BO1 History of Mathematics
Lecture IX
Classical algebra: equation solving 1800BC - AD1800

MT 2021 Week 4

## Summary

## Part 1

- Early quadratic equations
- Cubic and quartic equations
- Further 16th-century developments

Part 2

- 17th century ideas
- 18th century ideas
- Looking back


## Completing the square, c. 1800 BC



## Completing the square, c. 1800 BC



A Babylonian scribe, clay tablet BM 13901, c. 1800 BC:

A reciprocal exceeds its reciprocal by
7. What are the reciprocal and its reciprocal?

## Completing the square, c. 1800 BC



A Babylonian scribe, clay tablet BM 13901, c. 1800 BC:

A reciprocal exceeds its reciprocal by
7. What are the reciprocal and its reciprocal? Break in half the 7 by which the reciprocal exceeds its reciprocal, and $3 \frac{1}{2}$ will come up.

## Completing the square, c. 1800 BC



A Babylonian scribe, clay tablet BM 13901, c. 1800 BC:

A reciprocal exceeds its reciprocal by
7. What are the reciprocal and its reciprocal? Break in half the 7 by which the reciprocal exceeds its reciprocal, and $3 \frac{1}{2}$ will come up. Multiply $3 \frac{1}{2}$ by $3 \frac{1}{2}$ and $12 \frac{1}{4}$ will come up.

## Completing the square, c. 1800 BC



A Babylonian scribe, clay tablet BM 13901, c. 1800 BC:

A reciprocal exceeds its reciprocal by
7. What are the reciprocal and its reciprocal? Break in half the 7 by which the reciprocal exceeds its reciprocal, and $3 \frac{1}{2}$ will come up. Multiply $3 \frac{1}{2}$ by $3 \frac{1}{2}$ and $12 \frac{1}{4}$ will come up. Append 60, the area, to the $12 \frac{1}{4}$ which came up for you and $72 \frac{1}{4}$ will come up.

## Completing the square, c. 1800 BC



A Babylonian scribe, clay tablet BM 13901, c. 1800 BC:

A reciprocal exceeds its reciprocal by
7. What are the reciprocal and its reciprocal? Break in half the 7 by which the reciprocal exceeds its reciprocal, and $3 \frac{1}{2}$ will come up. Multiply $3 \frac{1}{2}$ by $3 \frac{1}{2}$ and $12 \frac{1}{4}$ will come up. Append 60, the area, to the $12 \frac{1}{4}$ which came up for you and $72 \frac{1}{4}$ will come up. What is the square-side of $72 \frac{1}{4}$ ?

## Completing the square, c. 1800 BC



A Babylonian scribe, clay tablet BM 13901, c. 1800 BC:

A reciprocal exceeds its reciprocal by
7. What are the reciprocal and its reciprocal? Break in half the 7 by which the reciprocal exceeds its reciprocal, and $3 \frac{1}{2}$ will come up. Multiply $3 \frac{1}{2}$ by $3 \frac{1}{2}$ and $12 \frac{1}{4}$ will come up. Append 60, the area, to the $12 \frac{1}{4}$ which came up for you and $72 \frac{1}{4}$ will come up. What is the square-side of $72 \frac{1}{4}$ ? $8 \frac{1}{2}$.

## Completing the square, c. 1800 BC



A Babylonian scribe, clay tablet BM 13901, c. 1800 BC:

A reciprocal exceeds its reciprocal by
7. What are the reciprocal and its reciprocal? Break in half the 7 by which the reciprocal exceeds its reciprocal, and $3 \frac{1}{2}$ will come up. Multiply $3 \frac{1}{2}$ by $3 \frac{1}{2}$ and $12 \frac{1}{4}$ will come up. Append 60, the area, to the $12 \frac{1}{4}$ which came up for you and $72 \frac{1}{4}$ will come up. What is the square-side of $72 \frac{1}{4}$ ? $8 \frac{1}{2}$. Put down $8 \frac{1}{2}$ and $8 \frac{1}{2}$ and subtract $3 \frac{1}{2}$ from one of them;

## Completing the square, c. 1800 BC



A Babylonian scribe, clay tablet BM 13901, c. 1800 BC:

A reciprocal exceeds its reciprocal by
7. What are the reciprocal and its reciprocal? Break in half the 7 by which the reciprocal exceeds its reciprocal, and $3 \frac{1}{2}$ will come up. Multiply $3 \frac{1}{2}$ by $3 \frac{1}{2}$ and $12 \frac{1}{4}$ will come up. Append 60, the area, to the $12 \frac{1}{4}$ which came up for you and $72 \frac{1}{4}$ will come up. What is the square-side of $72 \frac{1}{4}$ ? $8 \frac{1}{2}$. Put down $8 \frac{1}{2}$ and $8 \frac{1}{2}$ and subtract $3 \frac{1}{2}$ from one of them; append $3 \frac{1}{2}$ to one of them.

## Completing the square, c. 1800 BC



A Babylonian scribe, clay tablet BM 13901, c. 1800 BC:

A reciprocal exceeds its reciprocal by
7. What are the reciprocal and its reciprocal? Break in half the 7 by which the reciprocal exceeds its reciprocal, and $3 \frac{1}{2}$ will come up. Multiply $3 \frac{1}{2}$ by $3 \frac{1}{2}$ and $12 \frac{1}{4}$ will come up. Append 60, the area, to the $12 \frac{1}{4}$ which came up for you and $72 \frac{1}{4}$ will come up. What is the square-side of $72 \frac{1}{4}$ ? $8 \frac{1}{2}$. Put down $8 \frac{1}{2}$ and $8 \frac{1}{2}$ and subtract $3 \frac{1}{2}$ from one of them; append $3 \frac{1}{2}$ to one of them. One is 12 , the other is 5 . The reciprocal is 12 , its reciprocal 5 .

## Completing the square, c. 1800 BC



A Babylonian scribe, clay tablet BM 13901, c. 1800 BC:

A reciprocal exceeds its reciprocal by
7. What are the reciprocal and its reciprocal? Break in half the 7 by which the reciprocal exceeds its reciprocal, and $3 \frac{1}{2}$ will come up. Multiply $3 \frac{1}{2}$ by $3 \frac{1}{2}$ and $12 \frac{1}{4}$ will come up. Append 60, the area, to the $12 \frac{1}{4}$ which came up for you and $72 \frac{1}{4}$ will come up. What is the square-side of $72 \frac{1}{4}$ ? $8 \frac{1}{2}$. Put down $8 \frac{1}{2}$ and $8 \frac{1}{2}$ and subtract $3 \frac{1}{2}$ from one of them; append $3 \frac{1}{2}$ to one of them. One is 12 , the other is 5 . The reciprocal is 12 , its reciprocal 5 .

## Points to note

- We have used the word 'equation' without writing down anything in symbols


## Points to note

- We have used the word 'equation' without writing down anything in symbols
- Solution recipe derived from geometrical insight


## Points to note

- We have used the word 'equation' without writing down anything in symbols
- Solution recipe derived from geometrical insight
- Not (explicitly) a general solution - but reader ought to be able to adapt the method


## Points to note

- We have used the word 'equation' without writing down anything in symbols
- Solution recipe derived from geometrical insight
- Not (explicitly) a general solution - but reader ought to be able to adapt the method
- Is this algebra? Geometrical algebra?


## Diophantus of Alexandria (3rd century AD)

'Arithmeticorum Liber I.
47







IN शVAESTIONEM XXVI.
 Qpit folutiones, \& fideterminanda fitad vnicam, praferibendus eft numerus in quo heridebetzqualitas, tuncque operabimur vtin precedente traditum eit. Quod quia fiinuenti femel numeri quaftioni fatisfacientes, per eundem multiplicentur vel dividantur, productainidem \& quotientes quaftionem foluent, culus rei ratio efl quam attingitXilander, quia feilicet quaxfiti numeri, partes proportionales viciffim dant \& accipiunt, qua autem partium cognominum cadem totorum inter fe, ac viciflim eftratio. Vnde etiam colligi poteft alius modus foluendi huiufmodi quarftiones, cùm numerusprafcribiturin quo fiat zqualitas. Nime fi quartio prius foluato per operationem Diophanti, \& numerus in quo fitaqualitas diuidarur per cum qui praicribitur, \& per quotientem diuidantur item inventı numeri per operationem Diophanti, habebuntur quazin numeri. Verbi gratia,
ridantes \&uzrantur quecipientes qualdem partes quas requirit Diophantus, ita vt facta contributionequilibetreperiatur $59 \div$ folues priusquaftionemcum Diophanto, \& inue mies numeros 150. 91. 120.114. Etnumerus in quo fit xqualitas eriting. Hunc ergo fi diuidas pernumerum praicriptum $\$ 9 . \frac{1}{\div}$ crix quotiens 2 . per quena fi dividas $f$ igillatim inuentos numeros, fient 75 - 46. 60. 97 . qux fifitinumeri. Poffer eciam tam hxc quam pracedesp pauld aliter proponi, requirendo fcilicet vt facta murua contrimeri, vt primus dando fuit trientem \& accipiendofextantem quarti fiat 6.Secundus meri, ve fuiquadrantem, \& accipiendo trientem primi fat 7 . Tertius dando fuiquintandem, \&c accipiendoquadrantemfecundi fiat 14. Quartus dando fuifextantem, \& recipiendoquintante tertij, fiat 23 . Ettunc imitabimur artificium operationis quarad pracedentê rradita eft, hocmodo.Ponatur primus 3 N.cum ergo multatus fuo triente \& andusfextante quarti faciat 6.erit $6-2 \mathrm{~N}$. fextans quarti, \& ipfequartus $3^{6-12}$ N . vide ablato fexcante, manent 30 . -10 N . quaz cum quincante tertij debent facere 23 . Igitur quintans terije eft $10 \mathrm{~N} .-7$. Ideoque ipfe tertiuseft 50 N .
quimultatus quintante maner $40 \mathrm{~N}-18$. debetque tunc cum quadrante fec quimultatus quintante manet $40 \mathrm{~N}-28$. debetque tuinc cum quadrante fecundi
 7. fed faciunt $126-119$ N. hocergo $x q u a t u r ~ 7$. \& fit I N. I. Ad pofitiones primus eft 3 .lecundus 8.terties is quartus 24

