C4.3 Functional Analytic Methods for PDEs Lecture 6 Luc Nguyen luc.nguyen@maths University of Oxford MT 2021 #### In the last lecture - Divergence theorem and Integration by parts formula. - Definition of weak derivatives and - Sobolev spaces $W^{k,p}(\Omega)$ ### This lecture - Dual of $W^{1,p}$ - Sobolev spaces $W_0^{k,p}(\Omega)$. - Differentiation rule for convolution of Sobolev functions. - Density results for Sobolev spaces. - Extension theorems for Sobolev functions. ## Reflexivity of $W^{k,p}(\Omega)$ #### Theorem For $k \ge 0$ and $1 , <math>W^{k,p}(\Omega)$ is reflexive. #### Proof - We will only consider the case k = 1. The general case requires some minor changes. - By Eberlein's theorem, we only need to show that every bounded sequence in $W^{1,p}$ has a weakly convergent subsequence. - Suppose $(u_m) \subset W^{1,p}$ is bounded. Then, (u_m) and $(\partial_i u_m)$ are bounded in L^p . - By the weak sequential compactness property of L^p for $1 , there exists a subsequence <math>(u_{m_j})$ such that (u_{m_j}) and $(\partial_i u_{m_j})$ are weakly convergent in L^p . Let u be the L^p weak limit of (u_{m_j}) and v_i be the L^p weak limit of $(\partial_i u_{m_j})$. ## Reflexivity of $W^{k,p}(\Omega)$ - To conclude, we show that u belongs to $W^{1,p}$ and $u_{m_j} \rightharpoonup u$ in $W^{1,p}$. - The proof that $u \in W^{1,p}$ is similar to the one we did moment ago, but also has some subtle difference: By definition of weak derivatives, we have $$\int_{\Omega}u_{m_{j}}\partial_{i}\varphi=-\int_{\Omega}\partial_{i}u_{m_{j}}\,\varphi \text{ for all }\varphi\in \textit{$C_{c}^{\infty}(\Omega)$},$$ Sending $j \to \infty$ by using the definition weak convergence, we obtain $$\int_{\Omega} u \partial_i \varphi = - \int_{\Omega} v_i \, \varphi \text{ for all } \varphi \in C_c^{\infty}(\Omega).$$ So $v_i = \partial_i u$ in the weak sense. So $u \in W^{1,p}$. ## Reflexivity of $W^{k,p}(\Omega)$ - It remains to show that, if $A \in (W^{1,p})^*$, then $Au_{m_i} \to Au$. - * Define $E: W^{1,p}(\Omega) \to (L^p(\Omega))^{n+1}$ by $Ef = (f, \partial_1 f, \dots, \partial_n f)$. Then E is an isometry. - * Let $X:=E(W^{1,p}(\Omega))$ and $Y:=(L^p(\Omega))^{n+1}$. Define $\tilde{A}:X\to\mathbb{R}$ by $\tilde{A}p=AE^{-1}p$ for $p\in X$. Then $\tilde{A}\in X^*$. By Hahn-Banach's theorem, it has an extension $\hat{A}\in Y^*$. - * It follows that $$Au_{m_j} = \tilde{A}Eu_{m_j} = \hat{A}Eu_{m_j}$$ $$= \hat{A}(u_{m_j}, 0, \dots, 0) + \sum_i \hat{A}(0, 0, \dots, 0, \partial_i u_{m_j}, 0, \dots, 0)$$ $$=: B(u_{m_j}) + \sum_i B_i(\partial_i u_{m_j})$$ $$\to B(u) + \sum_i B_i(\partial_i u) = Au.$$ This concludes the proof. # The Sobolev spaces $W_0^{k,p}(\Omega)$ - Ω : a domain of \mathbb{R}^n . - For $k \ge 0$ and $1 \le p < \infty$, define $$W_0^{k,p}(\Omega) = \text{the closure of } C_c^{\infty}(\Omega) \text{ in } W^{k,p}(\Omega).