
Stochastic Simulation: Lecture 12

Prof. Mike Giles

Oxford University Mathematical Institute



PDEs with Uncertainty

Motivated by the modelling of oil reservoirs and groundwater
contamination, there has been a lot of MLMC/MLQMC research
on an elliptic SPDE coming from Darcy’s law:

∇·
(
κ(x)∇p

)
= 0

where the permeability κ(x) is uncertain due to lack of knowledge.

A log-Normal model uses

log κ(x) = u0(x) + u(x)

where u0(x) is the mean, and u(x) is Normally distributed
pointwise, with zero mean and spatial covariance

E[u(x1) u(x2)] = K (x1, x2).



Karhunen-Loève expansion
The linear operator

u(x) −→
∫
D
K (x , y) u(y) dy

has a complete set of orthonormal eigenfunctions ej(x), and
associated eigenvalues λj > 0 such that∫

D
K (x , y) ej(y) dy = λj ej(x)

Hence, u(x) can be expressed as

u(x) =
∑
j

Zj ej(x)

where

Zj =

∫
D
ej(x) u(x) dx



Karhunen-Loève expansion

It follows that Zj is Normally distributed with zero mean, and

E[Zj Zk ] =

∫
D

∫
D
ej(x) E[u(x) u(y)] ek(y) dx dy

=

∫
D

∫
D
ej(x) K (x , y) ek(y) dx dy

= λk

∫
D
ej(x) ek(x)dx

= λkδj ,k

Thus the Zj are independent, and have variance λj .

Re-scaling, we can make the Zj have unit variance and define u(x)
as

u(x) =
∑
j

√
λj Zj ej(x)

which is the Karhunen-Loève expansion.



Karhunen-Loève expansion

Note that this is simply the continuous generalisation of the PCA
factorisation in which we ended up with

u = U Λ1/2 Z ≡
∑
j

√
λj Zj Uj

which Uj , λj being the eigenvectors and eigenvalues of the
covariance matrix Σ.

They both have a very similar computational drawback: if there
are M grid points in the domain D, then PCA has M eigenmodes
so the cost per sample is O(M2), in addition to an O(M3) setup
cost and an O(M2) memory requirement.

The K-L expansion is even worse as there are an infinite number of
eigenmodes, but in both cases the cost can be reduced by
truncating the expansion – keeping only the leading terms. Even
so, it can still be the dominant cost in a calculation, much more
than the solution of the elliptic PDE!



Elliptic SPDE

Often the covariance function is assumed to be stationary – i.e. a
function of the separation x1 − x2.

“Exponential” covariance:

cov(log κ(x1), log κ(x2)) = σ2 exp(−‖x1−x2‖/λ)

“Gaussian” covariance:

cov(log κ(x1), log κ(x2)) = σ2 exp(−‖x1−x2‖2/2λ2)

Typically in real applications σ is large, and λ is small – both of
these mean that PDE methods such as stochastic collocation are
very expensive



Elliptic SPDE

A typical realisation of κ for exponential covariance with
λ = 0.01, σ = 1.



Elliptic SPDE

Decay of 1D eigenvalues

10
0

10
1

10
2

10
3

10
−6

10
−4

10
−2

10
0

n

e
ig

e
n
v
a
lu

e

 

 

λ=0.01

λ=0.1

λ=1

When λ = 1, can use a low-dimensional polynomial chaos
approach, but it’s impractical for smaller λ.



