BO1 History of Mathematics
 Lecture VI
 Infinite series
 Part 3: The 18th century

MT 2021 Week 3

Move on to the 18th century

Eighteenth century:

- as in 17th century, much progress;
- also many questions and doubts

Taylor series

METHODUS Incrementorum

Directa \& Inverfa.

```
    AUCTORE
    BROOK TAYLOR, LL.D. &
    Regia Societatis Secretario.
```


LONDIN1
Typis Pearfonianis : Proftant apud Gal. Inmss ad Infignia Principis in Ccemeterio Paulino. M DCCXV.

> Brook Taylor,
> The method of direct and inverse increments (1715)

Taylor series

(See: Mathematics emerging, §8.2.1.)

Taylor series

Taylor denoted a small change in x by x (our δx),

Taylor series

Taylor denoted a small change in x by x (our δx), a small change in x by .. $($ our $\delta(\delta x))$,

Taylor series

Taylor denoted a small change in x by x (our δx), a small change in x by $\underset{. .}{x}(\operatorname{our} \delta(\delta x))$, and so on

Taylor series

Taylor denoted a small change in x by x (our δx), a small change in x by $\underset{. .}{x}($ our $\delta(\delta x))$, and so on

Dependent variable x; independent variable z increases uniformly with time

Taylor series

Taylor denoted a small change in x by x (our δx), a small change in x by $\underset{. .}{x}(\operatorname{our} \delta(\delta x))$, and so on

Dependent variable x; independent variable z increases uniformly with time
x increases to $x+\delta x$ in time δt;

Taylor series

Taylor denoted a small change in x by x (our δx), a small change in x by $\underset{. .}{x}(\operatorname{our} \delta(\delta x))$, and so on

Dependent variable x; independent variable z increases uniformly with time
x increases to $x+\delta x$ in time δt; after a further interval of $\delta t, x$ has become $x+\delta x+\delta(x+\delta x)=x+2 \delta x+\delta(\delta x)$;

Taylor series

Taylor denoted a small change in x by x (our δx), a small change in x by $\underset{. .}{x}(\operatorname{our} \delta(\delta x))$, and so on

Dependent variable x; independent variable z increases uniformly with time
x increases to $x+\delta x$ in time δt; after a further interval of $\delta t, x$ has become $x+\delta x+\delta(x+\delta x)=x+2 \delta x+\delta(\delta x)$; continuing:

$$
x+\frac{n}{1} \delta x+\frac{n(n-1)}{1 \cdot 2} \delta(\delta x)+\frac{n(n-1)(n-2)}{1 \cdot 2 \cdot 3} \delta(\delta(\delta x))+\cdots
$$

Taylor series

Taylor denoted a small change in x by x (our δx), a small change in x by $\underset{\text {.. }}{x}(\operatorname{our} \delta(\delta x))$, and so on

Dependent variable x; independent variable z increases uniformly with time
x increases to $x+\delta x$ in time δt; after a further interval of $\delta t, x$ has become $x+\delta x+\delta(x+\delta x)=x+2 \delta x+\delta(\delta x)$; continuing:

$$
\begin{gathered}
x+\frac{n}{1} \delta x+\frac{n(n-1)}{1 \cdot 2} \delta(\delta x)+\frac{n(n-1)(n-2)}{1 \cdot 2 \cdot 3} \delta(\delta(\delta x))+\cdots \\
=x+\delta x \frac{n \delta z}{1 \delta z}+\delta(\delta x) \frac{n \delta z(n-1) \delta z}{1 \cdot 2 \cdot(\delta z)^{2}}+\delta(\delta(\delta x)) \frac{n \delta z(n-1) \delta z(n-2) \delta z}{1 \cdot 2 \cdot 3(\delta z)^{3}}+\cdots
\end{gathered}
$$

Taylor series

$$
x+\delta x \frac{n \delta z}{1 \delta z}+\delta(\delta x) \frac{n \delta z(n-1) \delta z}{1 \cdot 2 \cdot(\delta z)^{2}}+\delta(\delta(\delta x)) \frac{n \delta z(n-1) \delta z(n-2) \delta z}{1 \cdot 2 \cdot 3(\delta z)^{3}}+\cdots
$$