$$ When p = 2, we also write $H_0^k(\Omega)$ for $W_0^{k,2}(\Omega)$. - In other words, $u \in W_0^{k,p}(\Omega)$ if there exist $u_m \in C_c^{\infty}(\Omega)$ such that $||u_m u||_{W^{k,p}} \to 0$. - When $k=0, 1 \leq p < \infty$, and Ω is a bounded domain, we have seen in Sheet 1 that $W_0^{0,p}(\Omega) = W^{0,p}(\Omega) = L^p(\Omega)$. In general, this is not true for $k \geq 1$. Roughly speaking, $W_0^{k,p}(\Omega)$ consists of functions f in $W^{k,p}(\Omega)$ such that $$\partial^{\alpha} f = 0$$ on $\partial \Omega'$ for all $|\alpha| \leq k - 1$. ### IBP formula for Sobolev functions ## Proposition (Integration by parts) Let $u \in W^{k,p}(\Omega)$ and $v \in W_0^{k,p'}(\Omega)$ with $k \ge 0$, $1 and <math>\frac{1}{p} + \frac{1}{p'} = 1$. Then $$\int_{\Omega} \partial^{\alpha} uv \ dx = (-1)^{|\alpha|} \int_{\Omega} u \partial^{\alpha} v \ dx \ \text{ for all } |\alpha| \leq k.$$ #### Proof - By definition of $W_0^{k,p'}$, there exists $v_m \in C_c^{\infty}(\Omega)$ such that $v_m \to v$ in $W^{k,p'}$. In particular, $\partial^{\alpha} v_m \to \partial^{\alpha} v$ in $L^{p'}$ for all $|\alpha| \le k$. - By the definition of weak derivatives, $$\int_{\Omega} \partial^{\alpha} u v_m \, dx = (-1)^{|\alpha|} \int_{\Omega} u \partial^{\alpha} v_m \, dx \text{ for all } |\alpha| \le k.$$ ### IBP formula for Sobolev functions #### Proof - $\partial^{\alpha} v_m \to \partial^{\alpha} v$ in $L^{p'}$ for all $|\alpha| \le k$. - $\int_{\Omega} \partial^{\alpha} u v_m \, dx = (-1)^{|\alpha|} \int_{\Omega} u \partial^{\alpha} v_m \, dx$ for all $|\alpha| \le k$. - ullet We can now pass $m o \infty$ as in the proof of the completeness of Sobolev spaces. - ★ By Hölder's inequality $$\Big|\int_{\Omega} \partial^{\alpha} u(v_m-v) dx\Big| \leq \|\partial^{\alpha} u\|_{L^p} \|v_m-v\|_{L^{p'}} \to 0.$$ So $\int_{\Omega} \partial^{\alpha} u v_m dx \to \int_{\Omega} \partial^{\alpha} u v dx$. - \star Similarly, $\int_{\Omega} u \partial^{\alpha} v_m dx \rightarrow \int_{\Omega} u \partial^{\alpha} v dx$. - ★ We conclude that $$\int_{\Omega} \partial^{\alpha} u v \, dx = (-1)^{|\alpha|} \int_{\Omega} u \partial^{\alpha} v \, dx.$$ # Differentiation rule for convolution of Sobolev functions - Suppose $k \ge 0$ and $1 \le p < \infty$. - Let $f \in L^p(\mathbb{R}^n)$ and $g \in C_c^k(\mathbb{R}^n)$. We knew that $f * g \in C^k(\mathbb{R}^n)$ and $$\partial^{\alpha}(f * g) = f * (\partial^{\alpha}g) \text{ for all } |\alpha| \leq k.$$ #### Lemma Assume $f \in W^{k,p}(\mathbb{R}^n)$ and $g \in C_c^k(\mathbb{R}^n)$ for some $k \geq 0$ and $1 \leq p < \infty$, then $$\partial^{\alpha}(f * g) = (\partial^{\alpha} f) * g \text{ for all } |\alpha| \leq k.$$ # Differentiation rule for convolution of Sobolev functions #### Proof • We will only consider the case k = 1. We aim to prove that $$\partial_{x_1}(f*g)=(\partial_{x_1}f)*g$$ We compute $$\begin{split} \partial_{x_1}(f*g)(x) &= f*(\partial_{x_1}g)(x) = \int_{\mathbb{R}^n} f(y) \, \partial_{x_1}g(x-y) \, dy \\ &= -\int_{\mathbb{R}^n} f(y) \, \partial_{y_1}g(x-y) \, dy \\ &= \int_{\mathbb{R}^n} \partial_{y_1}f(y) \, g(x-y) \, dy = ((\partial_{x_1}f)*g)(x). \end{split}$$ So we are done. ## Approximation of identity in Sobolev spaces ## Theorem (Approximation of identity) Let ϱ be a non-negative function in $C_c^\infty(\mathbb{R}^n)$ such that $\int_{\mathbb{R}^n} \varrho = 1$. For $\varepsilon > 0$, let $$\varrho_{\varepsilon}(x) = \frac{1}{\varepsilon^n} \varrho\left(\frac{x}{\varepsilon}\right).$$ If $f \in W^{k,p}(\mathbb{R}^n)$ for some $k \ge 0$ and $1 \le p < \infty$, then $f * \varrho_{\varepsilon} \in C^{\infty}(\mathbb{R}^n) \cap W^{k,p}(\mathbb{R}^n)$ and $$\lim_{\varepsilon\to 0}\|f*\varrho_{\varepsilon}-f\|_{W^{k,p}(\mathbb{R}^n)}=0.