
Stochastic Simulation: Lecture 9

Prof. Mike Giles

Oxford University Mathematical Institute



Continuous-time Markov Processes

In these two lectures we will consider the approximation of
Continuous-time Markov Processes.

Probably the most important class of applications for these is in
the stochastic modelling of chemical reactions in solution, so this
is the context we will start with.

Chemical reaction:
A + B −→ C

Classical deterministic modelling in a “well-stirred” vessel gives
a set of ODEs for the concentrations cA, cb, cC :

ċA = −κ cA cB

ċB = −κ cA cB

ċC = +κ cA cB



Continuous-time Markov Processes

This works well when there are lots of molecules of A and B in the
solution, but there are applications (particularly in bio-chemistry)
when there are very few, and then things become stochastic.

Let XA,XB ,XC be number of molecules of A, B, C in some
well-mixed container. Reactions require a molecule of A to
“bump into” a molecule of B and react, so

P(reaction in time interval dt) = κ XA XB dt

and when a reaction happens

XA → XA − 1

XB → XB − 1

XC → XC + 1



Unit rate Poisson Process

A unit rate Poisson process Y (τ) is a continuous-time random
counting process in which

I there is a set of increasing jump times 0 < τ1 < τ2 < τ3 < . . .

I setting τ0 = 0, then Y (τ) = j , for τ ∈ [τj , τj+1), j = 0, 1, . . .

I the jump intervals τj+1 − τj are i.i.d. exponential random
variables, so for t > 0

P(τj+1−τj > τ) = exp(−τ)

and
P(τj+1 < τ+dt | τj+1 > τ > τj) = dt

Note: for any time τ >0, Y (τ) is a Poisson random variable with
mean τ .



Continuous-time Markov Processes

Using a unit rate Poisson process to represent the number of
reactions which have taken place we have

X (t) = X (0) + R(t)

 −1
−1
+1


where

R(t) = Y

(∫ t

0
κXA(s)XB(s)ds

)
so the probability of a reaction in time interval (t, t+dt) is
κXA(t)XB(t)dt.



Continuous-time Markov Processes
Generalising this, suppose we have d species, and multiple
reactions, with the k-th reaction having an intensity function λk(t)
and with each such reaction changing the count of Xi by ζki .

Then with independent unit rate processes for each reaction we
have

Xi (t) = Xi (0) +
∑
k

Rk(t) ζki

where we have the time-change representation

Rk(t) = Yk

(∫ t

0
λk(s) ds

)
and for the most common law of mass action kinetics

λk(t) = κk

d∏
i=1

Xi !

(Xi − νki )!
1{Xi≥νki}

when there are νki inputs of species i in reaction k .



Continuous-time Markov Processes

Example from a paper by Anderson and Higham (2012)

S1
κ1−→←−
κ2

S2, 2S2
κ3−→ S3,

then

ζ1 =

 −1
1
0

 , ζ2 =

 1
−1
0

 , ζ3 =

 0
−2
1

 ,

and
λ1 = κ1 X1, λ2 = κ2 X2, λ3 = κ3 X2 (X2−1).



Stochastic Simulation Algorithm (SSA)

SSA is an exact simulation algorithm originally due to Gillespie
(1976, 1977). There have been a number of variants published
since – here I first describe his original “Direct Method”.

Key idea: if we define λ =
∑

k λk , then

P(reaction k occurs in next dt) = λk dt

P(some reaction occurs in next dt) = λ dt

P(next reaction is reaction k) = λk/λ



Stochastic Simulation Algorithm (SSA)

Input: initial X , final time T
t := 0

while t < T do
compute λk and λ :=

∑
k λk

generate two uniform r.v.’s U1,U2

next reaction time t := t − log(U1)/λ
if t < T then

identify reaction k ′ s.t.∑
k<k ′

λk
λ
< U2 ≤

∑
k≤k ′

λk
λ

X := X + ζk ′

end if
end while



Stochastic Simulation Algorithm (SSA)

Major issue: the cost is proportional to the total number of
reactions that take place – could be millions.

This will be addressed by tau-leaping approximation, and MLMC.

Minor issues:

I for each reaction, the Direct Method requires 2 random
numbers

I 2 key steps have costs proportional to the number of possible
reactions.

The first of these is addressed by Gillespie’s Next Reaction
Method, and the second was addressed by Gibson & Bruck (2000).



