundary condition is specified on the
whole of Γ× [0,T ] = ∂Ω× [0,T ], in the initial boundary-value problem
for the first-order hyperbolic equation stated above, a boundary condition
is only imposed on part of the boundary, namely on Γ− × [0,T ]; — else,
the problem may have no solution.
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We shall assume that

bi ∈ C 1(Ω), i = 1, . . . , n, (4)

c ∈ C (Q), f ∈ L2(Q), (5)

u0 ∈ L2(Ω). (6)

In order to ensure consistency between the initial and the boundary
condition, we shall suppose that u0(x) = 0, x ∈ Γ−.
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The existence of a unique solution (at least for c , f ∈ C 1(Q), u0 ∈ C 1(Ω))
can be shown using the method of characteristics (see A1 Diff. Eqns).

More generally, for bi , c , f , u0, obeying the smoothness requirements of
(4), a unique solution still exists, but the proof of this result is beyond the
scope of this lecture course.

We shall therefore assume henceforth that the initial-boundary-value
problem (1)–(3) has a unique (‘sufficiently smooth’) solution, and consider
the behaviour of the solution as it evolves as a function of time, t, from
the given initial datum u0.
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We make the additional hypothesis:

c(x , t)− 1

2

n∑
i=1

∂bi
∂xi

(x) ≥ 0, x ∈ Ω, t ∈ [0,T ]. (7)

By taking the inner product in L2(Ω) of the equation (1) with u(·, t),
performing partial integration and noting the boundary condition (2):

(
∂u

∂t
(·, t), u(·, t)

)
+

(
c(·, t)− 1

2

n∑
i=1

∂bi
∂xi

(·), u2(·, t)

)

+
1

2

∫
Γ+

[
n∑

i=1

bi (x)νi (x)

]
u2(x , t)ds(x) = (f (·, t), u(·, t)), (8)

where ν(x) = (ν1(x), . . . , νn(x)) is the unit outward normal vector to Γ at
x ∈ Γ.
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By virtue of (7) and noting that(
∂u

∂t
, u

)
=

∫
Ω

∂u

∂t
(x , t) u(x , t)dx

=

∫
Ω

1

2

∂

∂t
u2(x , t)dx =

1

2

d

dt

∫
Ω

u2(x , t)dx

=
1

2

d

dt
‖u(·, t)‖2,

it follows from (8) that

1

2

d

dt
‖u(·, t)‖2 +

1

2

∫
Γ+

[
n∑

i=1

bi (x)νi (x)

]
u2(x , t)ds(x) ≤ (f , u).

By the Cauchy–Schwarz inequality,

(f , u) ≤ ‖f (·, t)‖ ‖u(·, t)‖

≤ 1

2
‖f (·, t)‖2 +

1

2
‖u(·, t)‖2,

and therefore, for any t ∈ [0,T ],

d

dt
‖u(·, t)‖2 +

∫
Γ+

[
n∑

i=1

bi (x)νi (x)

]
u2(x , t)ds(x)− ‖u(·, t)‖2 ≤ ‖f (·, t)‖2.
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Multiplying both sides by e−t , this inequality can be rewritten as follows:

d

dt

(
e−t‖u(·, t)‖2

)
+ e−t

∫
Γ+

[
n∑

i=1

bi (x)νi (x)

]
u2(x , t) ds ≤ e−t‖f (·, t)‖2, t ∈ [0,T ].

Integrating this inequality w.r.t. t and noting the initial condition (3),

e−t‖u(·, t)‖2 +

∫ t

0
e−τ

∫
Γ+

[
n∑

i=1

bi (x)νi (x)

]
u2(x , τ)ds(x)dτ

≤ ‖u0‖2 +

∫ t

0
e−τ‖f (·, τ)‖2 dτ, t ∈ [0,T ].

It therefore follows that

‖u(·, t)‖2 +

∫ t

0
et−τ

∫
Γ+

[
n∑

i=1

bi (x)νi (x)

]
u2(x , τ) ds(x) dτ

≤ et‖u0‖2 +

∫ t

0
et−τ‖f (·, τ)‖2 dτ, t ∈ [0,T ]. (9)

This, so called, energy inequality expresses the continuous dependence of
the solution to (1)–(3) on the data.
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In particular it can be used to prove the uniqueness of the solution.

Indeed, if u1 and u2 are solutions of (1)–(3), then u := u1 − u2 also solves
(1)–(3), with f ≡ 0 and u0 ≡ 0.

