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In the last 4 lectures

Lp spaces and their properties.
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This lecture

Pre-compactness criterion in Lp(Ω).

Divergence theorem and Integration by parts formula.

Weak derivatives.

Sobolev spaces W k,p(Ω) and W k,p
0 (Ω) as Banach spaces.

Differentiation rule for convolution of Sobolev functions.
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Pre-compactness criterion in C (K )

Theorem (Ascoli-Arzelà’s theorem)

Let K be a compact subset of Rn. Suppose that (fi) is a sequence of
functions of C (K ) such that

(1) (Boundedness) supi ‖fi‖C(K) <∞,
(2) (Equi-continuity) For every ε > 0, there exists δ > 0 such that
|fi(x)− fi(y)| < ε for all i and all x , y ∈ K with |x − y | < δ.

Then there exists a subsequence (fij ) which converges uniformly on K.
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Pre-compactness criterion in Lp(Ω)

Theorem (Kolmogorov-Riesz-Fréchet’s theorem)

Let 1 ≤ p <∞ and Ω be an open bounded subset of Rn. Suppose
that a sequence (fi) of Lp(Ω) satisfies

(1) (Boundedness) supi ‖fi‖Lp(Ω) <∞,
(2) (Equi-continuity in Lp) For every ε > 0, there exists δ > 0 such

that ‖τy f̃i − f̃i‖Lp(Ω) < ε for all |y | < δ, where f̃i is the extension
by zero of fi to the whole of Rn.

Then, there exists a subsequence (fij ) which converges in Lp(Ω).

By definition f̃i : Rn → R is given by f̃i = fi in Ω and f̃i = 0 in Rn \Ω.
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Pre-compactness criterion in Lp(Ω)

Proof

As in the proof of Ascoli-Arzelà’s theorem, it suffices to show
that, for every given ε > 0, there exists a subsequence (f εij ) of

(fi) such that

‖f εij − f εik ‖Lp(Ω) ≤ 3ε for large j , k . (***)

Claim: For every fixed ϕ ∈ C∞c (Rn), the sequence (f̃i ∗ ϕ|Ω̄)
satisfies the condition of Ascoli-Arzelà’s theorem.

? First, by Hölder’s inequality, we have

‖f̃i‖L1(Rn) = ‖fi‖L1(Ω) ≤ ‖fi‖Lp(Ω)|Ω|1/p
′
.

Thus, by the boundedness of (fi ) in Lp(Ω), we have that (f̃i ) is
bounded in L1(Rn).
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Pre-compactness criterion in Lp(Ω)

Proof

Claim: (f̃i ∗ ϕ|Ω̄) satisfies the condition of Ascoli-Arzelà’s
theorem.

? supi ‖f̃i‖L1(Rn) <∞.
? By Young’s convolution inequality

‖f̃i ∗ ϕ‖L∞(Rn) ≤ ‖f̃i‖L1(Rn)‖ϕ‖L∞(Rn).

So supi ‖f̃i ∗ ϕ‖C(Ω̄) <∞.
? Next,

|f̃i ∗ ϕ(x)− f̃i ∗ ϕ(y)| ≤
∫
Rn

∣∣∣ϕ(x − z)− ϕ(y − z)
∣∣∣|f̃ (z)| dz

≤ ‖ϕ‖Lip(Rn)|x − y |‖f̃i‖L1(Rn).

So by squeezing |x − y |, we can make supi |f̃i ∗ ϕ(x)− f̃i ∗ ϕ(y)|
as small as we want.
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Pre-compactness criterion in Lp(Ω)

Proof

(f̃i ∗ ϕ|Ω̄) satisfies the condition of Ascoli-Arzelà’s theorem.

Now, take a non-negative function % ∈ C∞c (B1) with
∫
Rn % = 1

and, for η > 0, let %η(x) = 1
ηn
%(x/η) be the standard mollifiers.

