
Using the θ-method to solve ODEs

Kathryn Gillow

27th October 2021

1 Introduction

In this report we use the θ-method to solve ODE’s. We begin by introducing the

method and deriving it’s truncation error. We use this to derive an expression for the

local error. We then show an example to confirm that the correct rates of convergence

are achieve.

In what follows we consider initial value problems of the form

du

dt
= f(t, u) (1)

for t > 0 with an initial condition u(0) = u0. Here, we assume that f(t,u) satisfies a

Lipschitz condition in its second argument and that f(u,t) is bounded.

It is also possible to use the θ-method to solve problems with spacial dependence.

For example we could consider the heat equation of the form

∂u

∂t
=

∂2u

∂x2

for (x, t) ∈ (−1, 1)x(0, T] with boundary and initial conditions

u(x, 0) = u0(x) for − 1 < x < 1,

u(−1, t) = g1(t) for t > 0,

u(1, t) = g2(t) for t > 0.

However, we don’t consider such problems here. Instead, we refer the interested

reader to Ref. [1].

1

2 The θ-method

For a general introduction to the θ method see Ref. [2]. We summarise the key points

here.

In the θ-method we approximate the solution to Equation (1) at a set of discrete

time points tn = n∆t for n = 0, . . . , N where N ≥ 2 and N∆t = T , where T is the

final time. We let Un be the numerical approximation to u(tn).

The θ-method for Equation 1 is

Un+1 − Un

∆t
= θf(tn+1, Un + 1) + (1− θ)f(tn, Un)

Where θ is between 0 and 1. We require this equation to hold for n = 0, . . . , N − 1

and we apply the initial condition via U0 = u0. 3 values of θ lead to methods with a

specific name:

• θ = 0 is the explicit Euler scheme(also known as ”forward Euler”)

• θ = 1 is the implicit Euler scheme(also known as ”backward Euler”)

• θ = 1
2

is the Crank Nicolson scheme.

2.0.1 Truncation Error

The truncation error for the θ-method is defined as

Tn =
un+1 − un

∆t
− θf(tn+1, un+1)− (1− θ)f(tn, un) , (2)

where un = u(tn) is the exact solution at the point tn. The truncation error can be

computed using Taylor series expansions about an appropriately chosen time point.

For θ = 0 (i.e. explicit Euler), the expansions are usually performed about t = tn,

while for θ = 1 (i.e. implicit Euler), the expansions are usually performed about

t = tn+1. For general values of θ it is standard to expand about tn+1/2 = (tn +

tn+1)/2 = tn + 1/2∆t.

Note that since u′(tn) = f(tn, u(tn)), we may re-write the expression for the trun-

cation error

Tn =
un+1 − un

∆t
− θf(tn+1, un+1)− (1− θ)f(tn, un)

=
un+1 − un

∆t
− θu′(tn+1)− (1− θ)u′(tn) . (3)

2

We have

u(tn) = u(tn+1/2 −∆t/2)

= u(tn+1/2)−
∆t

2
u′(tn+1/2) +

1

2

(
∆t

2

)2

u′′(tn+1/2) +O(∆t3)

Similarly,

u(tn+1) = u(tn+1/2) +
∆t

2
u′(tn+1/2) +

1

2

(
∆t

2

)2

u′′(tn+1/2) +O(∆t3)

We can also expand the first derivatives in Equation (3):

u′(tn) = u′(tn+1/2)−
∆t

2
u′′(tn+1/2) +O(∆t2) ,

u′(tn+1) = u′(tn+1/2) +
∆t

2
u′′(tn+1/2) +O(∆t2) .

Substituting these four expansions into (3) gives

Tn =
1

∆t
((u(tn+1/2) +

∆t

2
u′(tn+1/2) +

1

2
(
∆t

2
)2u′′(tn+1/2))

−(u(tn+1/2)−
∆t

2
u′(tn+1/2) +

1

2
(
∆t

2
)2u′′(tn+1/2)))

−θ(u′(tn+1/2) +
∆t

2
u′′(tn+1/2))− (1− θ)(u′(tn+1/2)−

∆t

2
u′′(tn+1/2)) +O(∆t2) .(4)

Many of the terms in (4) cancel so the truncation error simplifies to

Tn =
∆t

2
(1− 2θ)u′′(tn+1/2) +O(∆t2) .

It can be shown by writing out the the O(∆t2) terms in full, that they do not cancel

for any value of θ.

Thus we have shown that for constant θ

Tn =

{
O(∆t) for θ 6= 1/2
O(∆t2) for θ = 1/2

so that the truncation error of the Crank Nicolson scheme converges twice as fast as

that of all other theta-methods.

3

2.1 Pointwise Errors

Recall the definition of the θ-method (??) and the corresponding truncation error (2):

Un+1 − Un

∆t
= θf(tn+1, Un+1) + (1− θ)f(tn, Un) ,

Tn =
un+1 − un

∆t
− θf(tn+1, un+1)− (1− θ)f(tn, un) .

We re-arrange both of these to get

Un+1 = Un + ∆t (θf(tn+1, Un+1) + (1− θ)f(tn, Un)) (5)

un+1 = un + ∆t (θf(tn+1, un+1) + (1− θ)f(tn, un)) + ∆tTn (6)

=⇒ |un+1 − Un+1| ≤ |un − Un|+ θ∆t|f(tn+1, un+1)− f(tn+1, Un+1)|

+(1− θ)∆t|f(tn, un)− f(tn, Un)|+ ∆t|Tn| . (7)

Next suppose that the right-hand-side function f(t, u) satisfies a Lipschitz condi-

tion in its second argument, with Lipschitz constant L, so that:

|f(t, u)− f(t, v)| ≤ L|u− v| , ∀(t, u), (t, v) ∈ Ω .