Stochastic Simulation Algorithm (SSA)

Reaction k has the unit rate Poisson process

Yk

(∫ t

0
λk(s)ds

)
with real jump times t1, t2, . . . and pseudo-times τ1, τ2, . . . where∫ tn

0
λk(s)ds = τn =⇒

∫ tn+1

tn

λk(s) ds = τn+1 − τn

and τn+1 − τn = − logU where U is an (0, 1) uniform r.v.

Putting

Tk(t) = τn+1 − τn −
∫ t

tn

λk(s) ds

means that reaction k occurs when Tk reaches 0.



Stochastic Simulation Algorithm (SSA)

Input: initial X , timers Tk = − log(Uk), final time T
t := 0

loop
compute λk
set ∆t = mink(Tk/λk), k ′ = argmink (Tk/λk),
t := t + ∆t
if t > T , stop
X := X + ζk ′

Tk ′ = − logU
for all k 6= k ′ do

Tk := Tk − λk ∆t
end for

end loop



Tau-leaping method

SSA is used extensively but it can be very costly – some
simulations may involve millions of individual reactions, and
may need to perform up to a million such calculations.

The tau-leaping method is an approximate simulation method.

The Euler-Maruyama SDE approximation treats the drift and
diffusion values as constant within a timestep, and only updates
them at the end of the timestep.

Tau-leaping adopts the same idea, updating the λk only at the
beginning/end of each timestep.

Within a timestep of size h, λk is fixed so the number of reactions
of type k is P(λkh) where P(µ) is a Poisson r.v. with mean µ.



Tau-leaping algorithm

Input: timestep h, initial state X̂ , final time T = N h

for n = 1,N do

∆X̂ := 0

for each k do
compute λk(X̂ )
generate Poisson r.v.’s Rk = Poiss(λkh)
∆X̂ := ∆X̂ + Rkζk

end for

X̂ := X̂ + ∆X̂
end for

Output: f (X̂ )



Tau-leaping method

The cost is O(T/h), but there is now a discretisation error so that
for h� 1/λ

E[ f (XT )− f (X̂T ) ] = O(h).

In next lecture will use MLMC to eliminate this error and also
reduce the total cost.

Also, Poisson r.v.’s have an unbounded size, so there is a small but
finite probability of ending up with negative population counts.

Set reaction rate to zero if negative count of one of the inputs.



Tau-leaping method

For large mean µ, the Poisson distribution is close to the Normal
with mean µ and variance µ, rounded to the nearest integer.

This means that we approximately have

X̂n+1 = X̂n +
∑
k

(
λk(X̂n)h +

√
λk(X̂n)

√
h Zkn

)
ζk

where Zkn are i.i.d. unit Normals random variables.

This corresponds to the Euler-Maruyama discretisation of the
chemical Langevin SDE approximation

dX =
∑
k

(
λk(X ) dt +

√
λk(X ) dWk

)
ζk

The fact that MLMC would be very effective for this SDE suggests
it might also be useful for tau-leaping.



Approximation hierarchy

Thus chemical kinetics can be modelled at 4 different levels:

I SSA – exact simulation of each and every reaction

I tau-leaping – regular updating of the propensity functions

I Langevin SDE – replacing Poisson distribution by Normal
approximation

I ODEs – ignoring stochastic effects entirely

These involve a balance between cost and accuracy, but ideally we
would like to achieve both low cost and high accuracy.



Key References
D.T. Gillespie, “A general method for numerically simulating the
stochastic time evolution of coupled chemical reactions”,
J. Comp. Phys., 22(4):403-434, 1976.

D.T. Gillespie, “Exact stochastic simulation of coupled chemical
reactions”, J. Phys. Chem. 81(25):2340-2361, 1977.

M.A. Gibson, J. Bruck “Efficient Exact Stochastic Simulation of
Chemical Systems with Many Species and Many Channels”,
J. Phys. Chem., 104(9):1876-1889, 2000.

D.T. Gillespie, A. Ganguly, T.G. Kurtz, “Error analysis of
tau-leaping simulation methods”, Annals of Applied Probability,
21(6):2226-2262, 2011.

D.T. Gillespie, A. Hellander, L.R. Petzold, “Perspective:
Stochastic algorithms for chemical kinetics”, J. Chem. Phys.,
138(17):170901, 2013.



Poisson CDF and inverse

A discrete Poisson random variable N with rate λ takes integer
value n with probability

e−λ
λn

n!