Recall that we have the estimate

‖f̃i ∗ %η − f̃i‖pLp≤
∫
Rn

|%η(y)|‖τ−y f̃i − f̃i‖pLp dy

≤ sup
|y |≤η
‖τy f̃i − f̃i‖pLp

∫
Rn

|%η(y)| dy

= sup
|y |≤η
‖τy f̃i − f̃i‖pLp .
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Pre-compactness criterion in Lp(Ω)

Proof

(f̃i ∗ ϕ|Ω̄) satisfies the condition of Ascoli-Arzelà’s theorem.

‖f̃i ∗ %η − f̃i‖Lp ≤ sup|y |≤η ‖τy f̃i − f̃i‖Lp .

We are now ready to prove (***):

? By the equi-continuity, there exists a small η > 0 such that
‖f̃i ∗ %η − f̃i‖Lp ≤ ε for all i .

? Using Ascoli-Arzelà’s theorem, select a subsequence (f εij ) of (fi )

such that (f̃ εij ∗ %η|Ω̄) is convergent in C (Ω̄).

? It follows that ‖f̃ εij ∗ %η − f̃ εik ∗ %η‖Lp(Ω) ≤ ε for large j , k.
? Consequently, by triangle inequality,

‖f εij − f εik ‖Lp(Ω) ≤ ‖f εij ∗ %η − f εik ∗ %η‖Lp(Ω) + ‖f εij ∗ %η − f εij ‖Lp(Ω)

+ ‖f εik ∗ %η − f εik ‖Lp(Ω) ≤ 3ε for large j , k ,

which is (***).
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Frequently used terminologies/notations

Ω denotes a domain in Rn.

C k(Ω) denotes the space of functions which are k-times
continuously differentiable in Ω.

C k(Ω̄) denotes the subspace of C k(Ω) consisting of functions
which can be extended to a k-times continuously differentiable
functions on some open set containing Ω̄.

C k
c (Ω) denotes the subspace of C k(Ω) consisting of functions f

such that Supp(f ) = {f 6= 0} is a bounded closed subset of Ω.
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Frequently used terminologies/notations

Ω is said to be a Lipschitz (resp. C k) domain, or equivalently,
∂Ω is said to be Lipschitz (resp. C k), if for every x0 ∈ ∂Ω there
exists a radius r0 > 0 such that, after a relabeling of coordinate
axes if necessary,

Ω ∩ Br0(x0) = {x ∈ Br0(x0) : xn > γ(x1, . . . , xn−1)}
for some Lipschitz (resp. C k) function γ.

Ω

x0

xn

Rn−1

xn = γ(x1, . . . , xn−1)
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Divergence theorem

Let Ω be a bounded Lipschitz domain in Rn. Fact: ∂Ω admits an
‘outward pointing’ unit normal n.

Theorem (Divergence theorem)

Let F ∈ C 1(Ω̄;Rn). Then∫
Ω

div F dx =

∫
∂Ω

F · n dS .

In particular, if F ∈ C 1
c (Ω;Rn), then∫

Ω

div F dx = 0.
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IBP formula

Let Ω be a bounded Lipschitz domain in Rn.

Theorem (Integration by parts formula)

Let f , g ∈ C 1(Ω̄). Then∫
Ω

f ∂ig dx =

∫
∂Ω

fgni dS −
∫

Ω

∂i f g dx .

In particular, if f or g has compact support in Ω, then∫
Ω

f ∂ig dx = −
∫

Ω

∂i f g dx .
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Weak derivatives

Let Ω be a domain in Rn.

Definition

Let f ∈ L1
loc(Ω) and α = (α1, . . . , αn) be a multi-index. A function

g ∈ L1
loc(Ω) is said to be a weak α-derivative of f if∫

Ω

f ∂αϕ dx = (−1)|α|
∫

Ω

gϕ dx for all ϕ ∈ C∞c (Ω). (1)

We write g = ∂αf in the weak sense.

The function ϕ is called a test function.
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Example of weak derivatives

If f ∈ C 1(Ω̄) and Ω is a bounded Lipschitz domain, then its
classical derivatives are also its weak derivatives.

