
1D Parabolic PDEs: Finite Difference Methods

M.Sc. in Mathematical Modelling & Scientific Computing,
Practical Numerical Analysis

Michaelmas Term 2021, Lecture 5

1D Heat Equation

First we consider the simplest parabolic PDE in the form of the
heat equation:

∂u

∂t
=

∂2u

∂x2
,

for t > 0 and x ∈ [a, b] with an initial condition

u(x , 0) = u0(x) ,

for x ∈ [a, b]. We begin by considering Dirichlet boundary
conditions

u(a, t) = ua(t) ,

u(b, t) = ub(t) ,

for t > 0.

The Mesh

We define a sequence of uniform timesteps by

tm = m∆t

for m = 0, 1, 2, . . . where ∆t > 0 is the constant timestep size.

We also define a set of uniform mesh points by

xj = a + j∆x ,

for j = 0, 1, . . . ,N and with the meshsize ∆x = (b − a)/N.

We write u(xj , tm) = umj and seek to approximate umj by Um
j for

j = 0, 1, . . . ,N and m = 0, 1, 2,

Finite Difference Schemes

As was the case for 1D boundary value problems we may write a
central difference

∂2u

∂x2
(xj , t) =

u(xj+1, t)− 2u(xj , t) + u(xj−1, t)

∆x2
+O(∆x2) .

Similarly, as was the case for ODEs we may write a forward
difference

∂u

∂t
(x , tm) =

u(x , tm+1)− u(x , tm)

∆t
+O(∆t) ,

or a backward difference

∂u

∂t
(x , tm+1) =

u(x , tm+1)− u(x , tm)

∆t
+O(∆t) .

Finite Difference Schemes

Alternatively we may combine these to get a θ-method of the form

(1− θ)
∂u

∂t
(x , tm) + θ

∂u

∂t
(x , tm+1) =

u(x , tm+1)− u(x , tm)

∆t
+O(∆t)

for θ 6= 1/2 or, when θ = 1/2,

1

2

∂u

∂t
(x , tm) +

1

2

∂u

∂t
(x , tm+1) =

u(x , tm+1)− u(x , tm)

∆t
+O(∆t2) .

Finite Difference Schemes
Such equalities lead to finite difference schemes of the form

I Forward Euler (or Explicit Euler)

Um+1
j − Um

j

∆t
=

Um
j+1 − 2Um

j + Um
j−1

∆x2

I Backward Euler (or Implicit Euler)

Um+1
j − Um

j

∆t
=

Um+1
j+1 − 2Um+1

j + Um+1
j−1

∆x2

I θ-Method (Crank Nicolson when θ = 1/2)

Um+1
j − Um

j

∆t
= θ

Um+1
j+1 − 2Um+1

j + Um+1
j−1

∆x2

+(1− θ)
Um
j+1 − 2Um

j + Um
j−1

∆x2

Finite Difference Schemes

All these finite difference schemes hold for j = 1, . . . ,N − 1 and
m = 0, 1,

We must also discretise the initial and boundary conditions as

U0
j = u0(xj) , j = 0, 1, . . . ,N

Um
0 = ua(tm) , m = 1, 2, . . .

Um
N = ub(tm) , m = 1, 2, . . .

Finite Differences — Implementation

We saw for ODEs that the forward Euler scheme was very simple
to implement, whereas the θ-method for θ > 0 required a nonlinear
solve. Similar ideas hold for the heat equation but the nonlinear
solve is replaced by the solution of a linear system.

Forward Euler Scheme

Recall the forward Euler scheme is

Um+1
j − Um

j

∆t
=

Um
j+1 − 2Um

j + Um
j−1

∆x2

for j = 1, . . . ,N − 1 and m = 0, 1, Writing µ = ∆t/∆x2, we
may re-arrange the scheme to get

Um+1
j = Um

j + µ(Um
j+1 − 2Um

j + Um
j−1) (1)

for j = 1, . . . ,N − 1 and m = 0, 1,

Thus, once we have used the initial and boundary conditions to
assign values to U0

j for j = 0, 1, . . . ,N and Um
0 and Um

N for
m = 1, 2, . . ., it is simple to set m = 0 in Equation (1) and
compute all the U1

j etc.

Forward Euler Scheme — Example

Consider the simplest heat equation

∂u

∂t
=

∂2u

∂x2
,

for 0 < t ≤ 0.1 and x ∈ [0, 1] with an initial condition

u(x , 0) = sin(πx) + 2π cos(2πx) ,

for x ∈ [0, 1] and Dirichlet boundary conditions

u(0, t) = 2π exp(−4π2t) = u(1, t) ,

for t > 0. The exact solution is

u(x , t) = exp(−π2t) sin(πx) + 2π exp(−4π2t) cos(πx) .