QVASTIO XXVII.
Nyeniretres numeros ve
quiliber à reliquis duobus coniunctis partem imperatam accipiat, \& fiant aquales. Stafutum fit primum à reliquis






> Problem I.27: Find two numbers such that their sum and product are given numbers

## Muḥammad ibn Mūsā al-Khwārizmī (c. 780-c. 850)

Noted six cases of equations:

1. Squares are equal to roots $\left(a x^{2}=b x\right)$
2. Squares are equal to numbers $\left(a x^{2}=c\right)$
3. Roots are equal to numbers $(b x=c)$
4. Squares and roots are equal to numbers $\left(a x^{2}+b x=c\right)$
5. Squares and numbers are equal to roots $\left(a x^{2}+c=b x\right)$
6. Roots and numbers are equal to squares $\left(b x+c=a x^{2}\right)$

## Muḥammad ibn Mūsā al-Khwārizmī (c. 780-c. 850)



An algorithm for case (4) on the previous slide

## Leonardo of Pisa (Fibonacci) (c. 1175-c. 1240/50)

## Liber abaci (or Liber abbaci),

 Pisa, 1202:- included al-Khwārizmi's recipes
- geometrical demonstrations and lots of examples
- didn't go very far beyond predecessors, but began transmission of Islamic ideas to Europe


 tariz gemmit alat wry
 - Semmait hlat jomit


Th 4
 (2)
 енテ̂
 iीg









 hift गFiot 77 Aㄷut'qं


















## Cubic equations (1)

Italy, early 16th century:
solutions to cubics of the form $x^{3}+p x=q$

## Cubic equations (1)

Italy, early 16th century:
solutions to cubics of the form $x^{3}+p x=q$

- found by Scipione del Ferreo (or Ferro) (c. 1520)


## Cubic equations (1)

Italy, early 16th century:
solutions to cubics of the form $x^{3}+p x=q$

- found by Scipione del Ferreo (or Ferro) (c. 1520)
- taught to Antonio Maria Fiore (pupil)


## Cubic equations (1)

Italy, early 16th century:
solutions to cubics of the form $x^{3}+p x=q$

- found by Scipione del Ferreo (or Ferro) (c. 1520)
- taught to Antonio Maria Fiore (pupil)
- and Annibale della Nave (son-in-law)


## Cubic equations (1)

Italy, early 16th century:
solutions to cubics of the form $x^{3}+p x=q$

- found by Scipione del Ferreo (or Ferro) (c. 1520)
- taught to Antonio Maria Fiore (pupil)
- and Annibale della Nave (son-in-law)
- rediscovered by Niccolò Tartaglia (1535)


## Cubic equations (1)

Italy, early 16th century:
solutions to cubics of the form $x^{3}+p x=q$

- found by Scipione del Ferreo (or Ferro) (c. 1520)
- taught to Antonio Maria Fiore (pupil)
- and Annibale della Nave (son-in-law)
- rediscovered by Niccolò Tartaglia (1535)
- passed in rhyme to Girolamo Cardano (1539)


## Cubic equations (2)

$x^{3}+p x=q$
When the cube with the things next after
Together equal some number apart
Find two others that by this differ
And this you will keep as a rule
That their product will always be equal
To a third cubed of the number of things
The difference then in general between
The sides of the cubes subtracted well Will be your principal thing.
(Tartaglia, 1546; see: Mathematics emerging, §12.1.1)

## Cubic equations (3)

## $x^{3}+p x=q$

When the cube with the things next after
Together equal some number apart
Find two others that by this differ
And this you will keep as a rule
That their product will always be equal
To a third cubed of the number of things
The difference then in general between
The sides of the cubes subtracted well
Will be your principal thing.

## Cubic equations (3)

## Interpretation of Tartaglia's rhyme:

Find $u, v$ such that

$$
u-v=q
$$

When the cube with the things next after
Together equal some number apart
Find two others that by this differ
And this you will keep as a rule
That their product will always be equal
To a third cubed of the number of things
The difference then in general between
The sides of the cubes subtracted well
Will be your principal thing.

## Cubic equations (3)

## Interpretation of Tartaglia's rhyme:

## Find $u, v$ such that

$$
u-v=q, \quad u v=\left(\frac{p}{3}\right)^{3} .
$$

When the cube with the things next after
Together equal some number apart
Find two others that by this differ
And this you will keep as a rule
That their product will always be equal
To a third cubed of the number of things
The difference then in general between
The sides of the cubes subtracted well
Will be your principal thing.

## Cubic equations (3)

## Interpretation of Tartaglia's rhyme:

## Find $u, v$ such that

$$
u-v=q, \quad u v=\left(\frac{p}{3}\right)^{3}
$$

Then

$$
x=\sqrt[3]{u}-\sqrt[3]{v}
$$

## Cubic equations (3)

Interpretation of Tartaglia's rhyme:
Find $u, v$ such that

$$
u-v=q, \quad u v=\left(\frac{p}{3}\right)^{3}
$$

Then

$$
x=\sqrt[3]{u}-\sqrt[3]{v}
$$

NB: In an equation
$y^{3}+a y^{2}+b y+c=0$ we can put $y=x-\frac{a}{3}$ to remove the square term, so this solution is general.

## Cubic equations (4)

In modern terms, one of the solutions of the equation $a x^{3}+b x^{2}+c x+d=0$ has the form

$$
\begin{aligned}
x= & \sqrt[3]{\left(-\frac{b^{3}}{27 a^{3}}+\frac{b c}{6 a^{2}}-\frac{d}{2 a}\right)+\sqrt{\left(-\frac{b^{3}}{27 a^{3}}+\frac{b c}{6 a^{2}}-\frac{d}{2 a}\right)^{2}+\left(\frac{c}{3 a}-\frac{b^{2}}{9 a^{2}}\right)^{3}}} \\
& +\sqrt[3]{\left(-\frac{b^{3}}{27 a^{3}}+\frac{b c}{6 a^{2}}-\frac{d}{2 a}\right)-\sqrt{\left(-\frac{b^{3}}{27 a^{3}}+\frac{b c}{6 a^{2}}-\frac{d}{2 a}\right)^{2}+\left(\frac{c}{3 a}-\frac{b^{2}}{9 a^{2}}\right)^{3}}}-\frac{b}{3 a}
\end{aligned}
$$

with similar expressions (in radicals) for the remaining two roots

## Cardano's Ars magna, sive de regulis algebraicis (1545)

## HIERONYMI CAR

DANI, PRASTANTISSIMI MATHE.
ARTIS MAGNÆ,
SIVE DE REGVLIS ALGEBRAICIS.
Lib.umus. Qui \&́ totius operis de Arithmetica, quod.
OPVS PERFECTVM infcripfityeft in ordine Decimus.

 Hos uocant) nouis adinuentionikus, ac cdemonftrationmbus ab Aultriore ita
 2ut tres uni qquales fiucrint, nodum explicants, Hunc aär lihrum ideo feor: fime edrereplacuit, ,ut hoc abffrrufifisimo, \& plané inexhauffo orotius Arithmeti cx chefauro in lucem eruro, $\$$ Q quafi in theatro quodam omnibus ad fpettan dum expofito, Lectores incitarètur, ur reliquos Operis Perfectilibros, quiper
Tomosedentur, tanto auidius amplectannur,ac minoref faftidio perdifento

## Cardano's Ars magna, sive de regulis algebraicis (1545)

## HIERONYMI CAR

DANI, PRASTANTISSIMI MATHE.

## ARTIS MAGNAE,

SIVE DE REGVLIS ALGEBRAICIS,
Lib.unus. Qui \&'totius opcris de Arithmetica, quod.
OPVS PERFECTVM infcripfit,eft in ordine Decimus.


H
Abesin hoo libro,ftudiofe Lector,Regulay Algelraicas (Teali, de la Cof


 fim edrerephacuit, ,t bhoc abffrufísimo, \& plane inexhauffo torius Arithmeti «x thefauro in lucem eruuro, \&Q quafi in theatro quodam omnibus ad fpectan dume expolito, Leetores in Tomosedentur, tanto zuidius amplettannur, ac minoze faftidio perdifanto

## Hieronymi Cardani

3
4 Numerus \& pofitio, \& ignota quantitas.
Numerus \& व̆dratū politionis, \&ignota quantitas, feunumerus
 quantitatis ignora, ceu numerus \& productum ex pofitione in quans titatem ignotam, cum altera earum, ucl cum $\bar{q} d r a t o ~ u n i u s ~ c a r u m . ~ . ~$

Capitula primitiua.
Capitula deriuatiua.
 \& rebus. $\quad 2$ Numerus æqualis cu'c d' \& cub'.
 quad \& . ${ }^{\prime}$ equalia 4 Numerus $\&$ cub xqles cubqd. 3 Numerus $\&$ q̆d equalia 5 Numerus $\& \overline{\text { g̣d }} \bar{q} d$ xqualia $\bar{d} d$. 4 Numerus $x q u a l i s ~ c u b o ~>~ N u m e r u s ~ a \bar{q} l i s ~ \bar{q} d^{\prime} \&$ cub' $\bar{q} d^{\prime}$. \& rebus. $\quad 8$ Numerus $x q$ qlis cub' \& cubo cubi. ${ }_{5}$ Numerus \& res aquaz lía cubis.
$6 \mathrm{~N}, 210$ Numerus \& cub' aq̃lia cub'cub'

$\rightarrow$ Numerus \& cub' eğlia 13 Nu" \& 'cub'cub' xeglia cub' $e q^{\circ}{ }^{\circ} \mathrm{prr}^{2}$.
 rebus $¢ q^{\circ}$ fecunda. $\left\{14 \mathrm{Nu}^{\prime \prime}\right.$ Scub cub eqqliacub' $\varphi q^{\circ}{ }^{\circ}$ fecudd ${ }^{2}$.
 \&cubo. $\{16$ Numerus eqqlis culsăd'\& cubcubi.
 aquualia cubo. 10 Numerus \& cub' eălia 18 Numerus \& cub'çd eq̧lia cub'cubi.
 1) Numerus \& cub cō
 ${ }_{12}$ Numerus çălis rebus
 पdrato \& cubo,



 qqualia cubo.