Suppose Ω = (−1, 1) and f (x) = |x |. Then, if ϕ ∈ C∞c (−1, 1),
we have by IBP that∫ 1

−1

f (x)ϕ′(x) dx =

∫ 0

−1

(−x)ϕ′(x) dx +

∫ 1

0

xϕ′(x) dx

= −xϕ(x)
∣∣∣0
−1
−
∫ 0

−1

(−1)ϕ(x) dx

+xϕ(x)
∣∣∣1
0
−
∫ 1

0

(1)ϕ(x) dx

= −
∫ 1

−1

sign(x)ϕ(x) dx .

So f ′(x) = sign(x) in the weak sense.
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Uniqueness of weak derivatives

Lemma

Let f ∈ L1
loc(Ω) and α = (α1, . . . , αn) be a multi-index. The weak

α-derivative of f , if exists, is uniquely defined up to a set of measure
zero.

This follows from the definition of weak derivative and the following:

Lemma (Fundamental lemma of the Calculus of
Variations)

Let g ∈ L1
loc(Ω). If

∫
Ω
gϕ = 0 for all ϕ ∈ C∞c (Ω), then g = 0 a.e. in

Ω.
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Uniqueness of weak derivatives

Proof

We will only consider the case Ω is a bounded domain and
g ∈ L1(Ω). The general case is left as an exercise.

In Sheet 1, you showed that C∞c (Ω) is dense in L1(Ω). Thus, for
any ε > 0, we can select h ∈ C∞c (Ω) such that ‖g − h‖L1 ≤ ε.
Furthermore, by triangle inequality ‖h‖L1 ≥ ‖g‖L1 − ε.

For δ > 0, let hδ = h√
δ2+h2 so that hδ ∈ C∞c (Ω) and |hδ| ≤ 1.

By hypotheses,
∫

Ω
ghδ dx = 0.

By construction,
∣∣∣ ∫Ω

(g − h)hδ dx
∣∣∣ ≤ ‖g − h‖L1‖hδ‖L∞ ≤ ε.

It follows that

ε ≥
∫

Ω

ghδ dx −
∫

Ω

(g − h)hδ dx =

∫
Ω

hhδ dx .
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Uniqueness of weak derivatives

Proof

Recalling the expression of hδ, we have

ε ≥
∫

Ω

h2

√
δ2 + h2

dx .

The integrand on the right hand side converges monotonically
increasingly to |h|. Thus, by Lebesgue’s monotone convergence
theorem,

ε ≥
∫

Ω

|h| dx = ‖h‖L1 .

Recall that ‖h‖L1 ≥ ‖g‖L1 − ε, we obtain that 2ε ≥ ‖g‖L1 .
Sending ε→ 0, we obtain ‖g‖L1 = 0, i.e. g = 0 a.e. in Ω.
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A relation between classical and weak derivatives

Remark
Suppose that

(i) f ∈ L1(Ω) is weakly differentiable with weak derivatives ∂w1 f ,
. . . , ∂wn f ,

(ii) and, for some subdomain ω ⊂ Ω, f is classically differentiable in
ω with classical derivatives ∂c1 f , . . . , ∂cn f .

Then
∂wi f = ∂ci f a.e. in ω for all i = 1, . . . , n.
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A relation between classical and weak derivatives

Sketch of proof

Using the definition of weak derivatives, f |ω is weakly
differentiable with weak derivatives ∂w1 f |ω, . . . , ∂wn f |ω.

As f is classically differentiable in ω, its classical derivatives are
also weak derivatives of f |ω.

By the uniqueness of weak derivatives, the conclusion follows.
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Example of non-existence of weak derivatives

If Ω = (−1, 1) and u(x) = sign(x), then u has no weak derivative.
Proof

Suppose otherwise that u′ = g ∈ L1
loc(−1, 1). Then, for

ϕ ∈ C∞c (−1, 1),∫ 1

−1

g(x)ϕ(x) dx =

∫ 0

−1

ϕ′(x) dx −
∫ 1

0

ϕ′(x) dx

= [ϕ(0)− ϕ(−1)]− [ϕ(1)− ϕ(0)]

= 2ϕ(0).

