
C4.3 Functional Analytic Methods for PDEs

Lecture 6

Luc Nguyen
luc.nguyen@maths

University of Oxford

MT 2021

Luc Nguyen (University of Oxford) C4.3 – Lecture 6 MT 2021 1 / 21



In the last lecture

Divergence theorem and Integration by parts formula.

Definition of weak derivatives and

Sobolev spaces W k,p(Ω)
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This lecture

Dual of W 1,p

Sobolev spaces W k,p
0 (Ω).

Differentiation rule for convolution of Sobolev functions.

Density results for Sobolev spaces.

Extension theorems for Sobolev functions.
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Reflexivity of W k ,p(Ω)

Theorem
For k ≥ 0 and 1 < p <∞, W k,p(Ω) is reflexive.

Proof

We will only consider the case k = 1. The general case requires
some minor changes.

By Eberlein’s theorem, we only need to show that every bounded
sequence in W 1,p has a weakly convergent subsequence.

Suppose (um) ⊂ W 1,p is bounded. Then, (um) and (∂ium) are
bounded in Lp.

By the weak sequential compactness property of Lp for
1 < p <∞, there exists a subsequence (umj

) such that (umj
)

and (∂iumj
) are weakly convergent in Lp. Let u be the Lp weak

limit of (umj
) and vi be the Lp weak limit of (∂iumj

).
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Reflexivity of W k ,p(Ω)

To conclude, we show that u belongs to W 1,p and umj
⇀ u in

W 1,p.

The proof that u ∈ W 1,p is similar to the one we did moment
ago, but also has some subtle difference: By definition of weak
derivatives, we have∫

Ω

umj
∂iϕ = −

∫
Ω

∂iumj
ϕ for all ϕ ∈ C∞c (Ω),

Sending j →∞ by using the definition weak convergence, we
obtain ∫

Ω

u∂iϕ = −
∫

Ω

vi ϕ for all ϕ ∈ C∞c (Ω).

So vi = ∂iu in the weak sense. So u ∈ W 1,p.
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Reflexivity of W k ,p(Ω)

It remains to show that, if A ∈ (W 1,p)∗, then Aumj
→ Au.

? Define E : W 1,p(Ω)→ (Lp(Ω))n+1 by Ef = (f , ∂1f , . . . , ∂nf ).
Then E is an isometry.

? Let X := E (W 1,p(Ω)) and Y := (Lp(Ω))n+1. Define
Ã : X → R by Ãp = AE−1p for p ∈ X . Then Ã ∈ X ∗. By
Hahn-Banach’s theorem, it has an extension Â ∈ Y ∗.

? It follows that

Aumj = ÃEumj = ÂEumj

= Â(umj , 0, . . . , 0) +
∑
i

Â(0, 0, . . . , 0, ∂iumj , 0, . . . , 0)

=: B(umj ) +
∑
i

Bi (∂iumj )

→ B(u) +
∑
i

Bi (∂iu) = Au.

This concludes the proof.
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The Sobolev spaces W k ,p
0 (Ω)

Ω: a domain of Rn.

For k ≥ 0 and 1 ≤ p <∞, define

W k,p
0 (Ω) = the closure of C∞c (Ω) in W k,p(Ω).

When p = 2, we also write Hk
0 (Ω) for W k,2

0 (Ω).

In other words, u ∈ W k,p
0 (Ω) if there exist um ∈ C∞c (Ω) such

that ‖um − u‖W k,p → 0.

When k = 0, 1 ≤ p <∞, and Ω is a bounded domain, we have
seen in Sheet 1 that W 0,p

0 (Ω) = W 0,p(Ω) = Lp(Ω).
In general, this is not true for k ≥ 1. Roughly speaking,

W k,p
0 (Ω) consists of functions f in W k,p(Ω) such that

‘∂αf = 0 on ∂Ω’ for all |α| ≤ k − 1.
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IBP formula for Sobolev functions

Proposition (Integration by parts)

Let u ∈ W k,p(Ω) and v ∈ W k,p′

0 (Ω) with k ≥ 0, 1 < p ≤ ∞ and
1
p

+ 1
p′

= 1. Then∫
Ω

∂αuv dx = (−1)|α|
∫

Ω

u∂αv dx for all |α| ≤ k .

Proof

By definition of W k,p′

0 , there exists vm ∈ C∞c (Ω) such that
vm → v in W k,p′ . In particular, ∂αvm → ∂αv in Lp

′
for all

|α| ≤ k .
By the definition of weak derivatives,∫

Ω

∂αuvm dx = (−1)|α|
∫

Ω

u∂αvm dx for all |α| ≤ k .
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IBP formula for Sobolev functions

Proof

∂αvm → ∂αv in Lp
′

for all |α| ≤ k .∫
Ω
∂αuvm dx = (−1)|α|

∫
Ω
u∂αvm dx for all |α| ≤ k .