## Cardano on the cubic



## Cardano on the cubic



- Geometrical justification remains


## Cardano on the cubic

Hieronymi Cardani
relinguiturprima $6 \mathrm{~m}: \mathrm{R}\left\{30 \frac{6}{7} \mathrm{ha}\right.$ autem quantitates proportionales funt, \&x quadratum fecundx eft aquale duplo producti fecundx' in primam,cum quadruplo primx, ur proponcbatur.

De cubo \& r rebus xqualibus numero. Cap. XI,


- Geometrical justification remains
- General solution (to particular case), rather than example to be followed


## Cardano on the cubic

## Hieronymi Cardani

relinquiturprima $6 \mathrm{~m}: \mathrm{Re}^{2} 30 \frac{6}{7}$ h h autem quantitates proportionales funt, \&x quadratum fecundx eft aquale duplo producti fecundx' in primam,cum quadruplo primx, ur proponebatur.

De cubo \& rebus xqualibus numero. Cap. XI.
Cipio Ferreus Bononienfis iam annis ab hine criginta fer
mé capitulum hoc inuenit, tradidit uero Anthonio May
riax Florido Venero, qui cū in certamen cü Nicolao Tara
sused talea Brixellenfe aliquando ueniffet, occafionem dedit, u
Nicolaus inuenerit \& ipfe, qui cum nobis rogantibus tradidiffer, fup
prefla demonitratione, freti hocauxilio, demonftrarionem quafiui
mus, eamq; in modos, quod difficillınum furit, redactam fic fubiccia
mus.
Demonstratio,
Sit igitur exempli caufa cubus н H \& fexcuplum lateris o н aquz
le $20, \mathcal{X}$ ponam duos cubos $A$ \& $\& \subset \subset \subset$, quorum difterentia fit 20 , ita
cquod productum a c lareris, in C к latus,
in 2 , tertia falicet numeri rerum pars, $\alpha$
abfindam C B, xqualem C K, dico, quod fi
ita fucrit, lincam A a refiduum, cffe xquar
km G, \& ideo rei aftimationem, nam de
द н iam fupponebarur, quod ita effet, perf
ficiam iotur per modum primi fuppof
fe copinli huius libri, corpora D A DC De - capirper c ciurelligamus cubum B $\mathrm{C}, \mathrm{pe}$ D F, ut per D C intelligamus cubum B C,per D F cubum a e,per D A triplum $C$ a in quadratum $A$ B, per $D$ e triplum $A$ a in quadratū $\mathrm{B} C$. quia igirur $C X A C$ in $C K$ fit 2, ex $A C$ in $C K$ rer, fice 6 numerus rerum, igitur $c x a s$ in triplum $A C$ in $C$ к fiunt 6 res $A B$, feu fexcuplum $A B$, quare iriplum producti ex A B, I $C$, $A C$, eft fexcu plum a b,at uero differentia cubi a $C$, à cubo $\mathrm{CK}, \&$ exiftenti à cubo в с cixव̈le ex fuppofito, eft 20,82 ex fuppofito primo 6 capituli, eft aggregatum corporum D A,D E, D E, tria igitur haxc corpora funt 20 , pofica uero в C m:cubus $A$ B, xqualis eft cubo A $C, \&$ triplo A $C$ in qua dratum с в \& \& cubo e c m: \&x triplo e c in quadratum $A$ C m: per dee monftrata illic, differentia aurem tripli в c in quadratum a C , à triplo $A C$ in cuadratum $B$ ceft productum $A B, B C, A C$, quare cum hoc, ut de Aont?rarum oft $x$ quale fir fexcuplo A B , igirur addito fexcuplo $A \mathrm{~B}_{3}$ ad id quod firex $A C$ in quadratum $\mathrm{B} C$ ter, fict triplum $\mathrm{B} C$ in quad ad id quod fit ex $A$ C in quadratum $A$ a tum A $\kappa$, cum igirur a c fir m:iam oftenfum eft, quod productum CB

- Geometrical justification remains
- General solution (to particular case), rather than example to be followed
- Make substitution $x=y-\frac{a}{3}$ in $y^{3}+a x^{2}+b x+c=d$ to suppress square term and obtain equation of the form $x^{3}+p x=q-$ manipulation of equations prior to solution


## Quartic equations (1)

General solution discovered (again on a case-by-case basis) by Lodovico Ferrari (c. 1540) and published by Cardano, in the form of worked examples, alongside solution of cubic lium quæfitorum.
$\qquad$
Intenias numerum, quifit xqualis radici fux quadratæ, \& duaa bus radicibus cubicis pariter acceptis, dices igitur fitalis numerus fue rit cu'quadratum radix fua quadrata neceffario eft i cubus, \& dux ra dices cubica funt 2 q̆d. igitur 1 cu'q̆dratum, aquabitur i cubop: 2 ఫ̨dratis, deducendoigitur ad inferiores denominationes per $\overline{\text { q.d. crit }}$ 1 q̆dädratum xquale 1 pofitioni p:2,pofui aūt 2 radicibus cubicis, quia cum regula fit generalis, hoc tamé modo dupliciter folui poteft, ut patebit. Namq₹ fí व̈d $̆$ dratum xquatur 1 pofitioni p:2, igitur 1 व̆d'q̈dratum m: 1 xquabitur i pofitioni p: ı, nam ab æqualibus aqua lia auferuntur, diuide igitur ambo hxe, per i pofitionem $p: 1$, commu nem diuiforem, habebis 1 cubum $m: 1$ đ̈drato $p: 1$ pofitione $m: 1$, wo qualia I, igitur i cubus p: I pofitione, aquarur 1 quadrato $p: 2$, igitur ex $18^{\circ}$ capitulo, reixflimatio eft Rev:cubica Re
 $\frac{1}{3}$, Sceu'q̆dratū huius eft numerus quas fiaus, cuius re quadrata, $8<2$ radices cus |
$\qquad$

- ça.p:I por.m: bice funt illi xquales, \&x tales radices funt duplum quadrati huius quantitatis cumfuo cubo.

At regula gencrali fic faciemus quia enim 1 व̈d'q̆dratum xqua* tur I pofitioni p:2,addemus ad utramç partem, 2 pofitiones quadra torum, cui fuhferipfimus $\bar{q} d$.utintelligas non effe ex genere priorum denominationum, fed effe pofitiō es $\mid 1$ q̆d $̆$ d. $\mathrm{p}: 2$ pof.p: 1 व̣d. quadratoru, igiur numerus addens dus,eft i quadrarum numeri q̧dras torum, \& hocelt, ut in tertia regula huitus capituli, quadratum D F, nam hic additio fupplementorum eft ut $\mathrm{DC}, \mathrm{AC}, \mathrm{DE}$, ad quadratui fimplex A D, igitur fufficit addere quadratū numeriğd. numeriğd. 2 pof, p: 1 pof, p: 2 p: 1 व̈d. numeríqd. numeri $\bar{q} d$. $\mathrm{DF}, \mathrm{ab} / \mathrm{F}$ additione fuperficierum
$\square$ 4pof. p:2 cub. numerī̆d. F L \& as N, qux crant neceffarix in exemplo quintx queftionis, quia igitur additis 2 pofitionibus p:1 quadrato numeri quadratorum, ad I pofitionem $p: 2$, fit totum 2 pofitiones numeri $\bar{q} d r a t o r u m p: 1$ pof. p:2,p:1 quadrato numeri quadratorum, SChochabet radicem, opor p:2, p:I quadrato numadratum dimidij medix quantitatis, quax eft i pofitio, axques

## Quartic equations (2)

In modern terms, suppose that

$$
x^{4}=p x^{2}+q x+r .
$$

## Quartic equations (2)

In modern terms, suppose that

$$
x^{4}=p x^{2}+q x+r .
$$

Add $2 y x^{2}+y^{2}$ to each side to give

$$
\left(x^{2}+y\right)^{2}=(p+2 y) x^{2}+q x+\left(r+y^{2}\right)
$$

## Quartic equations (2)

In modern terms, suppose that

$$
x^{4}=p x^{2}+q x+r .
$$

Add $2 y x^{2}+y^{2}$ to each side to give

$$
\left(x^{2}+y\right)^{2}=(p+2 y) x^{2}+q x+\left(r+y^{2}\right)
$$

Now we seek $y$ such that the right hand side is a perfect square:

$$
8 y^{3}+4 p y^{2}+8 r y+\left(4 p r-q^{2}\right)=0 .
$$

## Quartic equations (2)

In modern terms, suppose that

$$
x^{4}=p x^{2}+q x+r
$$

Add $2 y x^{2}+y^{2}$ to each side to give

$$
\left(x^{2}+y\right)^{2}=(p+2 y) x^{2}+q x+\left(r+y^{2}\right)
$$

Now we seek $y$ such that the right hand side is a perfect square:

$$
8 y^{3}+4 p y^{2}+8 r y+\left(4 p r-q^{2}\right)=0 .
$$

So the problem is reduced to solving a cubic equation and then a quadratic.

