
Stochastic Simulation: Lecture 14

Prof. Mike Giles

Oxford University Mathematical Institute

Details of MLMC code

In Practical 3, you will be working with a software which
implements the multilevel Monte Carlo method:

I mlmc.m / mlmc.py / mlmc.cpp:
“driver” code which performs the MLMC calculation using
a user routine to estimate E[P`−P`−1] using N` samples

I mlmc test.m / mlmc test.py / mlmc test.cpp:
routine which does a lot of tests and then calls mlmc to
perform a number of MLMC calculations

Details of MLMC code

mlmc test first performs a set of calculations using a fixed number
of samples on each level of resolution, and produces 4 plots:

I log2(V`) versus level `

If V` ∼ 2−β` then the slope of this line should asymptote
towards −β

I log2(|E[P`−P`−1]|) versus level `

If |E[P`−P`−1]| ∼ 2−α` then the slope of this line should
asymptote towards −α

I consistency check versus level

I kurtosis versus level

Consistency check

If a, b, c are estimates for E[P`−1], E[P`], E[P` − P`−1], then it
should be true that a− b + c ≈ 0.

The consistency check verifies that this is true, to within the
accuracy one would expect due to sampling error.

Since √
V[a− b + c] ≤

√
V[a] +

√
V[b] +

√
V[c]

it computes the ratio

|a− b + c |
3(
√

V[a] +
√
V[b] +

√
V[c])

The probability of this ratio being greater than 1 based on random
sampling errors is extremely small. If it is, it indicates a likely
programming error.

Kurtosis check

The MLMC approach needs a good estimate for
V` = V[P`−P`−1], but how many samples are need for this?

As few as 10 may be sufficient in many cases for a rough estimate,
but many more are needed when there are rare outliers.

When the number of samples N is large, the standard deviation of
the sample variance for a random variable X with zero mean is
approximately√

κ− 1

N
E[X 2] where kurtosis κ is defined as κ =

E[X 4]

(E[X 2])2

(http://mathworld.wolfram.com/SampleVarianceDistribution.html)

As well as computing κ`, mlmc test will give a warning if κ` is
very large.

Kurtosis check

An extreme (but important) example is a digital option in which P
always takes the value 0 or 1.

In this case we have

X ≡ P` − P`−1 =

1, probability p
−1, probability q

0, probability 1−p−q

If p, q � 1, then E[X] ≈ 0, and

κ ≈ p + q

(p + q)2
= (p + q)−1 � 1

Therefore, many samples are required for a good estimate of V`,
and if we don’t have many samples, we may even get all X (n) = 0,
which will give an estimated variance of zero.

MLMC algorithm

start with L=2, and initial target of N0 samples
on levels ` = 0, 1, 2

while extra samples need to be evaluated do
evaluate extra samples on each level
compute/update estimates for V`, C`, ` = 0, . . . , L
define optimal N`, ` = 0, . . . , L
if no new samples needed then

test for weak convergence
if not converged then

if L == Lmax then
print warning message – failed to converge

else
set L := L+1, and initialise target NL

end if
end if

end if
end while

MLMC algorithm

Objective: to achieve

MSE =
L∑
`=0

V`/N` + (E[PL−P])2 ≤ ε2

by choosing L such that

(E[PL−P])2 ≤ θ ε2

and N` such that
L∑
`=0

V`/N` ≤ (1−θ) ε2

I used to use θ = 0.5, but now tend to use θ = 0.25.

MLMC – optimal N`

Given L, optimal choice for N` is

N` =
1

1−θ
ε−2
√
V`/C`

L∑
`′=0

(√
V`′ C`′

)

V` is estimated from empirical variance.

In python code, C` = 2γ`, where γ is user input.

In MATLAB and C++ code user defines C`, for example by
counting how many random numbers are generated.

MLMC – convergence check

If E[P`−P`−1] ∝ 2−α` then the remaining error is

E[P−PL] =
∞∑

`=L+1

E[P` − P`−1] ≈ E[PL−PL−1]
∞∑
k=1

2−αk

= E[PL−PL−1] / (2α − 1)

We want |E[P−PL]| <
√
θ ε, so that gives the convergence test

|E[PL−PL−1]| / (2α − 1) <
√
θ ε

For robustness, we extend this check to extrapolate also from the
previous two data points E[PL−1−PL−2], E[PL−2−PL−3], and take
the maximum over all three as the estimated remaining error.