Hence, the cumulative distribution function is

C (n) ≡ P(N ≤ n) = e−λ
n∑

m=0

λm

m!
.

To generate N, can take a uniform (0, 1) random variable U and

then compute N = C
−1

(U), where N is the smallest integer such
that

U ≤ C (N)



Poisson CDF and inverse

Illustration of the inversion process

4 6 8 10 12 14 16 18
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

u



Poisson CDF and inverse

Illustration of the inversion process through rounding down of

some Q(u) ≡ C−1(u) to give C
−1

(u)

4 6 8 10 12 14 16 18
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

u



Poisson CDF and inverse

Errors in approximating Q(u) can only lead to errors in rounding
down if near an integer

4 6 8 10 12 14 16 18
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

u



Incomplete Gamma function

If X is a positive random variable with CDF

C (x) ≡ P(X < x) =
1

Γ(x)

∫ ∞
λ

e−t tx−1 dt.

then integration by parts gives

P(bX c ≤ n) =
1

n!

∫ ∞
λ

e−t tn dt = e−λ
n∑

m=0

λm

m!

=⇒ C
−1

(u) = bC−1(u)c

We will approximate Q(u) ≡ C−1(u) so that
|Q̃(u)−Q(u)| < δ � 1

This will round down correctly except when Q(u) is within δ of an
integer – then we need to check some C (m)



Temme expansion

Temme (1979) derived a uniformly convergent asymptotic
expansion
for C (x) of the form

C (x) = Φ
(
λ

1
2 f (r)

)
+ λ−

1
2 φ
(
λ

1
2 f (r)

) ∞∑
n=0

λ−n an(r)

where r = x/λ and

f (r) ≡
√

2 (1− r + r log r),

with the sign of the square root matching the sign of r−1.



Temme expansion

Based on this, can prove that the quantile function is

Q(u) ≈ λ r + c0(r)

where
r = f −1(w/

√
λ), w = Φ−1(u)

and

c0(r) =
log
(
f (r)
√
r/(r−1)

)
log r

Both f −1(s) and c0(r) can be approximated very accurately over a
central range by polynomials, and an additional ad hoc correction
gives

Q̃T (u) = λ r + p2(r) + p3(r)/λ



C (m) evaluation

In double precision, when Q̃(u) is too close to an integer m+1,
we need to evaluate C (m) to choose between m and m+1.

When 1
2 λ≤m≤2λ, this can be done very accurately using

another approximation due to Temme (1987).

Outside this range, a modified version of bottom-up / top-down
summation can be used, because successive terms decrease by
factor 2 or more.

In single precision this “correction” procedure does not improve the
accuracy.



Single precision algorithm

given inputs: λ, u

if λ > 4
w := Φ−1(u)
s := w/

√
λ

if smin<s<smax main branch
r := p1(s)
x := λ r + p2(r) + p3(r)/λ

else
r := f −1(w/

√
λ) Newton iteration

x := λ r + c0(r)
x := x − 0.0218/(x+0.065λ)

end

n := bxc



Single precision algorithm

if x > 10
return n

end
end

use bottom-up summation to determine n

if u>0.5 and not accurate enough
use top-down summation to determine n

end

Top-down summation finds smallest n such that

1−u ≥ e−λ
∞∑

m=n+1

λm

m!



Double precision algorithm

given inputs: λ, u

if λ > 4
w := Φ−1(u)
s := w/

√
λ

if smin<s<smax

r := p1(s)
x := λ r + p2(r) + p3(r)/λ
δ := 2×10−5

else
r := f −1(w/

√
λ)

x := λ r + c0(r)
x := x − 0.0218/(x+0.065λ)
δ := 0.01/λ

end

n := bx+δc



Double precision algorithm

if x > 10
if x−n > δ

return n
else if C (n) < u “correction” test

return n
else

return n−1
end

end
end

use bottom-up summation to determine n

if u>0.5 and not accurate enough
use top-down summation to determine n

end



Conclusions

I By approximating the inverse incomplete Gamma function,
developed an approach for inverting the Poisson CDF for λ>4

I Computational cost is roughly cost of inverse Normal CDF
function plus three polynomials of degree 8–12

I Paper: “Approximation of the inverse Poisson cumulative
distribution function”, ACM Transactions on Mathematical
Software, 42(1), 2015

I Paper and open source software are available:
http://people.maths.ox.ac.uk/gilesm/codes/poissinv/


