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BO1 History of Mathematics
Lecture IX

Classical algebra: equation solving
1800BC –AD1800

MT 2021 Week 4
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Summary

Part 1

▶ Early quadratic equations

▶ Cubic and quartic equations

▶ Further 16th-century developments

Part 2

▶ 17th century ideas

▶ 18th century ideas

▶ Looking back
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Completing the square, c. 1800BC

A Babylonian scribe, clay tablet BM
13901, c. 1800BC:

A reciprocal exceeds its reciprocal by

7. What are the reciprocal and its

reciprocal? Break in half the 7 by

which the reciprocal exceeds its

reciprocal, and 3 1
2 will come up.

Multiply 3 1
2 by 3 1

2 and 12 1
4 will

come up. Append 60, the area, to

the 12 1
4 which came up for you and

72 1
4 will come up. What is the

square-side of 72 1
4? 8 1

2 . Put down

8 1
2 and 8 1

2 and subtract 3 1
2 from

one of them; append 3 1
2 to one of

them. One is 12, the other is 5. The

reciprocal is 12, its reciprocal 5.
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Points to note

▶ We have used the word ‘equation’ without writing down
anything in symbols

▶ Solution recipe derived from geometrical insight

▶ Not (explicitly) a general solution — but reader ought to be
able to adapt the method

▶ Is this algebra? Geometrical algebra?
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Diophantus of Alexandria (3rd century AD)

Problem I.27: Find two numbers
such that their sum and product
are given numbers
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Muh.ammad ibn Mūsā al-Khwārizm̄ı (c. 780–c. 850)

Noted six cases of equations:

1. Squares are equal to roots
(ax2 = bx)

2. Squares are equal to numbers
(ax2 = c)

3. Roots are equal to numbers
(bx = c)

4. Squares and roots are equal to
numbers (ax2 + bx = c)

5. Squares and numbers are equal to
roots (ax2 + c = bx)

6. Roots and numbers are equal to
squares (bx + c = ax2)
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Muh.ammad ibn Mūsā al-Khwārizm̄ı (c. 780–c. 850)

An algorithm for case (4) on
the previous slide



D
r.
B
rig
it
te
St
en
ho
us
e,
M
at
he
m
at
ic
al
In
st
it
ut
e,
O
xf
or
d

D
r.
B
rig
it
te
St
en
ho
us
e,
M
at
he
m
at
ic
al
In
st
it
ut
e,
O
xf
or
d

Leonardo of Pisa (Fibonacci) (c. 1175–c. 1240/50)

Liber abaci (or Liber abbaci),
Pisa, 1202:

▶ included al-Khwārizmi’s
recipes

▶ geometrical demonstrations
and lots of examples

▶ didn’t go very far beyond
predecessors, but began
transmission of Islamic ideas
to Europe
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Cubic equations (1)

Italy, early 16th century:

solutions to cubics of the form x3 + px = q

▶ found by Scipione del Ferreo (or Ferro) (c. 1520)

▶ taught to Antonio Maria Fiore (pupil)

▶ and Annibale della Nave (son-in-law)

▶ rediscovered by Niccolò Tartaglia (1535)

▶ passed in rhyme to Girolamo Cardano (1539)
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Cubic equations (2)

x3 + px = q

When the cube with the things next after
Together equal some number apart
Find two others that by this differ
And this you will keep as a rule

That their product will always be equal
To a third cubed of the number of things
The difference then in general between
The sides of the cubes subtracted well

Will be your principal thing.

(Tartaglia, 1546; see: Mathematics emerging, §12.1.1)
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Cubic equations (3)

x3 + px = q

When the cube with the things next after
Together equal some number apart
Find two others that by this differ
And this you will keep as a rule
That their product will always be equal
To a third cubed of the number of things
The difference then in general between
The sides of the cubes subtracted well

Will be your principal thing.

Interpretation of Tartaglia’s rhyme:

Find u, v such that

u − v = q, uv =
(p
3

)3
.

Then
x = 3

√
u − 3

√
v

NB: In an equation
y3 + ay2 + by + c = 0 we can put
y = x − a

3 to remove the square
term, so this solution is general.
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To a third cubed of the number of things
The difference then in general between
The sides of the cubes subtracted well

Will be your principal thing.

