

C4.3 Functional Analytic Methods for PDEs Lecture 6

Luc Nguyen luc.nguyen@maths

University of Oxford

MT 2021

In the last lecture

- Divergence theorem and Integration by parts formula.
- Definition of weak derivatives and
- Sobolev spaces $W^{k,p}(\Omega)$

This lecture

- Dual of $W^{1,p}$
- Sobolev spaces $W_0^{k,p}(\Omega)$.
- Differentiation rule for convolution of Sobolev functions.
- Density results for Sobolev spaces.
- Extension theorems for Sobolev functions.

Reflexivity of $W^{k,p}(\Omega)$

Theorem

For $k \ge 0$ and $1 , <math>W^{k,p}(\Omega)$ is reflexive.

Proof

- We will only consider the case k = 1. The general case requires some minor changes.
- By Eberlein's theorem, we only need to show that every bounded sequence in $W^{1,p}$ has a weakly convergent subsequence.
- Suppose $(u_m) \subset W^{1,p}$ is bounded. Then, (u_m) and $(\partial_i u_m)$ are bounded in L^p .
- By the weak sequential compactness property of L^p for $1 , there exists a subsequence <math>(u_{m_j})$ such that (u_{m_j}) and $(\partial_i u_{m_j})$ are weakly convergent in L^p . Let u be the L^p weak limit of (u_{m_j}) and v_i be the L^p weak limit of $(\partial_i u_{m_j})$.

Reflexivity of $W^{k,p}(\Omega)$

- To conclude, we show that u belongs to $W^{1,p}$ and $u_{m_j} \rightharpoonup u$ in $W^{1,p}$.
- The proof that $u \in W^{1,p}$ is similar to the one we did moment ago, but also has some subtle difference: By definition of weak derivatives, we have

$$\int_{\Omega}u_{m_{j}}\partial_{i}\varphi=-\int_{\Omega}\partial_{i}u_{m_{j}}\,\varphi \text{ for all }\varphi\in \textit{$C_{c}^{\infty}(\Omega)$},$$

Sending $j \to \infty$ by using the definition weak convergence, we obtain

$$\int_{\Omega} u \partial_i \varphi = - \int_{\Omega} v_i \, \varphi \text{ for all } \varphi \in C_c^{\infty}(\Omega).$$

So $v_i = \partial_i u$ in the weak sense. So $u \in W^{1,p}$.

Reflexivity of $W^{k,p}(\Omega)$

- It remains to show that, if $A \in (W^{1,p})^*$, then $Au_{m_i} \to Au$.
 - * Define $E: W^{1,p}(\Omega) \to (L^p(\Omega))^{n+1}$ by $Ef = (f, \partial_1 f, \dots, \partial_n f)$. Then E is an isometry.
 - * Let $X:=E(W^{1,p}(\Omega))$ and $Y:=(L^p(\Omega))^{n+1}$. Define $\tilde{A}:X\to\mathbb{R}$ by $\tilde{A}p=AE^{-1}p$ for $p\in X$. Then $\tilde{A}\in X^*$. By Hahn-Banach's theorem, it has an extension $\hat{A}\in Y^*$.
 - * It follows that

$$Au_{m_j} = \tilde{A}Eu_{m_j} = \hat{A}Eu_{m_j}$$

$$= \hat{A}(u_{m_j}, 0, \dots, 0) + \sum_i \hat{A}(0, 0, \dots, 0, \partial_i u_{m_j}, 0, \dots, 0)$$

$$=: B(u_{m_j}) + \sum_i B_i(\partial_i u_{m_j})$$

$$\to B(u) + \sum_i B_i(\partial_i u) = Au.$$

This concludes the proof.

The Sobolev spaces $W_0^{k,p}(\Omega)$

- Ω : a domain of \mathbb{R}^n .
- For $k \ge 0$ and $1 \le p < \infty$, define

$$W_0^{k,p}(\Omega) = \text{the closure of } C_c^{\infty}(\Omega) \text{ in } W^{k,p}(\Omega).$$

When p = 2, we also write $H_0^k(\Omega)$ for $W_0^{k,2}(\Omega)$.

- In other words, $u \in W_0^{k,p}(\Omega)$ if there exist $u_m \in C_c^{\infty}(\Omega)$ such that $||u_m u||_{W^{k,p}} \to 0$.
- When $k=0, 1 \leq p < \infty$, and Ω is a bounded domain, we have seen in Sheet 1 that $W_0^{0,p}(\Omega) = W^{0,p}(\Omega) = L^p(\Omega)$. In general, this is not true for $k \geq 1$. Roughly speaking, $W_0^{k,p}(\Omega)$ consists of functions f in $W^{k,p}(\Omega)$ such that

$$\partial^{\alpha} f = 0$$
 on $\partial \Omega'$ for all $|\alpha| \leq k - 1$.