Forward Euler Scheme — Example

Matlab demo

Forward Euler Scheme — Example
Exact solution and numerical solution at t = 0.1 with ∆x = 1/20
and ∆t = ∆x2/4.

0 0.2 0.4 0.6 0.8 1

x

0.14

0.16

0.18

0.2

0.22

0.24

0.26

u
(x

,0
.1

)

Exact solution

Numerical solution

θ-Method

We let

δ2xUj = Uj+1 − 2Uj + Uj−1 .

Then the θ-method is

Um+1
j − Um

j

∆t
= θ

Um+1
j+1 − 2Um+1

j + Um+1
j−1

∆x2

+(1− θ)
Um
j+1 − 2Um

j + Um
j−1

∆x2

= θ
δ2xU

m+1
j

∆x2
+ (1− θ)

δ2xU
m
j

∆x2
.

(Recall this includes the backward Euler scheme if we take θ = 1.)

θ-Method

Again we may write µ = ∆t/∆x2 and re-arrange the scheme to get

−µθUm+1
j+1 + (1 + 2µθ)Um+1

j − µθUm+1
j−1

= Um
j + µ(1− θ)(Um

j+1 − 2Um
j + Um

j−1) (2)

for j = 1, . . . ,N − 1 and m = 0, 1,

This time, once we have used the initial and boundary conditions
to assign values to U0

j for j = 0, 1, . . . ,N and Um
0 and Um

N for
m = 1, 2, . . ., if we set m = 0 in Equation (2) then we have a linear
system to solve in order to compute all the U1

j .

θ-Method — Linear System

Let A ∈ R(N+1)×(N+1) be the tridiagonal matrix given by

A =

0 0 0
1 −2 1

1 −2 1
. . .

. . .
. . .

1 −2 1
0 0 0

.

Then we may write

(I − µθA)Um+1 = (I ′ + µ(1− θ)A)Um + gm+1 .

Here, Um = (Um
0 ,U

m
1 , . . . ,U

m
N)T , I is the (N + 1)× (N + 1)

identity matrix, I ′ is the (N + 1)× (N + 1) identity matrix but
with the (1, 1) and (N + 1,N + 1) entries being zero, and
gm+1 = (ua(tm+1), 0, . . . , 0, ub(tm+1))T .

θ-Method — Linear System

Since the linear system is tridiagonal it can be solved easily in
Matlab using backslash, or it can be solved using the Thomas
Algorithm. Either method is fast, but not as fast as using Equation
(1) for the forward Euler scheme.

θ-Method — Example

Matlab demo

θ-Method — Example
We consider the same problem and the same grid as before.

0 0.2 0.4 0.6 0.8 1

x

0.14

0.16

0.18

0.2

0.22

0.24

0.26

u
(x

,0
.1

)

Exact solution

=0.5

=0

=1

Truncation Error

The truncation error for the θ-method is given by

Tm
j =

um+1
j − umj

∆t
− θ

δ2xu
m+1
j

∆x2
− (1− θ)

δ2xu
m
j

∆x2
.

It is standard to perform Taylor series approximations about the
point (xj , tm+1/2). This gives

Tm
j =

(
1

2
− θ
)

∆tuxxt −
1

12
∆t2uttt −

1

12
∆x2uxxxx .

Thus for θ independent of ∆t and ∆x :

I in general, the θ-method is first order in ∆t and second order
in ∆x ;

I for the particular case θ = 1/2, the Crank Nicolson method is
second order in both ∆t and ∆x .

Stability

You will see in the NSPDE course that issues arise in the stability
of the θ-method for parabolic PDEs. The summary is

I If θ ≥ 1/2 the method is unconditionally stable. In particular
this means that the backward Euler and Crank-Nicolson
schemes are unconditionally stable.

I If θ < 1/2 the method is only conditionally stable. The values
of ∆t and ∆x must be chosen so that µ ≤ 1/(2(1− 2θ)), i.e.
so that

∆t ≤ ∆x2

2(1− 2θ)
.

In particular this means that the forward Euler method is only
conditionally stable and the condition for stability is that
∆t ≤ ∆x2/2.

Example of Instability

Suppose we try to solve the heat equation with Dirichlet boundary
conditions and a fixed initial condition with the forward Euler
scheme with ∆t = ∆x2 (recall we need ∆t ≤ ∆x2/2 for stability).
The solution is disastrous!