Interpretation of Tartaglia’s rhyme:

Find u, v such that

u − v = q, uv =
(p
3

)3
.

Then
x = 3

√
u − 3

√
v

NB: In an equation
y3 + ay2 + by + c = 0 we can put
y = x − a

3 to remove the square
term, so this solution is general.
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Cubic equations (4)

In modern terms, one of the solutions of the equation
ax3 + bx2 + cx + d = 0 has the form

x =
3

√√√√√(−
b3

27a3
+

bc

6a2
−

d

2a

)
+

√√√√(−
b3

27a3
+

bc

6a2
−

d

2a

)2

+

(
c

3a
−

b2

9a2

)3

+
3

√√√√√(−
b3

27a3
+

bc

6a2
−

d

2a

)
−

√√√√(−
b3

27a3
+

bc

6a2
−

d

2a

)2

+

(
c

3a
−

b2

9a2

)3

−
b

3a

with similar expressions (in radicals) for the remaining two roots
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Cardano’s Ars magna, sive de regulis algebraicis (1545)
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Cardano’s Ars magna, sive de regulis algebraicis (1545)
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Cardano on the cubic

▶ Geometrical justification
remains

▶ General solution (to
particular case), rather than
example to be followed

▶ Make substitution x = y − a
3

in y3 + ax2 + bx + c = d to
suppress square term and
obtain equation of the form
x3+ px = q — manipulation
of equations prior to solution
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Quartic equations (1)

General solution discovered
(again on a case-by-case
basis) by Lodovico Ferrari
(c. 1540) and published by
Cardano, in the form of
worked examples, alongside
solution of cubic
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Quartic equations (2)

In modern terms, suppose that

x4 = px2 + qx + r .

Add 2yx2 + y2 to each side to give

(x2 + y)2 = (p + 2y)x2 + qx + (r + y2).

Now we seek y such that the right hand side is a perfect square:

8y3 + 4py2 + 8ry + (4pr − q2) = 0.

So the problem is reduced to solving a cubic equation and then a
quadratic.

NB: In an equation y4 + ay3 + by2 + cy + d = 0 we can put
y = x − a

4 to remove the cube term, so this solution is general.
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Quartic equations (3)

Formulae for the solutions of the general quartic equation, in all
their unedifying glory, may be found at:

http://planetmath.org/QuarticFormula

Cardano’s Ars Magna may also be found online here

http://planetmath.org/QuarticFormula
http://lhldigital.lindahall.org/cdm/compoundobject/collection/math/id/8265/rec/16
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Further 16th-century developments

Rafael Bombelli, L’algebra (1572):

▶ heavily influenced by Cardano

▶ equation solving, new notation

▶ exploration of complex numbers

[to be dealt with in a later lecture]



D
r.
B
rig
it
te
St
en
ho
us
e,
M
at
he
m
at
ic
al
In
st
it
ut
e,
O
xf
or
d

D
r.
B
rig
it
te
St
en
ho
us
e,
M
at
he
m
at
ic
al
In
st
it
ut
e,
O
xf
or
d

Further 16th-century developments

Simon Stevin, L’arithmetique ... aussi
l’algebre (1585):

▶ heavily influenced by Cardano
through Bombelli

▶ appended his treatise on decimal
notation
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Further 16th-century developments

François Viète (1590s):

▶ links between algebra and
geometry

▶ (algebra as ‘analysis’ or
‘analytic art’)

▶ notation [recall Lecture III]

▶ numerical methods for solving
equations
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Thomas Harriot (c. 1600)

Add MS 6783 f. 176

Note:

▶ notation [see lecture III];

▶ appearance of
polynomials as products
of linear factors.

http://echo.mpiwg-berlin.mpg.de/ECHOdocuView?url=/mpiwg/online/permanent/library/VWXURW4V&start=351&viewMode=image&pn=351
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Thomas Harriot (1631)

Some of Harriot’s ideas found
their way into his Artis
analyticae praxis (The
practice of the analytic art),
published posthumously in
1631

But editors did not permit
negative or imaginary roots
[to be discussed further in a
later lecture]

See Mathematics emerging,
§12.2.1.
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Commentary on Harriot

Charles Hutton, A mathematical and
philosophical dictionary, London,
1795, vol. 1, p. 91 (p. 96 of revised
edition, 1815):