IBP formula for Sobolev functions

Proposition (Integration by parts)

Let $u \in W^{k,p}(\Omega)$ and $v \in W_0^{k,p'}(\Omega)$ with $k \ge 0$, $1 and <math>\frac{1}{p} + \frac{1}{p'} = 1$. Then

$$\int_{\Omega} \partial^{\alpha} uv \ dx = (-1)^{|\alpha|} \int_{\Omega} u \partial^{\alpha} v \ dx \ \text{ for all } |\alpha| \leq k.$$

Proof

- By definition of $W_0^{k,p'}$, there exists $v_m \in C_c^{\infty}(\Omega)$ such that $v_m \to v$ in $W^{k,p'}$. In particular, $\partial^{\alpha} v_m \to \partial^{\alpha} v$ in $L^{p'}$ for all $|\alpha| \le k$.
- By the definition of weak derivatives,

$$\int_{\Omega} \partial^{\alpha} u v_m \, dx = (-1)^{|\alpha|} \int_{\Omega} u \partial^{\alpha} v_m \, dx \text{ for all } |\alpha| \le k.$$

IBP formula for Sobolev functions

Proof

- $\partial^{\alpha} v_m \to \partial^{\alpha} v$ in $L^{p'}$ for all $|\alpha| \le k$.
- $\int_{\Omega} \partial^{\alpha} u v_m \, dx = (-1)^{|\alpha|} \int_{\Omega} u \partial^{\alpha} v_m \, dx$ for all $|\alpha| \le k$.
- ullet We can now pass $m o \infty$ as in the proof of the completeness of Sobolev spaces.
 - ★ By Hölder's inequality

$$\Big|\int_{\Omega} \partial^{\alpha} u(v_m-v) dx\Big| \leq \|\partial^{\alpha} u\|_{L^p} \|v_m-v\|_{L^{p'}} \to 0.$$

So $\int_{\Omega} \partial^{\alpha} u v_m dx \to \int_{\Omega} \partial^{\alpha} u v dx$.

- \star Similarly, $\int_{\Omega} u \partial^{\alpha} v_m dx \rightarrow \int_{\Omega} u \partial^{\alpha} v dx$.
- ★ We conclude that

$$\int_{\Omega} \partial^{\alpha} u v \, dx = (-1)^{|\alpha|} \int_{\Omega} u \partial^{\alpha} v \, dx.$$

Differentiation rule for convolution of Sobolev functions

- Suppose $k \ge 0$ and $1 \le p < \infty$.
- Let $f \in L^p(\mathbb{R}^n)$ and $g \in C_c^k(\mathbb{R}^n)$. We knew that $f * g \in C^k(\mathbb{R}^n)$ and

$$\partial^{\alpha}(f * g) = f * (\partial^{\alpha}g) \text{ for all } |\alpha| \leq k.$$

Lemma

Assume $f \in W^{k,p}(\mathbb{R}^n)$ and $g \in C_c^k(\mathbb{R}^n)$ for some $k \geq 0$ and $1 \leq p < \infty$, then

$$\partial^{\alpha}(f * g) = (\partial^{\alpha} f) * g \text{ for all } |\alpha| \leq k.$$

Differentiation rule for convolution of Sobolev functions

Proof

• We will only consider the case k = 1. We aim to prove that

$$\partial_{x_1}(f*g)=(\partial_{x_1}f)*g$$

We compute

$$\begin{split} \partial_{x_1}(f*g)(x) &= f*(\partial_{x_1}g)(x) = \int_{\mathbb{R}^n} f(y) \, \partial_{x_1}g(x-y) \, dy \\ &= -\int_{\mathbb{R}^n} f(y) \, \partial_{y_1}g(x-y) \, dy \\ &= \int_{\mathbb{R}^n} \partial_{y_1}f(y) \, g(x-y) \, dy = ((\partial_{x_1}f)*g)(x). \end{split}$$

So we are done.

Approximation of identity in Sobolev spaces

Theorem (Approximation of identity)

Let ϱ be a non-negative function in $C_c^\infty(\mathbb{R}^n)$ such that $\int_{\mathbb{R}^n} \varrho = 1$. For $\varepsilon > 0$, let

$$\varrho_{\varepsilon}(x) = \frac{1}{\varepsilon^n} \varrho\left(\frac{x}{\varepsilon}\right).$$

If $f \in W^{k,p}(\mathbb{R}^n)$ for some $k \ge 0$ and $1 \le p < \infty$, then $f * \varrho_{\varepsilon} \in C^{\infty}(\mathbb{R}^n) \cap W^{k,p}(\mathbb{R}^n)$ and

$$\lim_{\varepsilon\to 0}\|f*\varrho_{\varepsilon}-f\|_{W^{k,p}(\mathbb{R}^n)}=0.$$

In particular $C^{\infty}(\mathbb{R}^n) \cap W^{k,p}(\mathbb{R}^n)$ is dense in $W^{k,p}(\mathbb{R}^n)$.

