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PDEs with Uncertainty

Looking at the history of numerical methods for PDEs, the first
steps were about improving the modelling:

I 1D → 2D → 3D

I steady → unsteady

I laminar flow → turbulence modelling → large eddy simulation
→ direct Navier-Stokes

I simple geometries (e.g. a wing) → complex geometries (e.g.
an aircraft in landing configuration)

I adding new features such as combustion, coupling to
structural / thermal analyses, etc.

. . . and then engineering switched from analysis to design.



PDEs with Uncertainty

The big move now is towards handling uncertainty:

I uncertainty in modelling parameters

I uncertainty in geometry

I uncertainty in initial conditions

I uncertainty in spatially-varying material properties

I inclusion of stochastic source terms

Engineering wants to move to “robust design” taking into account
the effects of uncertainty.

Other areas want to move into Bayesian inference, starting with
an a priori distribution for the uncertainty, and then using data
to derive an improved a posteriori distribution.



PDEs with Uncertainty

Examples:

I Long-term climate modelling:

Lots of sources of uncertainty including the effects of aerosols,
clouds, carbon cycle, ocean circulation
(http://climate.nasa.gov/uncertainties)

I Short-range weather prediction

Considerable uncertainty in the initial data due to limited
measurements



PDEs with Uncertainty

I Engineering analysis

Perhaps the biggest uncertainty is geometric due to
manufacturing tolerances

I Nuclear waste repository and oil reservoir modelling

Considerable uncertainty about porosity of rock

I Finance

Stochastic forcing due to market behaviour



PDEs with Uncertainty

In the past, Monte Carlo simulation was viewed as impractical due
to its expense, and so people have used other methods:

I stochastic collocation

I polynomial chaos

Because of Multilevel Monte Carlo, this is changing and there are
now many research groups using MLMC for PDE applications

The approach is very simple, in principle:

I use a sequence of grids of increasing resolution in space
(and time)

I as with SDEs, determine the optimal allocation of
computational effort on the different levels

I the savings can be much greater because the cost goes up
more rapidly with level



MLMC Theorem

If there exist independent estimators Ŷ` based on N` Monte Carlo
samples, each costing C`, and positive constants α, β, γ, c1, c2, c3
such that α≥ 1

2 min(β, γ) and

i)
∣∣∣E[P̂`−P]

∣∣∣ ≤ c1 2−α `

ii) E[Ŷ`] =

 E[P̂0], ` = 0

E[P̂`−P̂`−1], ` > 0

iii) V[Ŷ`] ≤ c2N
−1
` 2−β `

iv) E[C`] ≤ c3 2γ `



MLMC Theorem

then there exists a positive constant c4 such that for any ε<1
there exist L and N` for which the multilevel estimator

Ŷ =
L∑
`=0

Ŷ`,

has a mean-square-error with bound E
[(

Ŷ − E[P]
)2]

< ε2

with a computational cost C with bound

C ≤


c4 ε

−2, β > γ,

c4 ε
−2(log ε)2, β = γ,

c4 ε
−2−(γ−β)/α, 0 < β < γ.



Engineering Uncertainty Quantification

I consider 3D elliptic PDE, with uncertain boundary data

I use grid spacing proportional to 2−` on level `

I cost is O(2+3`), if using an efficient multigrid solver

I 2nd order accuracy means that

P̂`(ω)− P(ω) ≈ c(ω) 2−2`

=⇒ P̂`−1(ω)− P̂`(ω) ≈ 3 c(ω) 2−2`

I hence, α=2, β=4, γ=3

I cost is O(ε−2) to obtain ε RMS accuracy

I in comparison, cost is O(ε−3/2) for a single calculation
with ε accuracy



SPDEs

I great MLMC application – better cost savings than SDEs
due to higher dimensionality

I range of applications
I Graubner & Ritter (Darmstadt) – parabolic

I G, Reisinger (Oxford) – parabolic

I Cliffe, G, Scheichl, Teckentrup (Bath/Nottingham) – elliptic

I Barth, Jenny, Lang, Meyer, Mishra, Müller, Schwab, Sukys,
Zollinger (ETHZ) – elliptic, parabolic, hyperbolic

I Harbrecht, Peters (Basel) – elliptic

I Efendiev (Texas A&M) – numerical homogenization

I Vidal-Codina, G, Peraire (MIT) – reduced basis approximation



Non-geometric MLMC

Most (95-99%?) MLMC applications have a geometric structure,
with the accuracy improving geometrically, and the cost increasing
geometrically, as the level increases.