## Quartic equations (2)

In modern terms, suppose that

$$
x^{4}=p x^{2}+q x+r
$$

Add $2 y x^{2}+y^{2}$ to each side to give

$$
\left(x^{2}+y\right)^{2}=(p+2 y) x^{2}+q x+\left(r+y^{2}\right)
$$

Now we seek $y$ such that the right hand side is a perfect square:

$$
8 y^{3}+4 p y^{2}+8 r y+\left(4 p r-q^{2}\right)=0
$$

So the problem is reduced to solving a cubic equation and then a quadratic.

NB: In an equation $y^{4}+a y^{3}+b y^{2}+c y+d=0$ we can put $y=x-\frac{a}{4}$ to remove the cube term, so this solution is general.

## Quartic equations (3)

Formulae for the solutions of the general quartic equation, in all their unedifying glory, may be found at:
http://planetmath.org/QuarticFormula
Cardano's Ars Magna may also be found online here

## Further 16th-century developments



Rafael Bombelli, L'algebra (1572):

- heavily influenced by Cardano
- equation solving, new notation
- exploration of complex numbers [to be dealt with in a later lecture]


## Further 16th-century developments

L'ARITHMETIQVE
DESIMON STEVIN
D E BRVGES:
Contenant les computations des nombres
Arithmetiques ou vulgaires :
Aufi l'Algebre, auec les equations de cinc quantitez.
Enfemble les quarre premicrs liures d'Algebre de Diophanted'Alexandrie, maintenant premierement traduicts en François.
Encore vn liure particalier de la Pratique d' Arithmetique, contenant entre autres, Les Tables d' intereft, La Difine; Et vn trailté des Incommenfurables grandeurs: Atec l'Explication du Dixieform Liure d'Euclide.


A Leyde,
De l'Imprimerie de Chriftophle Plantin. cIo. Io. $\operatorname{LxXxy}$.

Simon Stevin, L'arithmetique ... aussi I'algebre (1585):

- heavily influenced by Cardano through Bombelli
- appended his treatise on decimal notation


## Further 16th-century developments

François Viète (1590s):

- links between algebra and geometry
- (algebra as 'analysis' or 'analytic art')
- notation [recall Lecture III]
- numerical methods for solving equations



## Thomas Harriot (c. 1600)



## Add MS 6783 f. 176

Note:

- notation [see lecture III];
- appearance of polynomials as products of linear factors.


## Thomas Harriot (1631)

## ARTIS ANALYTICAE PRAXIS,

Ad æquationes Algebraicas nouâ,expeditâ, \& generali mechodo, recloluendas:

## TRACTATVS

Epofthumis Thome Harrioti Philóophiac Mathematici celeberrimi Chediafmatis fummâ fide \&\& diligentiâ
defcriptus:

## ET

FLLVSTRISSIMO DOMINO
Dom. Henrico Percio, Northymbie Comiti,
Qui bac primò, fub Patronatus © Munificentia fue auppicijs adproprios vfus elucubrata, in communem Mathematicorum vtilitatem, denuò reuifenda, defribenda, as publicanda mandauit, meritiflimi Honoris ergoे Nuncupatus.

## R

LONDINI
ApudRobertvm Barker, Typographum
Regium: EtHared. IO.Bileif.
Anno 1631.

Some of Harriot's ideas found their way into his Artis analyticae praxis (The practice of the analytic art), published posthumously in 1631

## Thomas Harriot (1631)

## ARTIS ANALYTICAE PRAXIS,

Ad æquationes Algebraicas nouâ,expeditâ, \&\& generali mechodo, recoluendas:

TRACTATVS
Epofthumis Thome Harrioti Philóophiac Mathematici celeberrimi fchediafmatus fummâ fode \&\& diligentiâ
defcriptus:

## ET

fLLVSTRISSIMO DOMINO
Dom. Henrico Percio, Northymbrife Comiti,
Qui bec primò, fub Patronatur © Munifcentia fue aupiciijs adproprios vfus elucubrara, in communem Mathematicorum vtilitatem, denuò reuifenda, defcribenda, es publicanda mandauit, meritiflimi Honoris ergo

Nuncupatus.


LONDINI
ApudRobertym Barker, Typographum Regium: EtHared. Io. Billif. Anno 1631.

Some of Harriot's ideas found their way into his Artis analyticae praxis (The practice of the analytic art), published posthumously in 1631

But editors did not permit negative or imaginary roots [to be discussed further in a later lecture]

See Mathematics emerging, §12.2.1.

## Commentary on Harriot



Charles Hutton, A mathematical and philosophical dictionary, London, 1795, vol. 1, p. 91 (p. 96 of revised edition, 1815):

He shewed the universal generation of all the compound or affected equations, by the continual multiplication of so many simple ones; thereby plainly exhibiting to the eye the whole circumstances of the nature, mystery and number of the roots of equations; with the composition and relations of the coefficients of the terms; ...

Part 2: Theory of Equations

## Algebra in the 17th century

From 1600 onwards, 'algebra' as a set of recipes and techniques began to diverge in two (linked) directions:

## Algebra in the 17th century

From 1600 onwards, 'algebra' as a set of recipes and techniques began to diverge in two (linked) directions:

- 'algebra' as a tool or a language (a.k.a. 'analysis' or the 'analytic art')


## Algebra in the 17th century

From 1600 onwards, 'algebra' as a set of recipes and techniques began to diverge in two (linked) directions:

- 'algebra' as a tool or a language (a.k.a. 'analysis' or the 'analytic art')
- 'algebra' as an object of study in its own right (the 'theory of equations')


## Descartes on algebra

Polynomials feature in Descartes' La géométrie (1637),

## Descartes on algebra

Polynomials feature in Descartes' La géométrie (1637), e.g.:

- one example to show that polynomials can be constructed from their roots (influenced by Harriot?);


## Descartes on algebra

Polynomials feature in Descartes' La géométrie (1637), e.g.:

- one example to show that polynomials can be constructed from their roots (influenced by Harriot?);
- 'rule of signs': the number of positive ('true') roots of a polynomial is at most the number of times that the sign changes as we read term-by-term; the number of negative ('false') roots is at most the number of successions of the same sign;


## Descartes on algebra

Polynomials feature in Descartes' La géométrie (1637), e.g.:

- one example to show that polynomials can be constructed from their roots (influenced by Harriot?);
- 'rule of signs': the number of positive ('true') roots of a polynomial is at most the number of times that the sign changes as we read term-by-term; the number of negative ('false') roots is at most the number of successions of the same sign; for example,

$$
x^{4}-4 x^{3}-19 x x+106 x-120=0
$$

has at most 3 positive roots and at most one negative;

## Descartes on algebra

Polynomials feature in Descartes' La géométrie (1637), e.g.:

- one example to show that polynomials can be constructed from their roots (influenced by Harriot?);
- 'rule of signs': the number of positive ('true') roots of a polynomial is at most the number of times that the sign changes as we read term-by-term; the number of negative ('false') roots is at most the number of successions of the same sign; for example,

$$
x^{4}-4 x^{3}-19 x x+106 x-120=0
$$

has at most 3 positive roots and at most one negative;

- can always make a transformation to remove the second-highest term.


## Descartes on cubics

## LIVRE TROLSE3EME.

tiplication, que par diners autres moyens, qui font affes facilesa troviuer. Puis examinant par ordre toutes les quantites , qui peuvent diuifer fans fraction te dernier rerme, il fant voir, f quelqu'vne d'elles, iointe anec. Ia quantitefinconnućparle figne $+\mathrm{onz}^{-}$, peut compofer vo binome, qui dinife toute la fomme; \&e fi cela eft le Problefme eftplan , c'eft a direil peut eftre conittuit auec la reigle \& de compas; Car oubien la quanatite comnuëde cebinofme eft la racine cherchée; oubien requation eftant dinifé par luy, fe reduift 2 dear dimenfions, en forte quonen peur tsouycr aprésharacipe, par ce qृuia efté dit au premierliure.

Far exrmple froma
$y^{6}-8 y^{4}-124 y^{2}-64200$.
le dermierterme, qui eft 64 , peut eftre diuifé fans fratCtion par $1,2,4,8,16,32, \& 64$; C'ell poatgooy il faut examiner par ordre fi cete Equation ne peat point eftre diuifée par quelqu'vD des binomes, yy-i ou $y y+1, y y-2$ ouy $y+3, y y-4$ gkc.\& \& on troune qu'el. le peut leftre par $y y-36$, en cere forte.

$$
\begin{aligned}
& +y^{3}-8 y^{4}-124 y y-64200 \\
& \because-y^{1} y^{4}=-8 y^{4}-\frac{4 y y}{16} y^{4}-\frac{128 y y}{16} \cdots
\end{aligned}
$$

$$
+y^{4}+8 y y \quad+_{4} \quad 2 y a_{0}
$$

le commencepar ledernier terme, \& diaife -. 64 par de dinifes -26 , ce quifair + 4, que íefcris dans le quatient, puis saeEquaie multiplie +4 par $+y$ y, ce quifait $+4 y y$; c'eft pour- vion bian quoy i"eferis -- 4 y y en la fomme, quill fut diuifer.car ify me qui $\mathrm{Bbb} ; \quad \mathrm{faut}_{\text {taxime. }}^{\text {cogrír }}$

## Search for roots of a cubic by examining the factors of the constant term:

> if $\alpha$ is such a factor, test whether $x-\alpha$ divides the polynomial.