Approximation of identity in Sobolev spaces

Proof

- Let $f_{\varepsilon} = f * \varrho_{\varepsilon}$.
 - \star As $\varrho_{\varepsilon} \in C_{c}^{\infty}(\mathbb{R}^{n})$, we have $f_{\varepsilon} \in C^{\infty}(\mathbb{R}^{n})$.
 - * As $f \in L^p(\mathbb{R}^n)$ and $\varrho_{\varepsilon} \in L^1(\mathbb{R}^n)$, Young's inequality gives that $f_{\varepsilon} \in L^p(\mathbb{R}^n)$.
 - * The approximation of identity theorem in L^p gives that $||f_{\varepsilon} f||_{L^p} \to 0$ as $\varepsilon \to 0$.
- By the differentiation rule for convolution of Sobolev functions, we have $\partial^{\alpha}f_{\varepsilon}=(\partial^{\alpha}f)*\varrho_{\varepsilon}$ for $|\alpha|\leq k$. Repeat the argument as above, we have $\partial^{\alpha}f_{\varepsilon}\in L^{p}(\mathbb{R}^{n})$ and $\|\partial^{\alpha}f_{\varepsilon}-\partial^{\alpha}f\|_{L^{p}}\to 0$ as $\varepsilon\to 0$.
- ullet We deduce that $f_{arepsilon}\in W^{k,p}(\mathbb{R}^n)$ and

$$\|f_{\varepsilon} - f\|_{W^{k,p}} = \left[\sum_{|\alpha| \le k} \|\partial^{\alpha} f_{\varepsilon} - \partial^{\alpha} f\|_{L^{p}}^{p}\right]^{1/p} \stackrel{\varepsilon \to 0}{\longrightarrow} 0.$$

Meyers-Serrin's theorem

Theorem (Meyers-Serrin)

Suppose Ω is a domain in \mathbb{R}^n , $k \geq 0$ and $1 \leq p < \infty$. Then $C^{\infty}(\Omega) \cap W^{k,p}(\Omega)$ is dense in $W^{k,p}(\Omega)$. Namely, for every $u \in W^{k,p}(\Omega)$ there exists a sequence $(u_m) \subset C^{\infty}(\Omega) \cap W^{k,p}(\Omega)$ such that u_m converges to u in $W^{k,p}(\Omega)$.

Remark: No regularity on Ω is assumed.

A question and an obstruction

Question

Is
$$C^{\infty}(\bar{\Omega}) \cap W^{k,p}(\Omega)$$
 dense in $W^{k,p}(\Omega)$?

Answer: Not always.

$$\Omega = \{x^2 + y^2 < 1\} \setminus \{(x, 0) | x \ge 0\}$$
$$\bar{\Omega} = \{x^2 + y^2 \le 1\}$$

Consider $u(x,y) = \sqrt{r}\cos\frac{\theta}{2}$ where $(x,y) = (r\cos\theta, r\sin\theta)$. $u \in C^{\infty}(\Omega)$. u is discontinuous in $\bar{\Omega}$. One computes

$$||u||_{L^{2}}^{2} = \int_{\Omega} u^{2} dx dy$$
$$= \int_{0}^{1} \int_{0}^{2\pi} r \cos^{2} \frac{\theta}{2} r dr d\theta = \frac{\pi}{3},$$

A question and an obstruction

$$\Omega = \{x^2 + y^2 < 1\} \setminus \{(x,0)|x \ge 0\}$$

$$\bar{\Omega} = \{x^2 + y^2 \le 1\}$$

$$D = \{x^2 + y^2 < 1\}$$

Consider
$$u(x,y) = \sqrt{r}\cos\frac{\theta}{2}$$
.
 $u \in C^{\infty}(\Omega)$ and $u \notin C(\overline{\Omega})$.
One computes $\|u\|_{L^{2}}^{2} = \frac{\pi}{3}$,
 $|\nabla u|^{2} = (\partial_{r}u)^{2} + \frac{1}{r^{2}}(\partial_{\theta}u)^{2} = \frac{1}{4r}$,
 $\|\nabla u\|_{L^{2}}^{2} = \int_{\Omega} |\nabla u|^{2} dx dy$
 $= \int_{0}^{1} \int_{0}^{2\pi} \frac{1}{4r} r dr d\theta = \frac{\pi}{2}$,

So $u \in W^{1,2}(\Omega)$.

The jump discontinuity across $\theta=0$ is an obstruction to approximate u by functions in $C^{\infty}(\bar{\Omega})$. It is in fact not possible, as $u \notin W^{1,2}(D)$.