Taylor series

$x+\delta x \frac{n \delta z}{1 \delta z}+\delta(\delta x) \frac{n \delta z(n-1) \delta z}{1 \cdot 2 \cdot(\delta z)^{2}}+\delta(\delta(\delta x)) \frac{n \delta z(n-1) \delta z(n-2) \delta z}{1 \cdot 2 \cdot 3(\delta z)^{3}}+\cdots$
Assumptions:

- $(n-k) \delta z \approx n \delta z$, since δz is small, so replace each $(n-k) \delta z$ by v, a constant

Taylor series

$x+\delta x \frac{n \delta z}{1 \delta z}+\delta(\delta x) \frac{n \delta z(n-1) \delta z}{1 \cdot 2 \cdot(\delta z)^{2}}+\delta(\delta(\delta x)) \frac{n \delta z(n-1) \delta z(n-2) \delta z}{1 \cdot 2 \cdot 3(\delta z)^{3}}+\cdots$
Assumptions:

- $(n-k) \delta z \approx n \delta z$, since δz is small, so replace each $(n-k) \delta z$ by v, a constant
- $\delta x \propto \dot{x}$ and $\delta z \propto \dot{z}$, so in each case the former can be replaced by the latter

Taylor series

$x+\delta x \frac{n \delta z}{1 \delta z}+\delta(\delta x) \frac{n \delta z(n-1) \delta z}{1 \cdot 2 \cdot(\delta z)^{2}}+\delta(\delta(\delta x)) \frac{n \delta z(n-1) \delta z(n-2) \delta z}{1 \cdot 2 \cdot 3(\delta z)^{3}}+\cdots$
Assumptions:

- $(n-k) \delta z \approx n \delta z$, since δz is small, so replace each $(n-k) \delta z$ by v, a constant
- $\delta x \propto \dot{x}$ and $\delta z \propto \dot{z}$, so in each case the former can be replaced by the latter

In essence (in modern terms): $\frac{\delta x}{\delta z} \rightarrow \frac{d x}{d z}, \frac{\delta(\delta x)}{(\delta z)^{2}} \rightarrow \frac{d^{2} x}{d z^{2}}$, and so on

Taylor series

$x+\delta x \frac{n \delta z}{1 \delta z}+\delta(\delta x) \frac{n \delta z(n-1) \delta z}{1 \cdot 2 \cdot(\delta z)^{2}}+\delta(\delta(\delta x)) \frac{n \delta z(n-1) \delta z(n-2) \delta z}{1 \cdot 2 \cdot 3(\delta z)^{3}}+\cdots$
Assumptions:

- $(n-k) \delta z \approx n \delta z$, since δz is small, so replace each $(n-k) \delta z$ by v, a constant
- $\delta x \propto \dot{x}$ and $\delta z \propto \dot{z}$, so in each case the former can be replaced by the latter

In essence (in modern terms): $\frac{\delta x}{\delta z} \rightarrow \frac{d x}{d z}, \frac{\delta(\delta x)}{(\delta z)^{2}} \rightarrow \frac{d^{2} x}{d z^{2}}$, and so on
Again in modern terms, we arrive at:

$$
x+\frac{d x}{d z} v+\frac{d^{2} x}{d z^{2}} \frac{v^{2}}{1 \cdot 2}+\frac{d^{3} x}{d z^{3}} \frac{v^{3}}{1 \cdot 2 \cdot 3}+\cdots
$$