0 0.2 0.4 0.6 0.8 1

x

-0.015

-0.01

-0.005

0

0.005

0.01

0.015

u

Exact solution at t=0.25

0 0.2 0.4 0.6 0.8 1

x

-2

-1

0

1

2

U

10
115 Numerical solution at t=0.25

More General Boundary Conditions

Instead of applying Dirichlet boundary conditions, we may wish to
apply Neumann boundary conditions or mixed boundary
conditions. Let us consider a mixed boundary condition

αu(a, t) + β
∂u

∂x
(a, t) = γ

for α, β and γ non-zero constants. (What follows is easily
extended to the case when α, β and γ are functions of time.)

More General Boundary Conditions
Since x0 = a, we may write a forward difference

∂u

∂x
(a, t) =

∂u

∂x
(x0, t) =

u(x1, t)− u(x0, t)

∆x
+O(∆x) .

This means we may approximate the mixed boundary condition
using

αUm+1
0 + β

Um+1
1 − Um+1

0

∆x
= γ , (3)

for m = 0, 1,

If we use this with the explicit Euler scheme then we have
Equation (1) with j = 1,

Um+1
1 = Um

1 + µ(Um
2 − 2Um

1 + Um
0)

which couples with Equation (3) to give a 2× 2 system for the
unknowns Um+1

0 and Um+1
1 .

More General Boundary Conditions

If we use Equation (3) to approximate the mixed boundary
condition with the θ-method then we need to adapt the system we
had earlier, namely

BUm+1 := (I − µθA)Um+1 = (I ′ + µ(1− θ)A)Um + gm+1 .

We now replace the first entry of gm+1 with γ∆x and the first row
of the matrix B is now (α∆x − β, β, 0, . . . , 0).

This method applies the boundary condition using an O(∆x)
approximation.

More General Boundary Conditions — Ficticious Node
An alternative method for applying the boundary conditions is to
use a central difference

∂u

∂x
(a, t) =

∂u

∂x
(x0, t) =

u(x1, t)− u(x−1, t)

2∆x
+O(∆x2) ,

where x−1 = a−∆x is a ficticious node to the left of the left-hand
end of the interval. This means we may approximate the mixed
boundary condition using

αUm+1
0 + β

Um+1
1 − Um+1

−1
2∆x

= γ , (4)

for m = 0, 1, To use this with the θ-method we use Equation
(2) with j = 0, namely

−µθUm+1
1 + (1 + 2µθ)Um+1

0 − µθUm+1
−1

= Um
0 + µ(1− θ)(Um

1 − 2Um
0 + Um

−1)

More General Boundary Conditions — Ficticious Node

We use Equation (4) to replace Um+1
−1 and Um

−1 in this finite
difference scheme to get

−µθ(1 + β)Um+1
1 + (1 + 2µθ(1− α∆x))Um+1

0

= Um
0 + µ(1− θ)((1 + β)Um

1 − 2(1− α∆x)Um
0)− 2µγ∆x .

Again we can use this to replace the first line of the linear system.

This method applies the boundary condition using an O(∆x2)
approximation.

More General Boundary Conditions — Comparison

We solve the problem

∂u

∂t
=

∂2u

∂x2
,

for t > 0 and x ∈ [0, 1] with an initial condition

u(x , 0) = sin

(
3πx

2

)
−
(

3π

2

)
cos

(
3πx

2

)
,

for x ∈ [0, 1]. We use boundary conditions

∂u

∂x
(0, t) + u(0, t) = 0 ,

u(1, t) = e−(3π/2)
2t ,

for t > 0.

More General Boundary Conditions — Comparison

10 1 10 2 10 3

N

10 -6

10 -5

10 -4

10 -3

10 -2

10 -1

10 0

M
a

x
 e

rr
o

r
a

t
t=

0
.2

5
ficticious node

forward difference

O(x
2

)

O(x)

Method of Lines
What we have done above is to use the method of lines where we
first discretise in space to get a system of ODEs and then use a
numerical method to solve the ODEs.

So for the 1D heat equation, with homogeneous Dirichlet boundary
conditions we can discretise in space using the standard finite
difference scheme to get

dUj(t)

dt
=

Uj+1(t)− 2Uj(t) + Uj−1(t)

∆x2

for j = 1, . . . ,N − 1 and with U0(t) = UN(t) = 0. We can re-write
this as a system of ODEs of the form

dU

dt
= AU

with initial condition U(0) = u0(x).

There is no reason why the spatial discretisation should be via a
finite difference scheme — this could be replaced by a finite
element method or a spectral method or . . .