The segment condition

- Ω : a domain in \mathbb{R}^n .
- Ω is said to satisfy the segment condition if every $x_0 \in \partial \Omega$ has a neighborhood U_{x_0} and a non-zero vector y_{x_0} such that if $z \in \bar{\Omega} \cap U_{x_0}$, then $z + ty_{x_0} \in \Omega$ for all $t \in (0,1)$.

• Note that if Ω is Lipschitz, then it satisfies the segment condition.

Approximation by functions in $\mathcal{C}^\infty(ar\Omega)$

Theorem (Global approximation by functions smooth up to the boundary)

Suppose $k \geq 1$ and $1 \leq p < \infty$. If Ω satisfies the segment condition, then the set of restrictions to Ω of functions in $C_c^{\infty}(\mathbb{R}^n)$ is dense in $W^{k,p}(\Omega)$. In particular $C^{\infty}(\bar{\Omega}) \cap W^{k,p}(\Omega)$ is dense in $W^{k,p}(\Omega)$.

- An important consequence of the theorem is the statement that $C_c^{\infty}(\mathbb{R}^n)$ is dense in $W^{k,p}(\mathbb{R}^n)$ when $1 \leq p < \infty$. In order words $W^{k,p}(\mathbb{R}^n) = W_0^{k,p}(\mathbb{R}^n)$.
- You will do the special when Ω is star-shaped in Sheet 2.

Extension by zero of functions in $W_0^{k,p}(\Omega)$

Lemma

Assume that $k \geq 0$ and $1 \leq p < \infty$. If $u \in W_0^{k,p}(\Omega)$, then its extension by zero \bar{u} to \mathbb{R}^n belongs to $W_0^{k,p}(\mathbb{R}^n)$.

Proof

• Suppose $u \in W_0^{k,p}(\Omega)$ and let \bar{u} be its extension by zero to \mathbb{R}^n . It is tempted to say that, as $\bar{u} \equiv 0$ in $\mathbb{R}^n \setminus \Omega$,

$$\partial^{\alpha}\bar{u} = \begin{cases} \partial^{\alpha}u & \text{in } \Omega, \\ 0 & \text{in } \mathbb{R}^{n} \setminus \Omega \end{cases}$$
 (*)

which belongs to $L^p(\mathbb{R}^n)$, and call it the end of the proof. For this to work, we need to show first that \bar{u} is weakly differentiable!

Extension by zero of functions in $W_0^{k,p}(\Omega)$

Proof

• Let $(u_m) \subset C_c^{\infty}(\Omega)$ be such that $u_m \to u$ in $W^{k,p}(\Omega)$. Let \bar{u}_m be the extension by zero of u_m to \mathbb{R}^n . Then $\bar{u}_m \in C_c^{\infty}(\mathbb{R}^n)$ and

$$\|\bar{u}_m - \bar{u}_j\|_{W^{k,p}(\mathbb{R}^n)} = \|u_m - u_j\|_{W^{k,p}(\Omega)} \stackrel{m,j \to \infty}{\longrightarrow} 0.$$

- We thus have that (\bar{u}_m) is Cauchy in $W^{k,p}(\mathbb{R}^n)$ and thus converges in $W^{k,p}$ to some $\bar{u}_* \in W^{k,p}(\mathbb{R}^n)$.
- To conclude, we show that $\bar{u}_* = \bar{u}$ a.e. in \mathbb{R}^n .
 - * As \bar{u}_m converges to \bar{u}_* in $L^p(\mathbb{R}^n)$, there is a subsequence \bar{u}_{m_j} which converges a.e. to \bar{u}_* in \mathbb{R}^n . This implies that $\bar{u}_*=0$ a.e. in $\mathbb{R}^n\setminus\Omega$ and u_{m_j} converges a.e. to \bar{u}_* in Ω .
 - * Likewise, as u_{m_j} converges to u in $L^p(\Omega)$, we can extract yet another subsequence $u_{m_{j_j}}$ which converges a.e. to u in Ω . It follows that $\bar{u}_* = u$ a.e. in Ω .
 - \star So $\bar{u} = \bar{u}_*$ a.e. in \mathbb{R}^n .

More on extension

Theorem (Stein's extension theorem)

Assume that Ω is a bounded Lipschitz domain. Then there exists a linear operator E sending functions defined a.e. in Ω to functions defined a.e. in \mathbb{R}^n such that for every $k \geq 0$, $1 \leq p < \infty$ and $u \in W^{k,p}(\Omega)$ it hold that Eu = u a.e. in Ω and

$$||Eu||_{W^{k,p}(\mathbb{R}^n)} \leq C_{k,p,\Omega}||u||_{W^{k,p}(\Omega)}$$

The operator E is called a total extension for Ω .

You will have the opportunity to see how to construct such extension in a very specific case in Sheet 2.