## Examines the example

$$
y^{6}-8 y^{4}-124 y^{2}-64=0
$$

## Descartes on quartics

## I, IVRE TRO:SIESME.

385
befondepafferoutre; caril fuit de lia infalliblement, gue le problefme coft folide. Nais fi on la troune, ont peut diviler par fon mogen la precedente Equation en detrxantres, en chafcune defquelles la quanricé inconifurena aira que deux dimenfions a ss dant les racines fesone les mefmes que les fienes. A fçatioir, au lieu de

$$
\begin{aligned}
& \text { +a**par } x x+y \text { 20 } 0, \\
& \text { il faut cferire ces deux autres }
\end{aligned}
$$

$$
\begin{aligned}
& +x x+y x+\frac{1}{2} y y \cdot \frac{1}{2} p \cdot \frac{9}{4}=50,8 \\
& +x x+y x+\frac{1}{2} y y \cdot \frac{1}{2} p \cdot \frac{4}{3}=50 .
\end{aligned}
$$

Et pour les fignes $+\&<-$ que iay omis siliy a $+p \mathrm{en}$ PEquation preceddente, il faut mettre $+\frac{1}{2} p$ enchafcune decelfes cy; $8=-\frac{1}{2} p$, s'il y z er l'autere $-p$. A ais il. fáut mettre $+\frac{q}{4 y}$, en celieodit y a $-\gamma x_{z} \& z-\frac{q}{x y}$, en celle où il $y_{2}+y x_{4}$ lorfquily a + - qenla premiere. Et au contraire sill y $2-\eta$, il faut mettre $-\frac{2}{2}$, en ceile of if y 2 $-y x_{i}^{*} \&+\frac{2}{y^{2}}$, en celle ouril ya $+y x$. En fuite dequoy il eft ayré de coanoiftretoutes les racines de lEquarion propofee, \& par confequent de conitruire le probleftne, doar elle contient la folurion, fans y employer que des cercles, sk deslignes droices.

Par exemple a caufe que faifant
$y^{2}-34 y^{2}+363 y y-400300$, poor
$x^{*}-17 \pm x-20 x-63 \mathrm{p}$, on troate que yy eft 16 , ondoifau lien de cete Equation
 Cce.
autses

$$
\begin{aligned}
& \text { To solve }+x^{4} \star \cdot p x x . q x . r=0 \\
& \text { (Descartes' notation), }
\end{aligned}
$$

## Descartes on quartics

## I, IVRE TRO:SIESME.

385
befondepafferoutre; caril fuit de lia infalliblement, gue le problefme coft folide. Nais fi on la troune, ont peut diviler par fon mogen la precedente Equation en detrxautres, enchafenne defquelles la quanricé inconifurena aira que deux dimenfions a ss dant les racines ferone lesmefmes que les fienes. A fçatioir, au lieu de
il faut cferire ces dcux autres

$$
\begin{aligned}
& +x x+y x+\frac{1}{2} y y \cdot \frac{1}{2} p \cdot \frac{9}{4}=50,8 \\
& +x x+y x+\frac{1}{2} y y \cdot \frac{1}{2} p \cdot \frac{4}{3}=50 .
\end{aligned}
$$

Et pour les fignes $+\&<-$ que iay omis siliy a $+p \mathrm{en}$ I'Equation precèdente, ilfaut mettre $+\frac{1}{2} p$ enchafcune decelfescy; *x- $\frac{-1}{2} p, s^{\prime} i l y$ y er l'autre $-p . \quad \Delta$ ais il. fâut mettre $+\frac{2}{4 y}$; en celle odid y $a \sim y x_{j}$ \& $-\frac{q}{x,}$, en celle où il $y^{2}+y x_{4}$ lorfquily a + - qenla premiere. Et au contraire sill y $2-\eta$, il faut mettre $-\frac{2}{2}$, en ceile of if y 2 $-y x_{;} ; 8+\frac{2}{2}$, en celle oùd y $a+y x$. En fuite dequoy il eft ayré de coanoiftretoutes les racines de lEquarion propofé, \&2 par confequent de conftruire te probleftre, doar elle contient la folurion, fans y employer que des cercles, sk deslignes droices.

Par exemple a caufe que faifant
$y^{2}-34 y^{2}+363 y y-400300$, pope
$x^{*}-17 \pm x-20 x-63 \mathrm{p}$, on troate que yy eft 16 , ondoifau litn de cete Equation
 Cce.
autres

> To solve $+x^{4} \star . p x x . q x . r=0$ (Descartes' notation), that is,

$$
x^{4} \pm p x x \pm q x \pm r=0
$$

## Descartes on quartics

I, IVRE TROISIESME.
385
vefondepafferoutre; caril fuit de lia infalliblement, gue le problefme coft folide. Nais fi on la trounc, on peut diviler par fon mogen la precedente Equation en detrxautres, enchafenne defquelles la quanricé inconifuren'aira que deux dimenfions z ss dant les racines feront lesmefmes que les fiones. A fçatuoir, au lieu de


$$
\begin{aligned}
& +x x-y x+\frac{1}{2} y y \cdot \frac{1}{2} p \cdot \frac{9}{1}=\leq 0,8 \\
& +x x+y x+\frac{1}{2} y y \cdot \frac{1}{2} p \cdot \frac{4}{3}=50 .
\end{aligned}
$$

Et pour les fignes $+\&$ - que iay omis shily a $+p$ en I'Equation precèdente, ilfaut mettre $+\frac{1}{2} p$ enchafcune decelfescy; ${ }^{3 x}-\frac{1}{2} p, s^{\prime} i l y z$ er l'autre $-p$. $\Delta$ ais il. fâut mettre $+\frac{q}{4 y}$; en celieodily $\begin{gathered}\text { a }-y ~ \\ z\end{gathered} z-\frac{q}{x y}$, en celle où il $y_{2}+y x_{4}$ lorfquily a + - qenla premiere. Et au contraire sill y $2-\eta$, il faut mettre $-\frac{2}{2}$, en ceile of if y 2 $-y x_{;} ; 8+\frac{2}{2}$, en celle oùd y $a+y x$. En fuite dequoy il eft ayré de coanoiftretoutes les racines de lEquarion propofé, \&2 par confequent de conitruire te problefme, doncelle contienc lafolurion, fans y employer que des cercles, \&̊ deslignes droices.

Par exemple a caufe que faifant
$y^{2}-34 y^{2}+363 y y-400300$, pope
$x^{*}-17 \pm x-20 x-63 \mathrm{P}$, on troate que yy eft 16 , ondoifau litu de cete Equation
 Cce.
authes

To solve $+x^{4} \star . p x x . q x . r=0$ (Descartes' notation), that is,

$$
x^{4} \pm p x x \pm q x \pm r=0
$$

he sought to write the quartic as a product of two quadratics.

## Descartes on quartics

## I, IVRE TRO:SIESME.

385
befondepaffer ourre, car il fuit de lia infalliblement, gue le problefme eft folide. Mais if on la troume, ont peut divifer par fon moyen ta precedente Equation en detrautres, enchafcume defquelles la quanrité incoritutEn'aira que deux dimenfions, $\& 8$ dont les racines fe rone les mefmes que tes fienes. A fçatioir, au lieu de

$$
\begin{aligned}
& +x x-y x+\frac{1}{2} y y \cdot \frac{1}{2} p \cdot \frac{9}{4}=000,8 \\
& +x x+y x+\frac{1}{2} y y \cdot \frac{1}{2} p \cdot \frac{4}{4}=200 .
\end{aligned}
$$

Et pour les fignes $+\&<-$ que iay omis, siliya $+p e d$ f'Equation precedente, ilfaut mettre $+\frac{1}{2} p$ enchafcune decelfes cy; ${ }^{8}-\frac{1}{2} p$, s'il y a en l'autere $-p$. A. ais il. fáut mettre $+\frac{2}{4 y}$; en celle odid y $a \sim y x_{j}$ \& $-\frac{q}{x,}$, en celle où il $y^{2}+y x_{1}$ lorfquily a + - qenla premiere. Et au contraire sill y $2-g_{2}$, il faut mettre $-\frac{2}{2}$, en ceile of if y 2 $-y x_{;} \&+\frac{2}{4 y^{2}}$ en celle ourily $\mathrm{y}+y x$. En faite dequoy il eftayfe de coanoiftretoutes les racines de IEquarion propofee, \&2 par confequent de conitruire te problefme, dont elle contient la folurion, faus y employer que des cercles, \& des lignes droices.

## Par exemple a caufe que faifant

$y^{2}-34 y^{2}+363 y y-400300$, podr
$x^{*}-17 x x-20 x-632$, on troaue que yy eft 16 , ondoifau lích de cete Equation
 Cce.

To solve $+x^{4} \star . p x x . q x . r=0$ (Descartes' notation), that is,

$$
x^{4} \pm p x x \pm q x \pm r=0
$$

he sought to write the quartic as a product of two quadratics. This led him to

$$
y^{6} \pm 2 p y^{4}+(p p \pm 4 r) y y-q q=0
$$

## Descartes on quartics

## I, IVRE TRO:SIESME.

385
befoin de paffer outre; caril fuit de lia infalliblement, gue le problefme oft folide. Nais fif on la troune, ont peut diviler par fon mojen la precedente Equationen detuxautres, en chafcume defquelles la quanrité inconimuter'atira que deux dimenfions, si doat les racines fe ront lesmefines que les fiemes. A fçatioir, au lieude

## +x. $p=2 \pi, q x, r 200$,

```
-1+xx-yx+\frac{1}{2}yy\cdot\frac{1}{2}p\cdot\frac{9}{1;}=00,&
+xx+yx+-\frac{1}{x}yy\cdot\frac{1}{x}p}\cdot\frac{8}{4}=200
```

Et pour les fignes $+\&-$-que iay omis, s'ily $a+p e n$ r'Equation precedente, il fant mettre $+\frac{1}{2} p$ en chafcune decelles cy; * - $\frac{1}{2} p$, s'il y z en l'autre - $p$. A ais il. fáot metre $+\frac{q}{4}$; en celle odily yary $x_{j}$ \& $-\frac{q}{x}$, en celle où il $y_{2}+y x_{4}$ lorfquily a + qenla premiere. Et zu conntraire sily $2-\eta$, il faut mettre $-\frac{2}{2}$, en celle of il y $a$ $-y x ; \&+\frac{2}{2}$, en celle ouvily $a+y x$. En fuite dequoy il eft ayré de coanoiftretoutes les racines de IEquation propofée, \& par confequent de conitruire le problefme, doar elle contient la folurion, faus y employer que des rercles, \& des lignes droites.

