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Objectives

The stochastic approximation problem is to determine θ such that

E[f (θ,X )] = 0,

If f = ∇V then this also corresponding to minimising or
maximising

E[V (θ,X )].

In Machine Learning this corresponds to maximising the
log-likelihood given a large set of data:

log-likelihood =
S∑

i=1

Li (θ) = E[S LI (θ)]

where the expectation comes from taking a random index I ,
uniformly distributed over {1, 2, . . . ,S}.



Steepest descent

The classic steepest descent method for solving f (θ) = 0 is based
on a time-discretisation of

θ̇ = − f (θ)

which gives
θn+1 = θn − k f (θn).

From this we get

θn+1 − θn = (I − kJ) (θn − θn−1)

where J ≡ ∂f /∂θ.

So it converges to the root θ∗ from near θ∗ if ‖I − kJ‖ < 1.



Robbins-Munro

Starting from
θn+1 = θn − k E[f (θn,X )]

the idea of Robbins & Munro was to replace the expectation by a
single sample to give

θn+1 = θn − kn f (θn,Xn)

with independent samples Xn.

If we write F (θ) ≡ E[f (θ,X )] then we can write this as

θn+1 = θn − kn F (θn)− kn (f (θn,Xn)− F (θn))



Robbins-Munro

Consider now the SDE

dθt = −F (θt) dt + σ(θt)dWt

which has discretisation with timestep kn

θn+1 = θn − kn F (θn) + σ
√

kn Zn

Equating this (approximately) to

θn+1 = θn − kn F (θn)− kn (f (θn,Xn)− F (θn))

gives
σ2 ≈ kn V[f (θn,Xn)]

Conclusion? For convergence we need
∞∑
n

kn →∞, kn → 0



Robbins-Munro

Usually, the second condition is tightened to
∞∑
n

k2n <∞.

A frequent choice is kn = a/n.

After running the iteration for N steps, the output of the
Robbins-Munro algorithm is the final value θN .

Polyak and Ruppert independently improved this by using an
average for the output

θN ≡ N−1
N∑
1

θn

– the averaging cancels out a lot of the noise in θn



Stochastic Gradient method

Similarly, the stochastic gradient method

θn+1 = θn − kn∇LIn(θn)

where Li (θ) is the log-likelihood associated with the i th data item,
and In is the random data index on step n.

An alternative is to use a mini-batch of samples in step n:

θn+1 = θn − kn
1

m

m∑
1

∇LIn,m(θn)

– no mathematical benefit, but provides scope for parallelisation or
vectorisation.

(Practical question: do they use sampling with or without
replacement?)



Stochastic Gradient method

There are lots of different variants of the stochastic gradient
method, with the objective of achieving faster convergence.

One major line of development incorporates “momentum”.

In the simplest form, this involves adding in a multiple of the
previous correction:

θn+1 = θn − kn∇LIn(θn) + αn(θn − θn−1)

with 0 < αn < 1.



Stochastic Gradient Lagrangian Dynamics (SGLD)

Another variant is to add in additional noise, to approximate
the SDE

dθt = −E[∇LI (θn)]dt + σ dWt

using
θn+1 = θn − k∇LIn(θn) + σ

√
k Zn

where the Zn are iid N(0, 1) r.v.’s.

Lukas Szpruch has looked at using MLMC for this.
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