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Objective

Want to estimate expectations

E[P(X )]

where X is a random variable from a distribution for which the
p.d.f. p(x) falls into one of the following two categories:

I p(x) ∝ exp(−V (x)), but the constant of proportionality is
unknown

I p(x) = limT→∞ pT (x) where pT (x) is the p.d.f. of solutions
to an SDE at time T , subject to initial data X0 at time t=0



Objective

Let’s start by considering the autonomous SDE

dXt = f (Xt)dt + g(Xt)dWt

subject to initial data X0.

The Fokker-Planck (forward Kolmogorov) equation for the
p.d.f. p(x , t) is

∂p

∂t
= −

∑
i

∂

∂xi
(fi p) +

∑
i ,j

∂

∂xi

∂

∂xj
(Dij p)

where D = 1
2g gT , and subject to initial data p(x , 0) = δ(x−X0)



Objective

If the drift f (x) is locally Lipschitz and satisfies the dissipative
condition

〈x , f (x)〉 ≤ −α‖x ||2 + β

for some α, β > 0, and g(x) is bounded, then the system is ergodic
and the p.d.f. p(x , t) converges exponentially to an invariant
distribution p∞(x),

‖ p(x , t)− p∞(x) ‖ ∝ exp(−λ1 t)

where λ1 is the smallest eigenvalue given by

−λ1 p = −
∑
i

∂

∂xi
(fi p) +

∑
i ,j

∂

∂xi

∂

∂xj
(Dij p)



Objective

Our objective is to estimate E[P(X )] where the expectation is with
respect to the invariant distribution p∞(x).

We want to do this in high dimensions, so can’t afford to solve
the steady state PDE. Instead, we want to estimate

lim
T→∞

E [P(XT )]

How best to do this?



MLMC

Answer: use MLMC (of course!)

Initial idea:

I use standard MLMC for SDEs (e.g. h` ∝ 2−`) for fixed T ,
to estimate E[P(XT )]

I increase T , see how much the answer changes, estimate
error due to T , repeat as needed

Two problems:

I not elegant

I there is a more fundamental problem in some cases



MLMC

The elegant solution: change both the timestep and T with level,
for example

h` = 2−`, T` = (`+ 1) log 2 / λ1

Why this choice? Because weak error is

O
(
hL + exp(−λ1 TL)

)
= O(2−L)

(In practice, can err on the side of underestimating λ1)

This way we automatically achieve weak convergence as L→∞,
but now we have a new problem: coupling between coarse and fine
paths



MLMC

If we start the coarse and fine path calculations at time t=0, but

run the fine path for longer, then X̂
(f )
T`
− X̂

(c)
T`−1

will not be small.

The solution to this comes from a paper by Glynn & Rhee on
Markov chains, which was adapted to SDEs by Fang & Giles.

Start fine path calculation at time −T`, and start coarse path a bit
later at time −T`−1.

Both paths share the same driving Brownian motion Wt for
−T`−1 < t < 0, and the “final” values are taken at time 0.



MLMC

This approach works well for contractive SDEs for which

〈x−y , f (x)−f (y), 〉+ 1
2‖g(x)−g(y)‖2 ≤ −λ‖x−y‖2

for λ > 0, in which case for t > s

E
[
‖Xt−Yt‖2

]
< exp(−2λ(t−s)) ‖Xs−Ys‖2

so the effect of the initial difference X
(f )
−T`−1

− X
(c)
−T`−1

decays
exponentially.

Bonus: under the same contraction condition, we have uniform
strong convergence so that we can achieve

E
[
‖X̂ (f )−X̂ (c)‖2

]
< c h2σ`

where σ is the strong order of convergence



MLMC

This last point hints at the second more fundamental problem:
what happens when the SDE is not contractive?

Going back to simulating on a time interval [0,T ], standard
numerical analysis gives

E
[
‖X̂ (f )

T − X̂
(c)
T ‖

2
]
< c exp(2µT ) h2σ`

for some µ > 0.

This exponential growth in time really can happen – consider a
chaotic ODE to which a little noise is added.

So, increasing T to reduce the weak error can make the MLMC
variance much worse, to the point that MLMC is useless.



MLMC

This problem can be fixed by introducing a “spring” between the
coarse and fine paths:

dX
(f )
t =

(
f (X

(f )
t ) + σ (X

(c)
t −X

(f )
t )
)
dt + g(X

(f )
t ) dWt

dX
(c)
t =

(
f (X

(c)
t ) + σ (X

(f )
t −X

(c)
t )
)
dt + g(X

(c)
t )dWt

A strong enough spring constant σ ensures the two paths do not
diverge exponentially.

The introduction of the spring implies a change of measure – this
is corrected for by a Radon-Nikodym derivative so final output is

R` P(X`)− R`−1 P(X`−1)

This works, both in theory and in practice, even for chaotic SDEs.



MCMC

When g is the identity matrix, if the SDE can be written as

dXt = −1
2∇V (Xt)dt + dWt

then the invariant probability distribution is proportional to
exp(−V (x)).

An alternative approach to sampling from this distribution is the
Markov Chain Monte Method – the simplest example is the
Metropolis-Hastings algorithm:

I Generate a candidate X ∗ (e.g. from Normal distribution
centred on X n)

I With probability min(1, exp(−V (X ∗))/ exp(−V (X n)))
set X n+1 = X ∗; otherwise set X n+1 = X n



MCMC

This produces a sequence of values X n, whose distribution
approaches the target distribution after an initial “burn-in” period.

Note: successive values are clearly strongly correlated, the variance
based on N consecutive sample is greater than it would be for
independent samples.

The art of MCMC is in the construction of good candidates; too
small a step means it takes many steps to sample the whole
distribution, but too large a step leads to frequent rejection and
hence less movement.

O(ε−2) complexity if samples have O(1) cost, but multilevel ideas
have been developed for most costly applications
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