## Par exempleà caufe que faifant

$y^{3}-34 y^{\prime}+3 \times 3 y y-400300$, podr
$x,-175 x-20 x-630$, on troare que yy eft 16 , ondoifan fien de cete Equation
 Ccc, zutses

To solve $+x^{4} \star . p x x . q x . r=0$ (Descartes' notation), that is,

$$
x^{4} \pm p x x \pm q x \pm r=0
$$

he sought to write the quartic as a product of two quadratics. This led him to
$y^{6} \pm 2 p y^{4}+(p p \pm 4 r) y y-q q=0$

> As in Ferrari's/Cardano's method: a quartic is reduced to a cubic

## Summary and a glance ahead

By 1600, general solutions were available for quadratic, cubic and quartic equations - specifically, general solutions in radicals, i.e., solutions constructed from the coefficients of a given polynomial equation via $+,-, \times, \div \sqrt{ }, \sqrt[3]{ }, \sqrt[4]{ }, \ldots$

## Summary and a glance ahead

By 1600, general solutions were available for quadratic, cubic and quartic equations - specifically, general solutions in radicals, i.e., solutions constructed from the coefficients of a given polynomial equation via $+,-, \times, \div \sqrt{ }, \sqrt[3]{ }, \sqrt[4]{ }, \ldots$

NB: A solution in radicals may be constructed by ruler and compass.

## Summary and a glance ahead

By 1600, general solutions were available for quadratic, cubic and quartic equations - specifically, general solutions in radicals, i.e., solutions constructed from the coefficients of a given polynomial equation via $+,-, \times, \div \sqrt{ }, \sqrt[3]{ }, \sqrt[4]{ }, \ldots$

NB: A solution in radicals may be constructed by ruler and compass.

Spoiler: the general quintic equation is not solvable in radicals.

## Summary and a glance ahead

By 1600, general solutions were available for quadratic, cubic and quartic equations - specifically, general solutions in radicals, i.e., solutions constructed from the coefficients of a given polynomial equation via $+,-\times, \div \sqrt{ }, \sqrt[3]{ }, \sqrt[4]{ }, \ldots$

NB: A solution in radicals may be constructed by ruler and compass.

Spoiler: the general quintic equation is not solvable in radicals.
By the 1770s, mathematicians (notably Lagrange) had come to suspect this, but it was not proved until the 1820s.

## Summary and a glance ahead

By 1600, general solutions were available for quadratic, cubic and quartic equations - specifically, general solutions in radicals, i.e., solutions constructed from the coefficients of a given polynomial equation via $+,-\times, \div \sqrt{ }, \sqrt[3]{ }, \sqrt[4]{ }, \ldots$

NB: A solution in radicals may be constructed by ruler and compass.

Spoiler: the general quintic equation is not solvable in radicals.
By the 1770s, mathematicians (notably Lagrange) had come to suspect this, but it was not proved until the 1820s.

So did anything interesting happen in algebra during the 17th and 18th centuries?

## A typical 20th-century view

Luboš Nový, Origins of modern algebra (1973), p. 23:
From the propagation of Descartes' algebraic knowledge up to the publication of the important works of Lagrange [and others] in the years 1770-1, the evolution of algebra was, at first glance, hardly dramatic and one would seek in vain for great and significant works of science and substantial changes.

## A typical 20th-century view

Luboš Nový, Origins of modern algebra (1973), p. 23:
From the propagation of Descartes' algebraic knowledge up to the publication of the important works of Lagrange [and others] in the years 1770-1, the evolution of algebra was, at first glance, hardly dramatic and one would seek in vain for great and significant works of science and substantial changes.

Fair point? Or not?

## Some 17th-century developments: Hudde's rule (1657)

$$
\begin{aligned}
& \text { Published } 1659 \text { as an addendum to van } \\
& \text { Schooten's Latin translation of } \\
& \text { Descartes' La géométrie: }
\end{aligned}
$$

Iohannis Huddenit Epist. I. quxro, per Methodum fuperiùs explicatam, maximum carum communem diviforem; atque hujus ope xquationem Propofitam toties divido, quoties id fieri poteft.
Exempligratiâ,proponatur hace xquatio $x^{3}-4^{x x+5 x-2000, ~}$ in qua dux funt xquales radices. Multiplico ergo ipfam per Arithmeticam Progreffionem qualemeunque, hoc eft, cujus incrementum vel decrementum fit vel 5 , vel 2, vel 3 , vel alius quilibet numerus ; \& cujus primus terminus fit vel 0 , vel + , vel quam o: Ita ut fempef ejus ope talis terminus xquationis tolli poffit, qualem quis voluerit, collocando zantùm fub eoo.
Ut f , exempli causâ, ultimum ejus terminum auferre velim, multiplicatio fieri poteft ipfius $x^{3}-4 x x+5 x-2 \times 0$
per hanc progreffionem $\begin{gathered}3 . \quad 2 . \quad \text { 1. o } \\ \text { fietque } \\ 3 x^{3}-8 x x+5 x \text { * } 00 .\end{gathered}$
Maxima autem communis divifor hujus \& Propofita æquationis êt $x-100$, per quam Propolita bis dividi poteft; ita ut ejufdem radices fint $\mathrm{I}, \mathrm{I}, \& 2$.
Sic fi cupiam $I^{\text {mun }}$ rquationis terminum auferre , multiplicatio inftitui poteft ipfius $x^{3}-4 x x+5 x-2000$ per hanc progreffionem o. $\quad$ I. $\quad 2 . \quad 3$.

$$
\& \mathrm{fit}^{*}-4^{x x+10 x-600}
$$

Cujus quidem ac Propofitx xquationis maximus communis divifors, ut antea, eft $x-1>0$.

Similiter fi $2^{\text {dum }}$ terminum tollere lubeat, multiplicatio fieri poteft, hoc pacto: $\quad x_{1}-4 x x+5 x-2000$

$$
\frac{+1 . \quad 0 .-1 .-2}{x^{3}-5 x+400 .}
$$

Cujus item \& Propofitæ maximus communis divifor eft $x$ - 120 .

Ubi notandum, non neceffarium effe,femper uti Progreffione cujus exceffus fit $I_{2}$ quanquam ea communiter fit optima.

## Some 17th-century developments: Hudde's rule (1657)

Published 1659 as an addendum to van Schooten's Latin translation of Descartes' La géométrie:
$x^{3}-4 x x+5 x-2=0$ has a double root $x=1$;

434
Iohannis Huddenif Epist. I.
quxro, per Methodum fuperiùs explicatam, maximum carum communem diviforem; atque hujus ope xquationem Propofitam toties divido, quoties id fieri poteft.
Exempligratiâ,proponatur hace xquatio $x^{3}-4^{x x+5 x-2000, ~}$ in qua dux funt xquales radices. Multiplico ergo ipfan per Arithmeticam Progreffionem qualemcunque, hoc eft, cujus incrementum vel decrementum fit vel 5 , vel 2, vel 3 , vel alius quilibet numerus; \& cujus primus terminus fit vel 0 , vel + , vel quam 0 : Ita ut femper ejus ope talis terminus requationis tolli poffit, qualem quis voluerit, collocando tantùm fub eo o.
Ut $\mathrm{fi}_{\mathrm{i}}$, exempli causâ, ultimum ejus terminum auferre velim, multiplicatio fieri poteft ipfius $x^{3}-4 x x+5 x-2000$
per hanc progreffionem $\begin{gathered}3 . \quad 2 . \quad \text { 1. o } \\ \text { fietque } \\ 3 x^{3}-8 x x+5 x \text { * } 00 .\end{gathered}$
Maxima autem communis divifor hujus \& Propofita æquationis eft $x-100$, per quam Propolita bis dividi poteft ; ita ut ejufdem radices fint $\mathrm{I}, \mathrm{I}, \& 2$.
Sic fi cupiam $I^{\text {mun }}$ rquationis terminum auferre, multiplicatio inftitui poteft ipfius $x^{3}-4 x x+5 x-2000$ per hanc progreffionem o. $\quad$ I. $\quad 2 . \quad 3$.
$\& \mathrm{fit}^{*}-4^{x x+10 x-600}$.
Cujus quidem ac Propofitx xquationis maximus communis divifor, ut antea, eft $x-1$ mo.

Similiter fi $2^{\text {dum }}$ terminum tollere lubeat, multiplicatio fieri poteft, hoc pacto: $\quad x_{1}-4 x x+5 x-2000$

$$
\frac{+1}{6 i t} x^{*}-\frac{1 .-2}{x^{3}-5 x+0 .}
$$

Cujus item \& Propofitæ maximus communis divifor eft $x$ - 1 no.
Ubi notandum, non neceffarium effe,femper uti Progreffione cujus exceffus fit $I_{2}$ quanquam ea communiter fit optima.