He shewed the universal generation
of all the compound or affected
equations, by the continual
multiplication of so many simple
ones; thereby plainly exhibiting to
the eye the whole circumstances of
the nature, mystery and number of
the roots of equations; with the
composition and relations of the
coefficients of the terms; . . .
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Part 2: Theory of Equations
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Algebra in the 17th century

From 1600 onwards, ‘algebra’ as a set of recipes and techniques
began to diverge in two (linked) directions:

▶ ‘algebra’ as a tool or a language (a.k.a. ‘analysis’ or the
‘analytic art’)

▶ ‘algebra’ as an object of study in its own right (the ‘theory of
equations’)
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Descartes on algebra

Polynomials feature in Descartes’ La géométrie (1637),

e.g.:

▶ one example to show that polynomials can be constructed
from their roots (influenced by Harriot?);

▶ ‘rule of signs’: the number of positive (‘true’) roots of a
polynomial is at most the number of times that the sign
changes as we read term-by-term; the number of negative
(‘false’) roots is at most the number of successions of the
same sign; for example,

x4 − 4x3 − 19xx + 106x − 120 = 0

has at most 3 positive roots and at most one negative;

▶ can always make a transformation to remove the
second-highest term.
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Descartes on cubics

Search for roots of a cubic
by examining the factors of
the constant term:

if α is such a factor, test
whether x − α divides the
polynomial.

Examines the example

y6 − 8y4 − 124y2 − 64 = 0
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Descartes on quartics

To solve +x4 ⋆ .pxx .qx .r = 0
(Descartes’ notation),

that is,

x4 ± pxx ± qx ± r = 0 ,

he sought to write the quartic
as a product of two
quadratics. This led him to

y6±2py4+(pp±4r)yy−qq = 0

As in Ferrari’s/Cardano’s
method: a quartic is reduced
to a cubic
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Summary and a glance ahead

By 1600, general solutions were available for quadratic, cubic and
quartic equations — specifically, general solutions in radicals, i.e.,
solutions constructed from the coefficients of a given polynomial
equation via +, −, ×, ÷,

√
, 3
√
, 4
√
, . . .

NB: A solution in radicals may be constructed by ruler and
compass.

Spoiler: the general quintic equation is not solvable in radicals.

By the 1770s, mathematicians (notably Lagrange) had come to
suspect this, but it was not proved until the 1820s.

So did anything interesting happen in algebra during the 17th and
18th centuries?
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A typical 20th-century view

Luboš Nový, Origins of modern algebra (1973), p. 23:

From the propagation of Descartes’ algebraic knowledge up
to the publication of the important works of Lagrange [and
others] in the years 1770–1, the evolution of algebra was,
at first glance, hardly dramatic and one would seek in vain
for great and significant works of science and substantial
changes.

Fair point? Or not?
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Some 17th-century developments: Hudde’s rule (1657)
Published 1659 as an addendum to van
Schooten’s Latin translation of
Descartes’ La géométrie:

x3 − 4xx +5x − 2 = 0 has a double root
x = 1;

multiply the terms of the equation by
numbers in arithmetic progression:

3x3 − 8xx + 5x = 0 also has a double
root x = 1,

as does −4xx + 10x − 6 = 0.

(Modern form of rule: if r is a double
root of f (x) = 0, then it is a root of
f ′(x) = 0 also.)

See Mathematics emerging, §12.2.2.
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Some 17th-century developments: Tschirnhaus
transformations (1683)

For an equation x3 − px2 + qx − r = 0

▶ to remove one term put x = y + a
(where a = p/3)

▶ can we remove both the middle
terms?