Elliptic SPDE

Some very old 2D experiments performed by Rob Scheichl and
Aretha Teckentrup at the University of Bath:

I cell-centred finite volume discretisation on a uniform grid – for
rough coefficients we need to make grid spacing very small on
finest grid

I each level of refinement has twice as many grid points in each
direction

I these experiments used a direct solver for simplicity, but later
work used an efficient AMG multigrid solver with a cost
roughly proportional to the total number of grid points



2D Results

Boundary conditions for unit square [0, 1]2:
– fixed pressure: p(0, x2)=1, p(1, x2)=0
– Neumann b.c.: ∂p/∂x2(x1, 0)=∂p/∂x2(x1, 1)=0

Output quantity – mass flux: −
∫

k
∂p

∂x1
dx2

Correlation length: λ = 0.2

Coarsest grid: h = 1/8 (comparable to λ)

Finest grid: h = 1/128

Karhunen-Loève truncation: used the leading 4000 modes

Cost taken to be proportional to number of nodes



2D Results

0 1 2 3 4
−12

−10

−8

−6

−4

−2

0

2

level l

lo
g

2
 v

a
ri
a
n
c
e

 

 

P
l

P
l
− P

l−1

0 1 2 3 4
−12

−10

−8

−6

−4

−2

0

2

level l

lo
g

2
 |
m

e
a
n
|

 

 

P
l

P
l
− P

l−1

V[P̂`−P̂`−1] ∼ h2
` E[P̂`−P̂`−1] ∼ h2

`



2D Results

0 1 2 3 4
10

2

10
3

10
4

10
5

10
6

10
7

10
8

level l

N
l

 

 

10
−3

10
−2

10
0

10
1

10
2

accuracy ε

ε
2
 C

o
s
t

 

 

Std MC

MLMC
ε=0.0005

ε=0.001

ε=0.002

ε=0.005

ε=0.01



Complexity analysis

Relating things back to the MLMC theorem:

E[P̂`−P] ∼ 2−2` =⇒ α = 2

V` ∼ 2−2` =⇒ β = 2

C` ∼ 2d` =⇒ γ = d (dimension of PDE)

To achieve r.m.s. accuracy ε requires finest level grid spacing
h ∼ ε1/2 and hence we get the following complexity:

dim MC MLMC

1 ε−2.5 ε−2

2 ε−3 ε−2(log ε)2

3 ε−3.5 ε−2.5



Alternative ways to generate Gaussian fields

a) Cholesky factorisation of covariance matrix

Same bad points as PCA factorisation: O(M3) setup cost, O(M2)
memory requirement, O(M2) cost per sample

b) use of H-matrices (H stands for Hierarchical)

Promising new research direction:

https://en.wikipedia.org/wiki/Hierarchical matrix

J. Dölz, H. Harbrecht, and C. Schwab, Covariance regularity and
H-matrix approximation for rough random fields, Numerische
Mathematik, 135:1045-1071, 2017.



Alternative ways to generate Gaussian fields

c) circulant embedding

In 1D, for a uniform grid and a stationary covariance function, the
covariance matrix looks like:

a0 a1 a2 a3 a4 a5

a1 a0 a1 a2 a3 a4

a2 a1 a0 a1 a2 a3

a3 a2 a1 a0 a1 a2

a4 a3 a2 a1 a0 a1

a5 a4 a3 a2 a1 a0


which can be inserted into a larger circulant matrix . . .



Alternative ways to generate Gaussian fields

A =



a0 a1 a2 a3 a4 a5 a4 a3 a2 a1

a1 a0 a1 a2 a3 a4 a5 a4 a3 a2

a2 a1 a0 a1 a2 a3 a4 a5 a4 a3

a3 a2 a1 a0 a1 a2 a3 a4 a5 a4

a4 a3 a2 a1 a0 a1 a2 a3 a4 a5

a5 a4 a3 a2 a1 a0 a1 a2 a3 a4

a4 a5 a4 a3 a2 a1 a0 a1 a2 a3

a3 a4 a5 a4 a3 a2 a1 a0 a1 a2

a2 a3 a4 a5 a4 a3 a2 a1 a0 a1

a1 a2 a3 a4 a5 a4 a3 a2 a1 a0


in which each row (and column) is the same as the previous, but
rotated by 1 position

Hence the eigenvectors are Fourier modes, and the corresponding
eigenvalues come from a Fourier transform of the first row.