Details of MATLAB MLMC code

% function [P, Nl, cost] = mlmc(mlmc_l,N0,eps,Lmin,Lmax,

% alpha,beta,gamma, varargin)

%

% multi-level Monte Carlo estimation

%

% P = value

% Nl = number of samples at each level

% cost = total cost

%

% N0 = initial number of samples > 0

% eps = desired accuracy (rms error) > 0

% Lmin = minimum level of refinement >= 2

% Lmax = maximum level of refinement >= Lmin

%

% alpha -> weak error is O(2^{-alpha*l})

% beta -> variance is O(2^{-beta*l})

% gamma -> sample cost is O(2^{gamma*l})

%

% varargin = optional additional user variables to be passed to mlmc_l

%

% if alpha, beta, gamma are not positive, then they will be estimated

%

Details of MATLAB MLMC code

%

% mlmc_l = function for level l estimator

%

% [sums, cost] = mlmc_fn(l,N, varargin) low-level routine

%

% inputs: l = level

% N = number of samples

% varargin = optional additional user variables

%

% output: sums(1) = sum(Y)

% sums(2) = sum(Y.^2)

% where Y are iid samples with expected value:

% E[P_0] on level 0

% E[P_l - P_{l-1}] on level l>0

% cost = cost of N samples

Details of MATLAB MLMC code

function [P, Nl, Cl] = mlmc(mlmc_l,N0,eps,Lmin,Lmax, ...

alpha0,beta0,gamma0, varargin)

%

% check input parameters

%

if (Lmin<2)

error(’error: needs Lmin >= 2’);

end

if (Lmax<Lmin)

error(’error: needs Lmax >= Lmin’);

end

if (N0<=0 || eps<=0)

error(’error: needs N0>0, eps>0 \n’);

end

%

% initialisation

%

alpha = max(0, alpha0);

beta = max(0, beta0);

gamma = max(0, gamma0);

Details of MATLAB MLMC code

theta = 0.25;

L = Lmin;

Nl(1:L+1) = 0;

suml(1:2,1:L+1) = 0;

costl(1:L+1) = 0;

dNl(1:L+1) = N0;

while sum(dNl) > 0

%

% update sample sums

%

for l=0:L

if dNl(l+1) > 0

[sums cost] = mlmc_l(l,dNl(l+1), varargin{:});

Nl(l+1) = Nl(l+1) + dNl(l+1);

suml(1,l+1) = suml(1,l+1) + sums(1);

suml(2,l+1) = suml(2,l+1) + sums(2);

costl(l+1) = costl(l+1) + cost;

end

end

Details of MATLAB MLMC code

%

% compute absolute average, variance and cost

%

ml = abs(suml(1,:)./Nl);

Vl = max(0, suml(2,:)./Nl - ml.^2);

Cl = costl./Nl;

%

% fix to cope with possible zero values for ml and Vl

% (can happen in some applications when there are few samples)

%

for l = 3:L+1

ml(l) = max(ml(l), 0.5*ml(l-1)/2^alpha);

Vl(l) = max(Vl(l), 0.5*Vl(l-1)/2^beta);

end

Details of MATLAB MLMC code
%

% use linear regression to estimate alpha, beta, gamma if not given

%

A = repmat((1:L)’,1,2).^repmat(1:-1:0,L,1);

if alpha0 <= 0

x = A \ log2(ml(2:end))’;

alpha = max(0.5,-x(1));

end

if beta0 <= 0

x = A \ log2(Vl(2:end))’;

beta = max(0.5,-x(1));

end

if gamma0 <= 0

x = A \ log2(Cl(2:end))’;

gamma = max(0.5,x(1));

end

%

% set optimal number of additional samples

%

Ns = ceil(sqrt(Vl./Cl)*sum(sqrt(Vl.*Cl)) / ((1-theta)*eps^2));

dNl = max(0, Ns-Nl);

Details of MATLAB MLMC code
% if (almost) converged, estimate remaining error and decide

% whether a new level is required

%

if sum(dNl > 0.01*Nl) == 0

range = 0:min(2,L-1);

rem = max(ml(L+1-range) ./ 2.^(range*alpha)) / (2^alpha - 1);

if rem > sqrt(theta)*eps

if (L==Lmax)

fprintf(1,’*** failed to achieve weak convergence *** \n’);

else

L = L+1;

Vl(L+1) = Vl(L) / 2^beta;

Cl(L+1) = Cl(L) * 2^gamma;

Nl(L+1) = 0;

suml(1:2,L+1) = 0;

costl(L+1) = 0;

Ns = ceil(sqrt(Vl./Cl) * sum(sqrt(Vl.*Cl)) ...

/ ((1-theta)*eps^2));

dNl = max(0, Ns-Nl);

end

end

end

end

Details of MATLAB MLMC code

%

% finally, evaluate multilevel estimator

%

P = sum(suml(1,:)./Nl);