Thus, by (9), ‖u(·, t)‖ = 0, t ∈ [0,T ] and therefore u ≡ 0, i.e. u1 ≡ u2.
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Let us consider a particularly important case when

c ≡ 0, f ≡ 0, and div b =
n∑

i=1

∂bi
∂xi
≡ 0,

where b(x) = (b1(x), . . . , bn(x)). Then, thanks to the identity (8),

1

2

d

dt
‖u(·, t)‖2 +

1

2

∫
Γ+

[b(x) · ν(x)] u2(x , t) ds(x) = 0,

and therefore,

‖u(·, t)‖2 +

∫ t

0

∫
Γ+

[b(x) · ν(x)] u2(x , τ)ds(x)dτ = ‖u0‖2,

which can be viewed as an identity expressing ‘conservation of energy’ for
the initial-boundary-value problem (1)–(3).
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Explicit finite difference approximation

We focus on a special case of the problem, and describe a simple explicit
finite difference scheme for the numerical approximation of the constant-
coefficient hyperbolic equation in one space dimension:

∂u

∂t
+ b

∂u

∂x
= f (x , t), x ∈ (0, 1), t ∈ (0,T ], (10)

subject to the boundary and initial conditions

u(x , t) = 0, x ∈ Γ−, t ∈ [0,T ], (11)

u(x , 0) = u0(x), x ∈ [0, 1]. (12)

If b > 0 then Γ− = {0}, and if b < 0 then Γ− = {1}. Let us assume, for
example, that b > 0. Then the appropriate boundary condition is

u(0, t) = 0, t ∈ [0,T ]. (13)
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To construct a finite difference approximation of (10)–(13) let ∆x := 1/J
be the mesh-size in the x-direction and ∆t := T/M the mesh-size in the
time-direction, t. Let us also define

xj := j∆x , j = 0, . . . , J, tm := m∆t, m = 0, . . . ,M.

At the mesh-point (xj , tm), (10) is approximated by the explicit finite
difference scheme

Um+1
j − Um

j

∆t
+ b D−x Um

j = f (xj , tm), j = 1, . . . , J, (14)

m = 0, . . . ,M − 1,

subject to the boundary and initial condition, respectively:

Um
0 = 0, m = 0, . . . ,M, (15)

U0
j = u0(xj), j = 0, . . . , J. (16)
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Equivalently, this can be written as follows:

Um+1
j = (1− µ)Um

j + µUm
j−1 + ∆t f (xj , tm),

{
j = 1, . . . , J,
m = 0, . . . ,M − 1,

in conjunction with

Um
0 = 0, m = 0, . . . ,M,

U0
j = u0(xj), j = 0, . . . , J,

where

µ =
b∆t

∆x
;

µ is called the CFL (or Courant–Friedrichs–Lewy) number.

The explicit finite difference scheme (14) is frequently called the first-order
upwind scheme.
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We shall explore the stability of this scheme in the discrete maximum
norm. Suppose that 0 ≤ µ ≤ 1; then∣∣∣Um+1

j

∣∣∣ ≤ (1− µ)
∣∣Um

j

∣∣+ µ
∣∣Um

j−1

∣∣+ ∆t |f (xj , tm)|

≤ (1− µ) max
0≤j≤J

∣∣Um
j

∣∣+ µ max
1≤j≤J+1

∣∣Um
j−1

∣∣+ ∆t max
0≤j≤J

|f (xj , tm)|

= max
0≤j≤J

∣∣Um
j

∣∣+ ∆t max
0≤j≤J

|f (xj , tm)| .

Thus we have that

max
0≤j≤J

∣∣∣Um+1
j

∣∣∣ ≤ max
0≤j≤J

∣∣Um
j

∣∣+ ∆t max
0≤j≤J

|f (xj , tm)| .

Let us define the mesh-dependent norm

‖U‖∞ := max
0≤j≤J

|Uj | ;

then

‖Um+1‖∞ ≤ ‖Um‖∞ + ∆t‖f (·, tm)‖∞, m = 0, . . . ,M − 1.
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Summing through m, we get

max
1≤k≤M

‖Uk‖∞ ≤ ‖U0‖∞ +
M−1∑
m=0

∆t‖f (·, tm)‖∞, (17)

which expresses the stability of the finite difference scheme (14)–(16)
under the condition

0 ≤ µ =
b∆t

∆x
≤ 1. (18)

Thus we have proved that the finite difference scheme (14)–(16) is
conditionally stable, the condition being that the CFL number µ ∈ [0, 1].
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It is possible to show that the scheme (14)–(16) is also stable in the
mesh-dependent L2-norm, ‖·]|, defined by

‖V ]|2 =
J∑

i=1

∆x V 2
i .