▶ to remove two terms put
x2 = bx + y + a

See Mathematics emerging, §12.2.3.
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An 18th-century development: Newton’s Arithmetica
universalis (1707)

Rules for sums of powers of roots of

xn−pxn−1+qxn−2−rxn−3+sxn−4−· · · = 0

sum of roots = p
sum of roots2 = pa− 2q
sum of roots3 = pb − qa+ 3r
sum of roots4 = pc − qb + ra− 4s
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Developments of the 17th and 18th centuries

▶ Symbolic notation

▶ Understanding of the structure of polynomials

▶ . . . of the number and nature of their roots

▶ . . . of the relationship between roots and coefficients

▶ . . . of how to manipulate them

▶ . . . of how to solve them numerically

▶ The leaving behind of geometric intuition?
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Some 18th-century theory of equations

Recall:

▶ cubic equations can be solved by means of quadratics

▶ quartic equations can be solved by means of cubics

The ‘reduced’ or ‘resolvent’ equation:

for cubics, the reduced equation is of degree 2

for quartics, the reduced equation is of degree 3

for quintics, the reduced equation is of degree ?
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The ‘reduced’ or ‘resolvent’ equation:

for cubics, the reduced equation is of degree 2

for quartics, the reduced equation is of degree 3

for quintics, the reduced equation is of degree ?
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Some 18th-century hypotheses

Euler’s hypothesis (1733):

▶ for an equation of degree n the degree of the reduced
equation will be n − 1

Bézout’s hypothesis (1764):

▶ for an equation of degree n the degree of the reduced
equation will in general be n!

▶ though always reducible to (n − 1)!

▶ possibly further reducible to (n − 2)!
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Bézout’s hypothesis (1764):

▶ for an equation of degree n the degree of the reduced
equation will in general be n!

▶ though always reducible to (n − 1)!

▶ possibly further reducible to (n − 2)!



D
r.
B
rig
it
te
St
en
ho
us
e,
M
at
he
m
at
ic
al
In
st
it
ut
e,
O
xf
or
d

D
r.
B
rig
it
te
St
en
ho
us
e,
M
at
he
m
at
ic
al
In
st
it
ut
e,
O
xf
or
d

Some 18th-century hypotheses

Euler’s hypothesis (1733):

▶ for an equation of degree n the degree of the reduced
equation will be n − 1

Bézout’s hypothesis (1764):

▶ for an equation of degree n the degree of the reduced
equation will in general be n!

▶ though always reducible to (n − 1)!

▶ possibly further reducible to (n − 2)!



D
r.
B
rig
it
te
St
en
ho
us
e,
M
at
he
m
at
ic
al
In
st
it
ut
e,
O
xf
or
d

D
r.
B
rig
it
te
St
en
ho
us
e,
M
at
he
m
at
ic
al
In
st
it
ut
e,
O
xf
or
d

Lagrange’s ‘Réflexions’ 1770/71

J.-L. Lagrange, ‘Réflexions sur la résolution algébrique des
équations’, Berlin (1770/1):

Examined all known methods of solving

▶ quadratics: the well-known solution

▶ cubics: methods of Cardano, Tschirnhaus, Euler, Bézout

▶ quartics: methods of Cardano, Descartes, Tschirnhaus, Euler,
Bézout

seeking to identify a uniform method that could be extended to
higher degree
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A typical 20th-century view revisited

Luboš Nový, Origins of modern algebra (1973), p. 23:

From the propagation of Descartes’ algebraic knowledge up
to the publication of the important works of Lagrange [and
others] in the years 1770–1, the evolution of algebra was,
at first glance, hardly dramatic and one would seek in vain
for great and significant works of science and substantial
changes.
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Filling a gap in the history of algebra (2011)

The hitherto untold story
of the slow and halting
journey from Cardano’s
solution recipes to
Lagrange’s sophisticated
considerations of
permutations and
functions of the roots of
equations . . . [Preface]



D
r.
B
rig
it
te
St
en
ho
us
e,
M
at
he
m
at
ic
al
In
st
it
ut
e,
O
xf
or
d

D
r.
B
rig
it
te
St
en
ho
us
e,
M
at
he
m
at
ic
al
In
st
it
ut
e,
O
xf
or
d

From Stedall’s preface:

This assertion . . . from Nový quoted above, betrays yet
another fundamental shortcoming of several earlier ac-
counts, a view that mathematics somehow progresses only
by means of ‘great and significant works’ and ‘substantial
changes’.

Fortunately, the truth is far more subtle and far
more interesting: mathematics is the result of a cumula-
tive endeavour to which many people have contributed,
and not only through their successes but through half-
formed thoughts, tentative proposals, partially worked so-
lutions, and even outright failure. No part of mathematics
came to birth in the form that it now appears in a modern
textbook: mathematical creativity can be slow, sometimes
messy, often frustrating.
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