In particular, if we take ϕ ∈ C∞c (−1, 0), we have∫ 0

−1
g(x)ϕ(x) dx = 0. So g = 0 a.e. in (−1, 0). Likewise, g = 0

a.e. in (0, 1). So g = 0 a.e. in (−1, 1).

We thus have 0 =
∫ 1

−1
g(x)ϕ(x) dx = 2ϕ(0) for all

ϕ ∈ C∞c (−1, 1), which is impossible.
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The Sobolev spaces W k ,p(Ω)

Ω: a domain of Rn.
For k ≥ 0 and 1 ≤ p ≤ ∞, define

W k,p(Ω) =
{
f ∈ Lp(Ω)

∣∣∣∀|α| ≤ k , the weak derivative

∂αf exists and belongs to Lp(Ω)
}
.

We equip W k,p(Ω) with the norm

‖u‖W k,p(Ω) =
[ ∑
|α|≤k

‖∂αu‖pLp(Ω)

] 1
p

so that W k,p(Ω) is a normed vector space (check this!).
For p = 2, we also write Hk(Ω) for W k,2(Ω). These are inner
product spaces (check this!) with inner product

〈u, v〉W k,2(Ω) =
∑
|α|≤k

〈∂αu, ∂αv〉L2(Ω).
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Examples of Sobolev functions

Let Ω = (−1, 1) and f (x) = |x |.

We have that f ′(x) = sign(x) and so f ∈ W 1,p(−1, 1) for every
p ∈ [1,∞].

The function f ′(x) = sign(x) has no weak derivatives, and so
f /∈ W 2,p(−1, 1) for any p ∈ [1,∞].
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Completeness of W k ,p(Ω)

Theorem
For k ≥ 0 and 1 ≤ p ≤ ∞, W k,p(Ω) is a Banach space. When
p = 2, W k,2(Ω) is a Hilbert space.

Proof

We have seen that W k,p is a normed vector space and W k,2 is an
inner product space. It remains to show that W k,p is complete.

Suppose that (um) is a Cauchy sequence in W k,p. We need to
show that there exists u ∈ W k,p such that ‖um − u‖W k,p → 0.

For |α| ≤ k , (∂αum) is Cauchy in Lp, as

‖∂αum − ∂αuj‖Lp ≤ ‖um − uj‖W k,p .

By Riesz-Fischer’s theorem, we have that (∂αum) converges in
Lp to some vα ∈ Lp.
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Completeness of W k ,p(Ω)

Proof

(um) is Cauchy in W k,p.

For |α| ≤ k , (∂αum) converges in Lp to some vα ∈ Lp.

To conclude, we show that u := v(0,...,0) belongs to W k,p and
um → u in W k,p.

? By definition of weak derivatives, we have for |α| ≤ k that∫
Ω
um∂

αϕ dx = (−1)|α|
∫

Ω
∂αum ϕ dx for all ϕ ∈ C∞c (Ω),

? Now we would like to pass m→∞. By Hölder’s inequality∣∣∣ ∫
Ω

(um − u)∂αϕ dx
∣∣∣ ≤ ‖um − u‖Lp‖∂αϕ‖Lp′ → 0.

So
∫

Ω um∂
αϕ dx →

∫
Ω u∂αϕ dx .

? Similarly,
∫

Ω ∂
αum ϕ dx →

∫
Ω vαϕ dx .
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Completeness of W k ,p(Ω)

Proof

(um) is Cauchy in W k,p.

For |α| ≤ k , (∂αum) converges in Lp to some vα ∈ Lp.
? We thus have∫

Ω
u∂αϕ = (−1)|α|

∫
Ω
vα ϕ for all ϕ ∈ C∞c (Ω).

So vα is the weak α-derivative of u. So u ∈W k,p.
? Now

‖um − u‖p
W k,p =

∑
|α|≤k

‖∂αum − ∂αu‖pLp

=
∑
|α|≤k

‖∂αum − vα‖pLp
m→∞−→ 0.

So um → u in W k,p.

We conclude that W k,p is complete.
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