We can now pass m→∞ as in the proof of the completeness of
Sobolev spaces.

? By Hölder’s inequality∣∣∣ ∫
Ω
∂αu(vm − v) dx

∣∣∣ ≤ ‖∂αu‖Lp‖vm − v‖Lp′ → 0.

So
∫

Ω ∂αuvm dx →
∫

Ω ∂αuv dx .
? Similarly,

∫
Ω u∂αvm dx →

∫
Ω u∂αv dx .

? We conclude that∫
Ω
∂αuv dx = (−1)|α|

∫
Ω
u∂αv dx .
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Differentiation rule for convolution of Sobolev

functions

Suppose k ≥ 0 and 1 ≤ p <∞.

Let f ∈ Lp(Rn) and g ∈ C k
c (Rn). We knew that f ∗ g ∈ C k(Rn)

and
∂α(f ∗ g) = f ∗ (∂αg) for all |α| ≤ k .

Lemma

Assume f ∈ W k,p(Rn) and g ∈ C k
c (Rn) for some k ≥ 0 and

1 ≤ p <∞, then

∂α(f ∗ g) = (∂αf ) ∗ g for all |α| ≤ k .
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Differentiation rule for convolution of Sobolev

functions

Proof

We will only consider the case k = 1. We aim to prove that

∂x1(f ∗ g) = (∂x1f ) ∗ g

We compute

∂x1(f ∗ g)(x) = f ∗ (∂x1g)(x) =

∫
Rn

f (y) ∂x1g(x − y) dy

= −
∫
Rn

f (y) ∂y1g(x − y) dy

=

∫
Rn

∂y1f (y) g(x − y) dy= ((∂x1f ) ∗ g)(x).

So we are done.
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Approximation of identity in Sobolev spaces

Theorem (Approximation of identity)

Let % be a non-negative function in C∞c (Rn) such that
∫
Rn % = 1. For

ε > 0, let

%ε(x) =
1

εn
%
(x
ε

)
.

If f ∈ W k,p(Rn) for some k ≥ 0 and 1 ≤ p <∞, then
f ∗ %ε ∈ C∞(Rn) ∩W k,p(Rn) and

lim
ε→0
‖f ∗ %ε − f ‖W k,p(Rn) = 0.

In particular C∞(Rn) ∩W k,p(Rn) is dense in W k,p(Rn).

Luc Nguyen (University of Oxford) C4.3 – Lecture 6 MT 2021 12 / 21



Approximation of identity in Sobolev spaces

Proof
Let fε = f ∗ %ε.

? As %ε ∈ C∞c (Rn), we have fε ∈ C∞(Rn).
? As f ∈ Lp(Rn) and %ε ∈ L1(Rn), Young’s inequality gives that

fε ∈ Lp(Rn).
? The approximation of identity theorem in Lp gives that
‖fε − f ‖Lp → 0 as ε→ 0.

By the differentiation rule for convolution of Sobolev functions,
we have ∂αfε = (∂αf ) ∗ %ε for |α| ≤ k . Repeat the argument as
above, we have ∂αfε ∈ Lp(Rn) and ‖∂αfε − ∂αf ‖Lp → 0 as
ε→ 0.

We deduce that fε ∈ W k,p(Rn) and

‖fε − f ‖W k,p =
[ ∑
|α|≤k

‖∂αfε − ∂αf ‖pLp
]1/p ε→0−→ 0.
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Meyers-Serrin’s theorem

Theorem (Meyers-Serrin)

Suppose Ω is a domain in Rn, k ≥ 0 and 1 ≤ p <∞. Then
C∞(Ω) ∩W k,p(Ω) is dense in W k,p(Ω). Namely, for every
u ∈ W k,p(Ω) there exists a sequence (um) ⊂ C∞(Ω) ∩W k,p(Ω) such
that um converges to u in W k,p(Ω).

Remark: No regularity on Ω is assumed.
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A question and an obstruction

Question

Is C∞(Ω̄) ∩W k,p(Ω) dense in W k,p(Ω)?

Answer: Not always.