We can use this in (7) to get

|un+1 − Un+1| ≤ |un − Un|+ θ∆tL|un+1 − Un+1|+ (1− θ)∆tL|un − Un|+ ∆t|Tn| .

We can re-arrange this to get (for ∆t << 1)

(1− Lθ∆t)|un+1 − Un+1| ≤ (1 + L(1− θ)∆t)|un − Un|+ ∆t|Tn|

≤ (1 + L(1− θ)∆t)|un − Un|+ ∆tTmax , (8)

where

Tmax = max0≤n≤N |Tn|

is an upper bound on the absolute value of the truncation error.

Now let en = un − Un denote the error at time tn. Then (8) can be written as

|en+1| ≤
1 + L(1− θ)∆t

1− Lθ∆t
|en|+

∆tTmax

1− Lθ∆t
. (9)

4

We can show by induction that

|en| ≤
(

1 + L(1− θ)∆t
1− Lθ∆t

)n

|e0|+
∆tTmax

1− Lθ∆t

n∑
r=1

(
1 + L(1− θ)∆t

1− Lθ∆t

)r−1

≤
(

1 + L(1− θ)∆t
1− Lθ∆t

)n

|e0|+
Tmax

L

[(
1 + L(1− θ)∆t

1− Lθ∆t

)n

− 1

]
,

where the final line comes from evaluating the sum and simplifying. This holds for

n = 0, 1, . . . , N .

In practice, we usually set U0 = u0 which means that e0 = 0. We also have

1 + L(1− θ)∆t
1− Lθ∆t

= 1 +
L∆t

1− Lθ∆t

≤ exp

(
L∆t

1− Lθ∆t

)
.

In turn this means(
1 + L(1− θ)∆t

1− Lθ∆t

)n

≤
(

exp

(
L∆t

1− Lθ∆t

))n

≤ exp

(
nL∆t

1− Lθ∆t

)
≤ exp

(
LT

1− Lθ∆t

)
.

Thus we have

|en| ≤
Tmax

L

[
exp

(
LT

1− Lθ∆t

)
− 1

]
, (10)

for n = 0, 1, . . . , N . This shows that the pointwise error has the same order as the

truncation error.

3 Implementation

Recall that the θ-method is

Un+1 − Un

dt
= θf(tn+1, Un + 1) + (1− θ)f(tn, Un)

If θ 6= 0 then we have an implcit equation to solve for Un + 1 at each timestep. We

can write this equation as

g(Un+1) := Un+1 − Un − dtθf(tn+1, Un + 1)− dt(1− θ)f(tn, Un) = 0 .

5

We can solve this using the Newton Rhapson method which is summarized in the

code below.

% f i l e mynewt .m
% t h i s f unc t i on f i n d s a roo t o f f (x) us ing Newton ’ s method and a s t a r t i n g po in t xguess
function x=mynewt(f , fprime , xguess , t o l)

x=xguess ;

while abs (f (x)) > t o l
x=x−f (x)/ fpr ime (x)

end
end

4 Numerical Example

Consider the specific problem

du

dt
= loglog(4 + u2)

for 0 < t ≤ 1 and with u(0) = 1. The numerical results are shown in Figure (1)

below.

0 0.2 0.4 0.6 0.8 1

t

1

1.1

1.2

1.3

1.4

1.5

1.6

s
o
lu

ti
o
n

Explicit Euler

Implicit Euler

Crank Nicolson

Figure 1: Numerical solution to the example problem.

4.1 Convergence results

Since the exact solution to this problem is not known, we use a very accurate solution

generated using the Crank Nicolson scheme with N = 10000 to simulate the exact

solution. We then consider the error at time t = 1. The results are shown in the

figure. We can see that the errors for implicit and explicit Euler are almost the same

and converge like O(∆t), whereas the implicit Euler scheme is O(∆t2).

6

0 0.2 0.4 0.6 0.8 1

t

1

1.1

1.2

1.3

1.4

1.5

1.6

s
o

lu
ti
o
n

Figure 2: ”Exact” solution to the example problem.

10 1 10 2 10 3 10 4

N

10 -12

10 -10

10 -8

10 -6

10 -4

10 -2

10 0

a
b
s
o
lu

te
 e

rr
o
r

a
t
t=

1

Explicit Euler

Implicit Euler

Crank Nicolson

O(1/N)

O(1/N 2)

Figure 3: Convergence to the exact solution of the example problem at time t = 1.
The errors for implicit and explicit Euler are almost the same and have size O(∆t),
whereas the Crank Nicolson error is O(∆t2).

5 Conclusion

We have looked at the θ-method for solving initial value ordinary differential equation

problems. The parameter θ is chosen to lie in the interval [0, 1]. If θ = 0 then the

numerical method is explicit, otherwise it is implicit and a nonlinear equation must

be solved at each timestep. If θ = 1
2

the method is second order accurate, other-

wise the method is first oder accurate. These convergence rates were demonstrated

numerically.

7

References

[1] K.W. Morton and D.F. Mayers. Numerical Solution of Partial Differential Equa-

tions. Cambridge University Press, 1994.

[2] Süli, E. & Mayers, D. F. An Introduction to numerical analysis.

8