Alternative ways to generate Gaussian fields

This give
A = F ΛFT = L LT

where
L = F Λ1/2

and therefore
LZ =

∑
j

√
λj Zj Fj

which can be computed in O(M logM) cost.

There are some minor technical difficulties (making sure the
embedded matrix has positive eigenvalues), but it extends to 2D
and 3D and works well when doing MLMC on regular grids.



Alternative ways to generate Gaussian fields

d) spatial white noise

If Ẇ is spatial white noise. then the solution of

(I − κ−2∇2)ku = Ẇ

is a Matérn field with covariance of the form

K (x , y) =
σ2

2ν−1Γ(ν)
(κr)νKν(κr), r = ‖x − y‖2,

where ν = 2k − d/2, and Kν is a Bessel function of the second
kind – the Matérn class includes the exponential and Gaussian
cases mentioned previously.



Alternative ways to generate Gaussian fields

What is white noise Ẇ ?

It is a generalised stochastic field defined by its effect on
L2-integrable test functions φj so that

〈Ẇ , φj〉 ∼ N

(
0,

∫
D
φ2
j dx

)
and

E
[
〈Ẇ , φj〉 〈Ẇ , φk〉

]
=

∫
D
φj φk dx

If a domain D is split up into a number of disjoint pieces D1, D2,
D3, . . . , then Ẇ can be decomposed into the sum of its restrictions
onto each of those pieces, and the effects of each are independent.

Hence, can independently simulate the effect of each, and then
sum them up.



Alternative ways to generate Gaussian fields

In a MLMC setting, working with coarse and fine grids composed
of triangles (2D) or tetrahedra (3D), can create a finer supermesh
of triangles/tetrahedra such that each new cell has a non-zero
intersection with one and only one coarse and fine cell.

If Ẇ
∣∣∣
∆

is the restriction of Ẇ to this cell, then we can create a

small covariance matrix for the test functions which are non-zero
on this cell:

A∆ ≡ E
[
〈Ẇ

∣∣∣
∆
φj〉 〈Ẇ

∣∣∣
∆
φk〉
]

=

∫
∆
φj φk dx

A∆ is small, so can use Cholesky factorisation to generate required

samples of 〈Ẇ
∣∣∣
∆
φj〉 on both grids.



Alternative ways to generate Gaussian fields

Additional complication: for some values of the Matérn parameter
ν, need to solve

(I − κ−2∇2)ku = Ẇ

for non-integer values of k.

How do we do that? What does it even mean?

We rely on a complex contour integral representation of
generalised matrix functions:

f (A) =
1

2πi

∫
Γ
f (z) (zI − A)−1 dz

and approximate the integral.



Final comments

I PDEs with random inputs / boundary data have been well
explored

I PDEs with random coefficients have also been well explored
– growing body of literature on numerical analysis too

I Stochastic PDEs with white noise or Brownian noise inputs
have received much less attention, so still more to be done?

I’m not even sure how much is proven concerning
wellposedness and numerical analysis



References

K.A. Cliffe, MBG, R. Scheichl, A.L. Teckentrup. “Multilevel Monte
Carlo methods and applications to elliptic PDEs with random
coefficients”. Computing and Visualization in Science, 14(1):3-15,
2011.

A. Barth, Ch. Schwab, N. Zollinger. “Multi-level Monte Carlo
finite element method for elliptic PDEs with stochastic
coefficients”. Numerische Mathematik, 119(1):123-161, 2011.

M. Croci, MBG, M.E. Rognes, P.E. Farrell. “Efficient white noise
sampling and coupling for multilevel Monte Carlo with non-nested
meshes”. SIAM/ASA Journal on Uncertainty Quantification,
6(4):1454-1474, 2018.

N. Hale, N.J. Higham, L.N. Trefethen. “Computing Aα, log(A),
and related matrix functions by contour integrals”. SIAM Journal
on Numerical Analysis, 46(5):2505-2523, 2008.