Ω = {x2 + y2 < 1} \ {(x, 0)|x ≥ 0}

Ω̄ = {x2 + y2 ≤ 1}

u =
√

r

u = −
√

r

Consider u(x , y) =
√
r cos θ

2
where

(x , y) = (r cos θ, r sin θ).
u ∈ C∞(Ω).
u is discontinuous in Ω̄.
One computes

‖u‖2
L2 =

∫
Ω

u2 dx dy

=

∫ 1

0

∫ 2π

0

r cos2 θ

2
r dr dθ =

π

3
,
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A question and an obstruction

Ω = {x2 + y2 < 1} \ {(x, 0)|x ≥ 0}

Ω̄ = {x2 + y2 ≤ 1}

D = {x2 + y2 < 1}

u =
√

r

u = −
√

r

Consider u(x , y) =
√
r cos θ

2
.

u ∈ C∞(Ω) and u 6∈ C (Ω̄).
One computes ‖u‖2

L2 = π
3

,

|∇u|2 = (∂ru)2 +
1

r 2
(∂θu)2 =

1

4r
,

‖∇u‖2
L2 =

∫
Ω

|∇u|2 dx dy

=

∫ 1

0

∫ 2π

0

1

4r
r dr dθ =

π

2
,

So u ∈ W 1,2(Ω).
The jump discontinuity across θ = 0
is an obstruction to approximate u
by functions in C∞(Ω̄). It is in fact
not possible, as u 6∈ W 1,2(D).
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The segment condition

Ω: a domain in Rn.

Ω is said to satisfy the segment condition if every x0 ∈ ∂Ω has a
neighborhood Ux0 and a non-zero vector yx0 such that if
z ∈ Ω̄ ∩ Ux0 , then z + tyx0 ∈ Ω for all t ∈ (0, 1).

Ω

x0

Ux0

yx0

zz + yx0

Note that if Ω is Lipschitz, then it satisfies the segment
condition.
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Approximation by functions in C∞(Ω̄)

Theorem (Global approximation by functions smooth up
to the boundary)

Suppose k ≥ 1 and 1 ≤ p <∞. If Ω satisfies the segment condition,
then the set of restrictions to Ω of functions in C∞c (Rn) is dense in
W k,p(Ω). In particular C∞(Ω̄) ∩W k,p(Ω) is dense in W k,p(Ω).

An important consequence of the theorem is the statement that
C∞c (Rn) is dense in W k,p(Rn) when 1 ≤ p <∞. In order words
W k,p(Rn) = W k,p

0 (Rn).

You will do the special when Ω is star-shaped in Sheet 2.
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Extension by zero of functions in W k ,p
0 (Ω)

Lemma

Assume that k ≥ 0 and 1 ≤ p <∞. If u ∈ W k,p
0 (Ω), then its

extension by zero ū to Rn belongs to W k,p
0 (Rn).

Proof

Suppose u ∈ W k,p
0 (Ω) and let ū be its extension by zero to Rn.

It is tempted to say that, as ū ≡ 0 in Rn \ Ω,

∂αū =

{
∂αu in Ω,
0 in Rn \ Ω

(*)

which belongs to Lp(Rn), and call it the end of the proof. For
this to work, we need to show first that ū is weakly differentiable!
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Extension by zero of functions in W k ,p
0 (Ω)

Proof

Let (um) ⊂ C∞c (Ω) be such that um → u in W k,p(Ω). Let ūm be
the extension by zero of um to Rn. Then ūm ∈ C∞c (Rn) and

‖ūm − ūj‖W k,p(Rn) = ‖um − uj‖W k,p(Ω)
m,j→∞−→ 0.

We thus have that (ūm) is Cauchy in W k,p(Rn) and thus
converges in W k,p to some ū∗ ∈ W k,p(Rn).

To conclude, we show that ū∗ = ū a.e. in Rn.
? As ūm converges to ū∗ in Lp(Rn), there is a subsequence ūmj

which converges a.e. to ū∗ in Rn. This implies that ū∗ = 0 a.e.
in Rn \ Ω and umj converges a.e. to ū∗ in Ω.

? Likewise, as umj converges to u in Lp(Ω), we can extract yet
another subsequence umjl

which converges a.e. to u in Ω. It
follows that ū∗ = u a.e. in Ω.

? So ū = ū∗ a.e. in Rn.
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More on extension

Theorem (Stein’s extension theorem)

Assume that Ω is a bounded Lipschitz domain. Then there exists a
linear operator E sending functions defined a.e. in Ω to functions
defined a.e. in Rn such that for every k ≥ 0, 1 ≤ p <∞ and
u ∈ W k,p(Ω) it hold that Eu = u a.e. in Ω and

‖Eu‖W k,p(Rn) ≤ Ck,p,Ω‖u‖W k,p(Ω)

The operator E is called a total extension for Ω.
You will have the opportunity to see how to construct such extension
in a very specific case in Sheet 2.
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