$$ In particular $C^{\infty}(\mathbb{R}^n) \cap W^{k,p}(\mathbb{R}^n)$ is dense in $W^{k,p}(\mathbb{R}^n)$. ## Approximation of identity in Sobolev spaces #### Proof - Let $f_{\varepsilon} = f * \varrho_{\varepsilon}$. - \star As $\varrho_{\varepsilon} \in C_{c}^{\infty}(\mathbb{R}^{n})$, we have $f_{\varepsilon} \in C^{\infty}(\mathbb{R}^{n})$. - * As $f \in L^p(\mathbb{R}^n)$ and $\varrho_{\varepsilon} \in L^1(\mathbb{R}^n)$, Young's inequality gives that $f_{\varepsilon} \in L^p(\mathbb{R}^n)$. - * The approximation of identity theorem in L^p gives that $||f_{\varepsilon} f||_{L^p} \to 0$ as $\varepsilon \to 0$. - By the differentiation rule for convolution of Sobolev functions, we have $\partial^{\alpha}f_{\varepsilon}=(\partial^{\alpha}f)*\varrho_{\varepsilon}$ for $|\alpha|\leq k$. Repeat the argument as above, we have $\partial^{\alpha}f_{\varepsilon}\in L^{p}(\mathbb{R}^{n})$ and $\|\partial^{\alpha}f_{\varepsilon}-\partial^{\alpha}f\|_{L^{p}}\to 0$ as $\varepsilon\to 0$. - ullet We deduce that $f_{arepsilon}\in W^{k,p}(\mathbb{R}^n)$ and $$\|f_{\varepsilon} - f\|_{W^{k,p}} = \left[\sum_{|\alpha| \le k} \|\partial^{\alpha} f_{\varepsilon} - \partial^{\alpha} f\|_{L^{p}}^{p}\right]^{1/p} \stackrel{\varepsilon \to 0}{\longrightarrow} 0.$$ ## Meyers-Serrin's theorem ## Theorem (Meyers-Serrin) Suppose Ω is a domain in \mathbb{R}^n , $k \geq 0$ and $1 \leq p < \infty$. Then $C^{\infty}(\Omega) \cap W^{k,p}(\Omega)$ is dense in $W^{k,p}(\Omega)$. Namely, for every $u \in W^{k,p}(\Omega)$ there exists a sequence $(u_m) \subset C^{\infty}(\Omega) \cap W^{k,p}(\Omega)$ such that u_m converges to u in $W^{k,p}(\Omega)$. Remark: No regularity on Ω is assumed. ## A question and an obstruction #### Question Is $$C^{\infty}(\bar{\Omega}) \cap W^{k,p}(\Omega)$$ dense in $W^{k,p}(\Omega)$? Answer: Not always. $$\Omega = \{x^2 + y^2 < 1\} \setminus \{(x, 0) | x \ge 0\}$$ $$\bar{\Omega} = \{x^2 + y^2 \le 1\}$$ Consider $u(x,y) = \sqrt{r}\cos\frac{\theta}{2}$ where $(x,y) = (r\cos\theta, r\sin\theta)$. $u \in C^{\infty}(\Omega)$. u is discontinuous in $\bar{\Omega}$. One computes $$||u||_{L^{2}}^{2} = \int_{\Omega} u^{2} dx dy$$ $$= \int_{0}^{1} \int_{0}^{2\pi} r \cos^{2} \frac{\theta}{2} r dr d\theta = \frac{\pi}{3},$$ ## A question and an obstruction $$\Omega = \{x^2 + y^2 < 1\} \setminus \{(x,0)|x \ge 0\}$$ $$\bar{\Omega} = \{x^2 + y^2 \le 1\}$$ $$D = \{x^2 + y^2 < 1\}$$ Consider $$u(x,y) = \sqrt{r}\cos\frac{\theta}{2}$$. $u \in C^{\infty}(\Omega)$ and $u \notin C(\overline{\Omega})$. One computes $\|u\|_{L^{2}}^{2} = \frac{\pi}{3}$, $|\nabla u|^{2} = (\partial_{r}u)^{2} + \frac{1}{r^{2}}(\partial_{\theta}u)^{2} = \frac{1}{4r}$, $\|\nabla u\|_{L^{2}}^{2} = \int_{\Omega} |\nabla u|^{2} dx dy$ $= \int_{0}^{1} \int_{0}^{2\pi} \frac{1}{4r} r dr d\theta = \frac{\pi}{2}$, So $u \in W^{1,2}(\Omega)$. The jump discontinuity across $\theta=0$ is an obstruction to approximate u by functions in $C^{\infty}(\bar{\Omega})$. It is in fact not possible, as $u \notin W^{1,2}(D)$. ## The segment condition - Ω : a domain in \mathbb{R}^n . - Ω is said to satisfy the segment condition if every $x_0 \in \partial \Omega$ has a neighborhood U_{x_0} and a non-zero vector y_{x_0} such that if $z \in \bar{\Omega} \cap