In some situation (e.g. SDEs) you can argue that a geometric
sequence is near-optimal – e.g. you don’t get significantly better
overall performance by using h` ∼ 1/`2.

But there are a few applications with a different structure, and one
good example is by Vidal-Codina, Nguyen, G, Peraire (2014).

Application: high-frequency Helmholtz PDE

−∇ · (κ(x)∇u)− ρ(x) Ω2u = f (x)

in a domain with random piecewise uniform properties.



Non-geometric MLMC

A standard finite element approximation leads to a very large set of
discrete equations of the form

A(ω) u = f (ω)

where u is a huge (107) vector of nodal values, A(ω) is a large
sparse matrix, and ω represents the stochastic sample.

Standard geometric MLMC doesn’t work well for this application
because the high-frequency waves need to be adequately resolved.

(Similarly, there are major challenges with developing a good
multigrid solver.)

Instead, they used a reduced-basis approach.



Non-geometric MLMC
First, they solve

A(ωk) uk = f (ωk)

for a set of M samples ωk .

Then, for other samples they define

u ≈
K∑

k=1

vkuk

to obtain a low-dimensional reduced system

Ar (ω) v = fr (ω)

I larger K =⇒ greater accuracy at greater cost

I in multilevel treatment, K` varies with level

I brute force optimisation determines the optimal number of
levels, and reduced basis size on each level



Parabolic SPDE

Unusual parabolic SPDE arises in CDO modelling
(Bush, Hambly, Haworth & Reisinger)

dp = −µ ∂p
∂x

dt +
1

2

∂2p

∂x2
dt +

√
ρ
∂p

∂x
dW

with absorbing boundary p(0, t) = 0

I derived in limit as number of firms −→∞
I x is distance to default

I p(x , t) is probability density function

I dW term corresponds to systemic risk

I ∂2p/∂x2 comes from idiosyncratic risk



Parabolic SPDE

I numerical discretisation combines Milstein time-marching with
central difference approximations

I coarsest level of approximation uses 1 timestep per quarter,
and 10 spatial points

I each finer level uses four times as many timesteps,
and twice as many spatial points – ratio is due to numerical
stability constraints

I mean-square stability theory, with and without absorbing
boundary

I computational cost C` ∝ 8`

I numerical results suggest variance V` ∝ 8−`

I can prove V` ∝ 16−` when no absorbing boundary



Parabolic SPDE

Fractional loss on equity tranche of a 5-year CDO:
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Parabolic SPDE

Fractional loss on equity tranche of a 5-year CDO:
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Parabolic SPDE

Milstein and central difference discretisation leads to

vn+1
j = vnj −

µ k +
√
ρ k Zn

2h

(
vnj+1 − vnj−1

)
+

(1−ρ) k + ρ k Z 2
n

2h2
(
vnj+1 − 2vnj + vnj−1

)
where Zn ∼ N(0, 1).

Considering a Fourier mode

vnj = gn exp(ijθ), |θ| ≤ π

leads to . . .



Parabolic SPDE

gn+1 =
(
a(θ) + b(θ)Zn + c(θ)Z 2

n

)
gn,

where

a(θ) = 1− i µ k

h
sin θ − 2 (1−ρ) k

h2
sin2 θ

2 ,

b(θ) = − i
√
ρ k

h
sin θ,

c(θ) = − 2 ρ k

h2
sin2 θ

2 .



Parabolic SPDE

Following the approach of mean-square stability analysis (e.g. see
Higham)

E[ |gn+1|2] = E
[
(a + b Zn + c Z 2

n )(a∗ + b∗Zn + c∗Z 2
n ) |gn|2

]
=

(
|a+c |2 + |b|2 + 2|c|2

)
E
[
|gn|2

]
so stability requires |a+c |2 + |b|2 + 2|c |2 ≤ 1 for all θ,
which leads to a timestep stability limit:

µ2k ≤ 1− ρ,
k

h2
≤ (1 + 2ρ2)−1.

Additional analysis extends this to include the effect of boundary
conditions.
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