## Some 17th-century developments: Hudde's rule (1657)

Published 1659 as an addendum to van Schooten's Latin translation of Descartes' La géométrie:
$x^{3}-4 x x+5 x-2=0$ has a double root $x=1$;
multiply the terms of the equation by numbers in arithmetic progression:

## 434 Iohannis Huddenit Epist. I.

 quxro, per Methodum fuperiùs explicatam, maximum carum communem diviforem; atque hujus ope xquationem Propofitam toties divido, quoties id fieri poteft.Exempligratiâ,proponatur hac xquatio $x^{3}-4 x x+5 x-2000$, in qua dux funt $x$ quales radices. Mültiplico ergo ipfan per Arithmeticam Progreffionem qualemeunque, hoc eft, cujus incrementum vel decrementum fit vel 1 , vel 2 , vel 3 , vel alius quilibet numerus; \& cujus primus terminus fit vel 0 , vel + , vel quam 0 : Ita ut femper ejus ope talis terminus wquationis tolli poffit, qualem quis voluerit, collocando zantùm fub eoo.
Ut $\mathrm{f}_{\mathrm{f}}$, exemplicausâ, ultimum ejus terminum auferre velim, multiplicatio fieri poteft ipfius $x^{3}-4 x x+5 x-2 \times 0$

Maxima autem communis divifor hujus \& Propofita xquationis êt $x-100$, per quam Propolita bis dividi poteft; ita ut ejufdem radices fint $\mathrm{I}, \mathrm{I}, \& 2$.
Sic fic cupiam $I^{\text {mun }}$ aquationis terminum auferre, multiplicatio inftitui poteft ipfius $x^{3}-4 x x+5 x-2 \times 0$ per hanc progreffionem o. $1 . \quad$ 2. 3 .
$\& \mathrm{fit}^{*}-4^{x x+10 x-600}$.
Cujus quidem ac Propofitex xquationis maximus communis divifor, ut antea, eft $x-1>0$.

Similiter fi $2^{\text {dum }}$ terminum tollere lubeat, multiplicatio fieri poteft, hoc paicto: $\quad x-4 x x+5 x-2000$

$$
\text { \& prodibit } x^{3}-5 x+4 x 00
$$

Cujus item \& Propofitx maximus communis divifor eft $x$ - 120 .

Ubi notandum, non neceffarium effe, femper uti Progreffione cujus exceffus fit $I_{2}$ quanquam ea communiter fit optima.

## Some 17th-century developments: Hudde's rule (1657)

Published 1659 as an addendum to van Schooten's Latin translation of Descartes' La géométrie:
$x^{3}-4 x x+5 x-2=0$ has a double root $x=1$;

## multiply the terms of the equation by numbers in arithmetic progression:

$3 x^{3}-8 x x+5 x=0$ also has a double root $x=1$,

## Some 17th-century developments: Hudde's rule (1657)

Published 1659 as an addendum to van Schooten's Latin translation of Descartes' La géométrie:
$x^{3}-4 x x+5 x-2=0$ has a double root $x=1$;

## multiply the terms of the equation by numbers in arithmetic progression:

$3 x^{3}-8 x x+5 x=0$ also has a double root $x=1$,
as does $-4 x x+10 x-6=0$.

## Some 17th-century developments: Hudde's rule (1657)

Published 1659 as an addendum to van Schooten's Latin translation of Descartes' La géométrie:
$x^{3}-4 x x+5 x-2=0$ has a double root $x=1$;
multiply the terms of the equation by numbers in arithmetic progression:
$3 x^{3}-8 x x+5 x=0$ also has a double root $x=1$,
as does $-4 x x+10 x-6=0$.
(Modern form of rule: if $r$ is a double root of $f(x)=0$, then it is a root of $f^{\prime}(x)=0$ also.)

See Mathematics emerging, §12.2.2.

# Some 17th－century developments：Tschirnhaus transformations（1683） 

```
204
            ACTA ERUDITORUM
METHODUS AUFERENDI OMNES TER.
    minosintermedios ex data equatione,
        per D.T.
```

EFx Geomerria Dn．Des Cartes notum eft，quaratione femper fecun－ Edus cerminus ex data xquatione pofit auferri；quoad plures termi－ nos intermedios auferendos，hattenus nihil inventumvidi in Arte Ana－ lytica，imonon paucos offendi，qui crediderunt，id nulla arte perfici poffe．Quapropter hic quedam circa hoc negotium aperire conflitui， verum faltem pro iis，qui Artis Analyticx apprime gnari，cum aliis tam brevi explicatione vix fatisfisri poffit：reliqua，quas hic defiderati poffent，alii tempori refervans．

Primo itaque loco，ad hoc attendendum；fit data aliqua xquatio cubica $x^{3} \ldots p \times x^{2} \ddagger q x-r=0$ ，in qua $x$ radices hujus $x$ quationis defl－ gnat；$p, q, r$, cognitas quansitates reprafentant：ad auferendum jam fecundum terminum fupponatur $x=y+\mathrm{fa}$ ；jam ope harum duarum z－ quationum inveniatur tertia，ubi quantitas x abfit ，\＆crit

－py y－2pay－paa Jis nihilo（quia hunc auferre noflra in－
Fqy Fqa tentio）eritque 3 a $y$ y - py $y=0$ ．Unde fecundum terminum in æquatione Cubica，fupponendum effe loco
 dum funt，nec hic referuntur aliam ob caufam，quam quia fequentia admodum illuftrant，dum hifce bene intelleais，eo facilius，qux modo proponam，cajientur．

Sine jam fecundo in aquatione data auferendi duo termini： dico，quod tupponendum fit， $\mathrm{xx}=\mathrm{bx}$ 中 y 中 ；fitres， $\mathrm{x}^{3}=\mathrm{cx} \times \mathrm{x}$ 中 bx
 finitum．Vocabo autem has aqustiones aflumbas，ut eas diltin－ guam ab aquatione，que ut data confideratur．Rario autem ho－ rura eft：quod eadem ratione，prout ope xquationis $\mathrm{x}=\mathrm{y}$ なa faltem unicus termints poterat auferri，quia nimirum unica faltem inde－
 non nif duo termini poffunt auferri，quia dux indeterminata a \＆$b$

For an equation $x^{3}-p x^{2}+q x-r=0$

## Some 17th－century developments：Tschirnhaus transformations（1683）

```
204
            ACTA ERUDITORUM
METHODUS AUFERENDI OMNES TER.
        minosintermedios ex data aquatione,
                per D.T.
```

FX Geometria Dn．Des Cartes notum eft，qua ratione femper fecing． Edus cerminus ex data xquatione pofit auferri；quoad plures termi－ nos intermedios auferendos，hattenus nihil inventumvidi in Arte Ana－ lytica，imonon paucos offendi，qui crediderunt，id nulla arte perfici poffe．Quapropter hic quadam circa hoc negotium aperire conflitui， verum faltem pro iis，qui Artis Analyticx apprime gnari，cum aliis tam brevi explicatione vix fatisfisri poffit：reliqua，quas hic defiderati poffent，alii tempori refervans．

Primo itaque loco，ad hoc attendendum ；fit data aliqua xquatio cubica $x^{3} \ldots p x x^{\prime} q q-r=0$ ，in qua $x$ radices hujus $x q u a t i o n i s ~ d e f-~$ gnat ；$p, q, r$, cognitas quantitates reprafentant：ad auferendum jam fecundum terminum fupponatur $x=y$ Ha；jam ope harum duarumz－ quationum inveniatur tertia，ubi quantitas $x$ abfit ，\＆crit

－pyy－2pay－paa Jis nihilo（quia hunc auferre noftra in－
 fecundum terminum in zequatione Cubica，fupponendum effe loco $\mathrm{x}=\mathrm{y}$ 点a（prour modo fecimus） $\mathrm{x}=\mathrm{y}$ 安尝。 Hac jam vulgata admo－ dum funt，nec hic referuntur aliam ob caufam，quam quia fequentia admodum illuffrant，dum hifce bene intelledis，eo facilius，quax modo proponam，cajientur．

Sine jam fecundo in xquatione data auferendi duo termini：

 finitum．Vocabo autem has aqustiones affumbas，ut eas difin－ guam ab xquatione，que ut data confideratur．Rario autem ho－ rura eft：qued eadem ratione，prout ope xquationis $\mathrm{x}=\mathrm{y}$ 中 a faltem unicus termines poterat auferri，quia nimirum unica faltem inde－
 non nif duo tecrmini poflunt aufcrri，quia dux indeterminata a \＆b

For an equation $x^{3}-p x^{2}+q x-r=0$
－to remove one term put $x=y+a$ （where $a=p / 3$ ）

## Some 17th-century developments: Tschirnhaus transformations (1683)

```
204
            ACTA ERUDITORUM
METHODUS AUFERENDI OMNES TER.
        minosintermedios ex data aquatione,
                per D.T.
```

E$\mathrm{F}^{\mathrm{X}}$ Geomerria Dn.Des Cartes notum eft, quaratione femper fectnoEdus terminus ex data xquatione pofit auferri; quoad plures termi. nos intermedios auferendos, hattenus nihil inventumvidi in Arte Ana. lytica, imonon paucos offendi, qui crediderunt, id nulla arte perfici poffe. Quapropter hic quedam circa hoc negotium aperire conflitui, verum faltem pro iis, qui Artis Analyticæ apprime gnari, cum aliis tam brevi explicatione vix fatisfisri poffit: reliqua, quaz hic defiderati poffent, alii tempori refervans.

Primo itaque loco, ad hoc attendendum ; fit data aliqua xquatio cubica $x^{3} \ldots p \times x \neq q x-r=0$, in qua $x$ radices hujus $x q u a t i o n i s ~ d e f i-~$ gnat; $p, q, r$, cognitas quansitates reprafentant : ad auferendum jam fecundum terminum fupponatur $x=y+\mathrm{f}$; jam ope harum duaruma quationum inveniatur tertia, ubi quantitas x abfit , \& crit

-py - 2pay-paa Jis nihilo(quia hunc auferre noftra in-
 fecundum terminum in æquatione Cubica, fupponendum effe loco
 dum funt, nee hic referuntur aliam ob caufam, quam quia fequentia admodum illuftrant, dum hifce bene intelleais, eo facilius, qux modo proponam, cajientur.