The associated inner product is

(V ,W ] :=
J∑

i=1

∆x ViWi .
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Since

Um
j =

Um
j + Um

j−1

2
+

Um
j − Um

j−1

2
,

and Um
0 = 0, it follows that

(D−x Um,Um] =
J∑

j=1

∆x
Um
j − Um

j−1

∆x
Um
j

=
1

2

J∑
j=1

{(Um
j )2 − (Um

j−1)2}+
∆x

2

J∑
j=1

∆x

(
Um
j − Um

j−1

∆x

)2

(19)

=
1

2
(Um

J )2 +
∆x

2
‖D−x Um]|2.
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In addition, since

Um
j =

Um+1
j + Um

j

2
−

Um+1
j − Um

j

2

for m = 0, . . . ,M − 1, we have for such m that(
Um+1 − Um

∆t
,Um

]
=

1

2∆t

(
‖Um+1]|2 − ‖Um]|2

)
− ∆t

2

∥∥∥∥ Um+1 − Um

∆t

]∣∣∣∣2 . (20)

By taking the (·, ·]-inner product of (14) with Um and using (19) and (20):

‖Um+1]|2 + ∆t b(Um
J )2 + b ∆x ∆t ‖D−x Um]|2 − ‖Um]|2

−∆t2

∥∥∥∥ Um+1 − Um

∆t

]∣∣∣∣2 = 2∆t (f m,Um], m = 0, . . . ,M − 1. (21)
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First suppose that f ≡ 0; then,

Um+1 − Um

∆t
= −b D−x Um,

and by substituting this into the last term on the left-hand side of the equality
(21) we have that, for m = 0, . . . ,M − 1,

‖Um+1]|2 + ∆t b |Um
J |

2 + b ∆x ∆t (1− µ)‖D−x Um]|2 = ‖Um]|2.

Summing through m,

‖Uk ]|2 +
k−1∑
m=0

∆t b |Um
J |

2 + b ∆x (1− µ)
k−1∑
m=0

∆t ‖D−x Um]|2 = ‖U0]|2 (22)

for k = 1, . . . ,M, which proves the stability of the scheme in the case when f ≡ 0
whenever

0 ≤ µ =
b ∆t

∆x
≤ 1.
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In particular, if µ = 1, we have from (22) that

‖Uk ]|2 +
k−1∑
m=0

∆t b |Um
J |

2 = ‖U0]|2, k = 1, . . . ,M,

which is the discrete version of the identity (9), and expresses
‘conservation of energy’ in the discrete sense.

More generally, for 0 ≤ µ ≤ 1, (22) implies

‖Uk ]|2 +
k−1∑
m=0

∆t b |Um
J |

2 ≤ ‖U0]|2, k = 1, . . . ,M.
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Now consider the question of stability in the ‖·]|-norm for f 6≡ 0. Since∥∥∥∥ Um+1 − Um

∆t

]∣∣∣∣2 = ‖f m − bD−x Um]|2 ≤ {‖f m]|+ b‖D−x Um]|}2

≤
(

1 +
1

ε′

)
‖f m]|2 + (1 + ε′)b2‖D−x Um]|2, ε′ > 0,

and

(f m,Um] ≤ ‖f m]| ‖Um]| ≤ 1
2‖f

m]|2 + 1
2‖U

m]|2,

it follows from the equality (21) that

‖Um+1]|2 + ∆t b |Um
n |

2 + b ∆x ∆t

[
1− (1 + ε′)

b∆t

∆x

]
‖D−x Um]|2

≤ ∆t

[(
1 +

1

ε′

)
∆t + 1

]
‖f m]|2 + (1 + ∆t)‖Um]|2.
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Letting ε = 1− 1/(1 + ε′) ∈ (0, 1) and assuming that

0 ≤ µ =
b ∆t

∆x
≤ 1− ε,

we have, for m = 0, . . . ,M − 1, that

‖Um+1]|2 + ∆t b |Um
J |

2 ≤ ‖Um]|2 + ∆t

(
1 +

∆t

ε

)
‖f m]|2 + ∆t‖Um]|2.