U_{x_0}$, then $z + ty_{x_0} \in \Omega$ for all $t \in (0,1)$. • Note that if Ω is Lipschitz, then it satisfies the segment condition. # Approximation by functions in $\mathcal{C}^\infty(ar\Omega)$ # Theorem (Global approximation by functions smooth up to the boundary) Suppose $k \geq 1$ and $1 \leq p < \infty$. If Ω satisfies the segment condition, then the set of restrictions to Ω of functions in $C_c^{\infty}(\mathbb{R}^n)$ is dense in $W^{k,p}(\Omega)$. In particular $C^{\infty}(\bar{\Omega}) \cap W^{k,p}(\Omega)$ is dense in $W^{k,p}(\Omega)$. - An important consequence of the theorem is the statement that $C_c^{\infty}(\mathbb{R}^n)$ is dense in $W^{k,p}(\mathbb{R}^n)$ when $1 \leq p < \infty$. In order words $W^{k,p}(\mathbb{R}^n) = W_0^{k,p}(\mathbb{R}^n)$. - You will do the special when Ω is star-shaped in Sheet 2. # Extension by zero of functions in $W_0^{k,p}(\Omega)$ #### Lemma Assume that $k \geq 0$ and $1 \leq p < \infty$. If $u \in W_0^{k,p}(\Omega)$, then its extension by zero \bar{u} to \mathbb{R}^n belongs to $W_0^{k,p}(\mathbb{R}^n)$. #### Proof • Suppose $u \in W_0^{k,p}(\Omega)$ and let \bar{u} be its extension by zero to \mathbb{R}^n . It is tempted to say that, as $\bar{u} \equiv 0$ in $\mathbb{R}^n \setminus \Omega$, $$\partial^{\alpha}\bar{u} = \begin{cases} \partial^{\alpha}u & \text{in } \Omega, \\ 0 & \text{in } \mathbb{R}^{n} \setminus \Omega \end{cases}$$ (*) which belongs to $L^p(\mathbb{R}^n)$, and call it the end of the proof. For this to work, we need to show first that \bar{u} is weakly differentiable! # Extension by zero of functions in $W_0^{k,p}(\Omega)$ #### Proof • Let $(u_m) \subset C_c^{\infty}(\Omega)$ be such that $u_m \to u$ in $W^{k,p}(\Omega)$. Let \bar{u}_m be the extension by zero of u_m to \mathbb{R}^n . Then $\bar{u}_m \in C_c^{\infty}(\mathbb{R}^n)$ and $$\|\bar{u}_m - \bar{u}_j\|_{W^{k,p}(\mathbb{R}^n)} = \|u_m - u_j\|_{W^{k,p}(\Omega)} \stackrel{m,j \to \infty}{\longrightarrow} 0.$$ - We thus have that (\bar{u}_m) is Cauchy in $W^{k,p}(\mathbb{R}^n)$ and thus converges in $W^{k,p}$ to some $\bar{u}_* \in W^{k,p}(\mathbb{R}^n)$. - To conclude, we show that $\bar{u}_* = \bar{u}$ a.e. in \mathbb{R}^n . - * As \bar{u}_m converges to \bar{u}_* in $L^p(\mathbb{R}^n)$, there is a subsequence \bar{u}_{m_j} which converges a.e. to \bar{u}_* in \mathbb{R}^n . This implies that $\bar{u}_*=0$ a.e. in $\mathbb{R}^n\setminus\Omega$ and u_{m_j} converges a.e. to \bar{u}_* in Ω . - * Likewise, as u_{m_j} converges to u in $L^p(\Omega)$, we can extract yet another subsequence $u_{m_{j_j}}$ which converges a.e. to u in Ω . It follows that $\bar{u}_* = u$ a.e. in Ω . - \star So $\bar{u} = \bar{u}_*$ a.e. in \mathbb{R}^n . ### More on extension ## Theorem (Stein's extension theorem) Assume that Ω is a bounded Lipschitz domain. Then there exists a linear operator E sending functions defined a.e. in Ω to functions defined a.e. in \mathbb{R}^n such that for every $k \geq 0$, $1 \leq p < \infty$ and $u \in W^{k,p}(\Omega)$ it hold that Eu = u a.e. in Ω and $$||Eu||_{W^{k,p}(\mathbb{R}^n)} \leq C_{k,p,\Omega}||u||_{W^{k,p}(\Omega)}$$ The operator E is called a total extension for Ω . You will have the opportunity to see how to construct such extension in a very specific case in Sheet 2.