Sine jam fecundo in aquatione data auferendi duo termini:

 finitum. Vocabo autem has aqustiones aflumbas, ut eas diltinguam ab aquatione, qux ut data confideratur. Rario autem horura eft: quode eadem ratione, prout ope $x$ quationis $\mathrm{x}=\mathrm{y}$ 出a falem unicus termints poterat auferri, quia nimirum unica faltem indeterminata hic exiflit $a_{\text {, }}$ fic eadem ratione opc hujus $x x=b x+y$, A , non nif duo termini poffunt auferri, quia dux indeterminata a \& $b$

For an equation $x^{3}-p x^{2}+q x-r=0$

- to remove one term put $x=y+a$ (where $a=p / 3$ )
- can we remove both the middle terms?


## Some 17th－century developments：Tschirnhaus transformations（1683）

```
204
            ACTA ERUDITORUM
METHODUS AUFERENDI OMNES TER.
        minosintermedios ex data aquatione,
        per D.T.
```

EFX Geometria Dn．Des Cartes notum eft，qua ratione femper fectun． Edus terminus ex data xquatione pofit auferri；quoad plures termi． nos intermedios auferendos，hattenus nihil inventumvidi in Arte Ana－ lytica，imonon paucos offendi，qui crediderunt，id nulla arte perfici poffe．Quapropter hic quedam circa hoc negotium aperire conflitui， verum faltem pro iis，qui Artis Analyticx apprime gnari，cum aliis tam brevi explicatione vix fatisfisri poffit：reliqua，quaz hic defiderati poffent，alii tempori refervans．

Primo itaque loco，ad hoc attendendum；fit data aliqua xquatio cubica $x^{3} \ldots p \times x \neq q x-r=0$ ，in qua $x$ radices hujus $x q u a t i o n i s ~ d e f i-~$ gnat；$p, q, r$ ，cognitas quansitates reprafentant：ad auferendum jam fecundum terminum fupponatur $x=y+\mathrm{f}$ ；jam ope harum duaruma － quationum inveniatur tertia，ubi quantitas x abfit ，\＆crit

－py y－pay－paa lis nihilo（quia hunc auferre noftra in． Fqy Fqa tentio）eritque 3 a $y$ y - py $y=0$ ．Unde fecundum terminum in æquatione Cubica，fupponendum effe loco
 dum funt，nec hic referuntur aliam ob caufam，quam quia fequentia admodum illufitant，dum hifce bene intelledis，eo facilius，q̧ur modo proponam，cajientur．

Sint jam fecundo in xquatione data auferendi duo termini：

 finitum．Vocabo autem has aqustiones aflumbas，ut eas diltin－ guam ab aquatione，qux ut data confideratur．Rario autem ho－ rura eft：quod eadem ratione，prout ope xquationis $\mathrm{x}=\mathrm{y}$ ゅa falem unicus termines poterat auferri，quia nimirum unica faltem inde－ terminata hic exiflit a，fic eadem ratione ops hujus $x x=b x$ 边，中a， non nilf duo tecrmini poflunt aufcrri，quia dux indeterminata a \＆b

For an equation $x^{3}-p x^{2}+q x-r=0$
－to remove one term put $x=y+a$ （where $a=p / 3$ ）
－can we remove both the middle terms？
－to remove two terms put

$$
x^{2}=b x+y+a
$$

See Mathematics emerging，§12．2．3．

## An 18th-century development: Newton's Arithmetica universalis (1707)

```
Newton, Sir Seave
    Univerfal Aritbmetick:
                O R, A
    TRE ATISE
    O F
```

ARITHMETICAL
Compofition and Refolution.
To which is added,
Dr. Halley's Method of finding the Roors of Equations Arithmetically.

Tranflated from the LATIN by the late Mr. Raphson, and revifed and corrected by Mr. Cunn.


Printed for J. SENEX at the Globe in Salij/buryCourt ; W. Taylor at the Ship, T. Warner at the Black- $B_{o y}$, in Pater-noffer Rom, and J. Osborn at the


Rules for sums of powers of roots of

$$
x^{n}-p x^{n-1}+q x^{n-2}-r x^{n-3}+s x^{n-4}-\cdots=0
$$

$$
\begin{aligned}
\text { sum of roots } & =p \\
\text { sum of roots } & =p a-2 q \\
\text { sum of roots } & =p b-q a+3 r \\
\text { sum of roots } & =p c-q b+r a-4 s
\end{aligned}
$$

## Developments of the 17th and 18th centuries

- Symbolic notation


## Developments of the 17th and 18th centuries

- Symbolic notation
- Understanding of the structure of polynomials


## Developments of the 17th and 18th centuries

－Symbolic notation
－Understanding of the structure of polynomials
－．．．of the number and nature of their roots

## Developments of the 17th and 18th centuries

－Symbolic notation
－Understanding of the structure of polynomials
－．．．of the number and nature of their roots
－．．．of the relationship between roots and coefficients

## Developments of the 17th and 18th centuries

- Symbolic notation
- Understanding of the structure of polynomials
- ... of the number and nature of their roots
- ... of the relationship between roots and coefficients
- ... of how to manipulate them


## Developments of the 17th and 18th centuries

－Symbolic notation
－Understanding of the structure of polynomials
－．．．of the number and nature of their roots
－．．．of the relationship between roots and coefficients
－．．．of how to manipulate them
－．．．of how to solve them numerically

## Developments of the 17th and 18th centuries

- Symbolic notation
- Understanding of the structure of polynomials
- ... of the number and nature of their roots
- ... of the relationship between roots and coefficients
- ... of how to manipulate them
- ... of how to solve them numerically
- The leaving behind of geometric intuition?


## Some 18th-century theory of equations

Recall:

- cubic equations can be solved by means of quadratics


## Some 18th-century theory of equations

Recall:

- cubic equations can be solved by means of quadratics
- quartic equations can be solved by means of cubics


## Some 18th-century theory of equations

Recall:

- quadratic equations can be solved by means of linear equations
- cubic equations can be solved by means of quadratics
- quartic equations can be solved by means of cubics


## Some 18th-century theory of equations

Recall:

- quadratic equations can be solved by means of linear equations
- cubic equations can be solved by means of quadratics
- quartic equations can be solved by means of cubics

The 'reduced' or 'resolvent' equation:

- for cubics, the reduced equation is of degree 2


## Some 18th-century theory of equations

Recall:

- quadratic equations can be solved by means of linear equations
- cubic equations can be solved by means of quadratics
- quartic equations can be solved by means of cubics

The 'reduced' or 'resolvent' equation:

- for cubics, the reduced equation is of degree 2
- for quartics, the reduced equation is of degree 3


## Some 18th-century theory of equations

Recall:

- quadratic equations can be solved by means of linear equations
- cubic equations can be solved by means of quadratics
- quartic equations can be solved by means of cubics

The 'reduced' or 'resolvent' equation:

- for cubics, the reduced equation is of degree 2
- for quartics, the reduced equation is of degree 3
- for quintics, the reduced equation is of degree ?


## Some 18th-century hypotheses

Euler's hypothesis (1733):

- for an equation of degree $n$ the degree of the reduced equation will be $n-1$


## Some 18th-century hypotheses

Euler's hypothesis (1733):

- for an equation of degree $n$ the degree of the reduced equation will be $n-1$

Bézout's hypothesis (1764):

- for an equation of degree $n$ the degree of the reduced equation will in general be $n$ !


## Some 18th-century hypotheses

Euler's hypothesis (1733):

- for an equation of degree $n$ the degree of the reduced equation will be $n-1$

Bézout's hypothesis (1764):

- for an equation of degree $n$ the degree of the reduced equation will in general be $n$ !
- though always reducible to $(n-1)$ !


## Some 18th-century hypotheses

Euler's hypothesis (1733):

- for an equation of degree $n$ the degree of the reduced equation will be $n-1$

Bézout's hypothesis (1764):

- for an equation of degree $n$ the degree of the reduced equation will in general be $n$ !
- though always reducible to $(n-1)$ !
- possibly further reducible to $(n-2)$ !


## Lagrange's 'Réflexions' 1770/71

J.-L. Lagrange, 'Réflexions sur la résolution algébrique des équations', Berlin (1770/1):

Examined all known methods of solving

- quadratics: the well-known solution
- cubics: methods of Cardano, Tschirnhaus, Euler, Bézout
- quartics: methods of Cardano, Descartes, Tschirnhaus, Euler, Bézout
seeking to identify a uniform method that could be extended to higher degree


## A typical 20th-century view revisited

Luboš Nový, Origins of modern algebra (1973), p. 23:
From the propagation of Descartes' algebraic knowledge up to the publication of the important works of Lagrange [and others] in the years 1770-1, the evolution of algebra was, at first glance, hardly dramatic and one would seek in vain for great and significant works of science and substantial changes.

## Filling a gap in the history of algebra (2011)

```
Heritage of European Mathematics
```

Jacqueline Stedall.

From Cardano's great art to
Lagrange's reflections: filling a gap in the history of algebra

## From Stedall's preface:

This assertion ... from Nový quoted above, betrays yet another fundamental shortcoming of several earlier accounts, a view that mathematics somehow progresses only by means of 'great and significant works' and 'substantial changes'.

## From Stedall's preface:

This assertion ... from Nový quoted above, betrays yet another fundamental shortcoming of several earlier accounts, a view that mathematics somehow progresses only by means of 'great and significant works' and 'substantial changes'. Fortunately, the truth is far more subtle and far more interesting: mathematics is the result of a cumulative endeavour to which many people have contributed, and not only through their successes but through halfformed thoughts, tentative proposals, partially worked solutions, and even outright failure.

## From Stedall's preface:

This assertion ... from Nový quoted above, betrays yet another fundamental shortcoming of several earlier accounts, a view that mathematics somehow progresses only by means of 'great and significant works' and 'substantial changes'. Fortunately, the truth is far more subtle and far more interesting: mathematics is the result of a cumulative endeavour to which many people have contributed, and not only through their successes but through halfformed thoughts, tentative proposals, partially worked solutions, and even outright failure. No part of mathematics came to birth in the form that it now appears in a modern textbook: mathematical creativity can be slow, sometimes messy, often frustrating.