Upon summation of this inequality over m = 0, . . . , k − 1, we deduce that

‖Uk ]|2 +

(
k−1∑
m=0

∆t b |Um
J |

2

)
≤ ‖U0]|2 +

(
1 +

∆t

ε

) k−1∑
m=0

∆t ‖f m]|2

+
k−1∑
m=0

∆t ‖Um]|2
(23)

for k = 1, . . . ,M.

23 / 29



To complete the proof of stability of the finite difference scheme we
require the next lemma, which is easily proved by induction.

Lemma

Let (ak), (bk), (ck) and (dk) be four sequences of non-negative numbers
such that the sequence (ck) is non-decreasing and

ak + bk ≤ ck +
k−1∑
m=0

dmam, k ≥ 1; a0 + b0 ≤ c0.

Then

ak + bk ≤ ck exp

(
k−1∑
m=0

dm

)
, k ≥ 1.
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By applying this lemma to the inequality (23) with

ak := ‖Uk ]|2, k ≥ 0,

bk :=
k−1∑
m=0

∆t b |Um
J |

2
, k ≥ 1; b0 = 0,

ck := ‖U0]|2 +

(
1 +

∆t

ε

) k−1∑
m=0

∆t ‖f m]|2, k ≥ 1; c0 = ‖U0]|2,

dk := ∆t, k = 1, 2, . . . ,M,

we obtain for k = 1, . . . ,M:

‖Uk ]|2 +
k−1∑
m=0

∆t b |Um
J |

2 ≤ etk

(
‖U0]|2 +

(
1 +

∆t

ε

) k−1∑
m=0

∆t‖f m]|2
)
,

where tk = k∆t. Hence we deduce stability of the scheme, in the sense that

max
1≤k≤M

(
‖Uk ]|2 +

k−1∑
m=0

∆t b |Um
J |

2

)
≤ eT

(
‖U0]|2 +

(
1 +

∆t

ε

)M−1∑
m=0

∆t‖f m]|2
)
.
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An error bound for the scheme (14)–(16) is easily derived from its stability.
For implicity, we focus on the error analysis in the ‖ · ‖∞ norm, which we
shall deduce from the stability of the scheme in the ‖ · ‖∞ norm.

Define the global error, e, and the consistency error, Tm
j , of the scheme by

emj := u(xj , tm)− Um
j ,

Tm
j :=

u(xj , tm+1)− u(xj , tm)

∆t
+ bD−x u(xj , tm)− f (xj , tm).

Hence,

em+1
j − emj

∆t
+ bD−x emj = Tm

j , j = 1, . . . , J, m = 0, . . . ,M − 1,

em0 = 0, m = 0, . . . ,M,

e0
j = 0, j = 0, . . . , J.
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Thanks to the stability inequality, it follows that, for µ ∈ [0, 1],

max
1≤m≤M

‖em‖∞ ≤
M−1∑
k=0

∆t‖Tm‖∞. (24)

By Taylor series expansion of Tm
j about the point (xj , tm) we have that

Tm
j =

1

2
∆t

∂2u

∂t2
(xj , τ

m) +
1

2
b ∆x

∂2u

∂x2
(ξj , tm),

{
τm ∈ (tm, tm+1),
ξj ∈ (xj−1, xj),

and therefore also ∣∣Tm
j

∣∣ ≤ 1

2
(∆tM2t + b ∆x M2x),

where

Mkxlt := max
(x ,t)∈Q

∣∣∣∣ ∂k+l

∂xk∂t l
(x , t)

∣∣∣∣ .
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By defining M = max(M2t ,M2x), we have that∣∣Tm
j

∣∣ ≤ 1

2
M(∆t + b ∆x) (= O(∆x + ∆t)). (25)

Thus, by (24), we arrive at the error bound

max
1≤m≤M

‖um − Um‖∞ ≤
1

2
TM(∆t + b ∆x),

where um := u(·, tm) and umj := u(xj , tm). Therefore the scheme
(14)–(16) is first-order convergent with respect to both ∆x and ∆t.
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Analogously, using the stability result (23) in the discrete L2-norm ‖·]|,
(25) implies that

max
1≤m≤M

‖um − Um]| ≤ c?ε · (∆t + b ∆x),

where c?ε = 1
2e

T/2(1 + T/ε)1/2T 1/2M.

The analysis presented here can be extended to linear first-order hyperbolic
PDEs with variable coefficients, hyperbolic PDEs in more than one space-
dimension, and to finite difference schemes on non-uniform meshes.

We shall however remain in the univariate setting and discuss in the next
lecture on a different extension of the problem considered here: a scalar
nonlinear first-order hyperbolic PDE in one space dimension.
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