Cf. Taylor's notation in Mathematics Emerging, §8.1.2

Maclaurin's Treatise of fluxions, vol. II, p. 610

Suppose that y can be expressed as

 $A+B z+C z^{2}+D z^{3}+\cdots$6io. Of the inverfo metbod ef Fluxiotss. Book II.
ties muluiplicd by $k+1 x^{7}+m x^{2 \pi}$ \&c. ruifed to a power of any exponent k Ds quadrat. currar. prop, s. \& 6.
$75 \mathbf{t}$. The following theorem is likewife of great ufe in this doctrine. Suppofe that y is any quascicy that can be expreffid by a feries of this form $\mathrm{A}+\mathrm{B} z+\mathrm{C} z^{2}+\mathrm{D} z^{3}+\&$ ec. where $A, B, C, \& \%$. reprefent invariable coofficients as uffual, wny of which may be fappofed to vanifh. When z vaniftes, let E be the value of f, and let $\dot{E}, \stackrel{E}{E}, \dot{E}$, \&c. be thea the refpetive values of $\dot{j}, \ddot{j}, \dot{j}, \&<c . z$ being fuppofed to flow uniformly. Then $y=E+\frac{\dot{\mathrm{E}} z}{\dot{z}}+\frac{\mathrm{E}_{z^{\prime}}{ }^{\prime}}{1 \times 2 \dot{z}^{\prime}}+\frac{\mathrm{E}_{z^{\prime}}}{1 \times 2 \times z^{\prime} z^{\prime}}+\frac{\mathrm{E}_{z^{+}}}{1 \times 2 \times 3 \times j^{\prime}{ }^{\prime}}$
\&c. the law of the continuation of which feries is manifet. For fince $y=A+B z+C z^{2}+D z^{\prime}+$ \&'c. it follows that when $z=0, A$ is equal to y; but (by the fuppofition) E is then equal to ;; confequendly $\Lambda=\mathbf{E}$. By taking the fluxions, and dividing by $\dot{\#}, \frac{\dot{z}}{z}=\mathrm{B}+2 \mathrm{C} \tilde{z}+{ }_{3} \mathrm{D} z^{\prime}+8 \mathrm{cc}$. and when $z=0, B$ is equal to $\underset{z}{\dot{z}}$, that is to $\underset{z}{\stackrel{\dot{E}}{z}}$. By taking the fluxionssgain, and dividing by $\dot{\xi}$ (which is fuppofed invariable) $\frac{\ddot{y}}{\tilde{v}^{\prime}}=$ $=\mathrm{C}+6 \mathrm{D} z+8 \mathrm{cc}$. let $z=0$, and fubftivuing $\ddot{\mathrm{E}}$ for $\ddot{y} \frac{\ddot{E}}{z^{\prime}}=$ $=C$, or $C=\frac{\ddot{E}}{2 z^{*}}$. By taking the fluxions again, and dividing by i; $\dot{\sum_{z}^{\prime}}=6 \mathrm{D}+8$ \&c. and by fuppofing $z=0$, we have $D=\frac{\dot{E}}{6 \dot{z}^{\prime}}$ Thus it appears that $g=\mathrm{A}+\mathrm{Bz}+\mathrm{C} z^{\prime}+\mathrm{D} z^{\prime}+\& \mathrm{c} .=$
 z
pofition may be likerife deduced from the binonial theorem.
Let

Maclaurin's Treatise of fluxions, vol. II, p. 610

Suppose that y can be expressed as $A+B z+C z^{2}+D z^{3}+\cdots$
610. Of sbe inverfo metbod of F/Wxiots. Book II.
ties muluplicd by $k+1 x^{7}+m x^{2 x} \&{ }^{2} \mathrm{c}$. ruifed to 2 power of any exponent k Ds quadrat. currar. prop. s. \& 6.
75 t. The following theorem is likewise of grear ufe in this doctrine. Suppofe that y is any quascity that can be exprefied by a feries of this form $\mathrm{A}+\mathrm{B} z+\mathrm{C} z^{2}+\mathrm{D} z^{3}+\& \mathrm{C}$. where A, B, C, \& \&c. reprefent invariable coofficients as uffual, wny of which may be fappofed to vanifh. When z vaniftes, let E be the value of f, and let $\dot{E}, \stackrel{E}{E}, \dot{E}$, \&c. be thea the refpetive values of $\dot{j}, \ddot{j}, \dot{j}$, \&e. z being fuppofed to flow uniformly. Then $y=\mathrm{E}+\frac{\dot{\mathrm{E}} z}{\dot{z}}+\frac{\hat{\mathrm{E}}_{z^{\prime}}{ }^{\prime}}{1 \times 2 z^{\prime}}+\frac{\mathrm{E}_{z^{\prime}}}{1 \times 2 \times 3 z^{\prime}}+\frac{\mathrm{E}_{z^{+}}}{1 \times 2 \times 3 \times \dot{z}^{+}}$ \&c. the law of the continuation of which feries is manifeft. For fince $g=A+B z+C z^{\prime}+D z^{\prime}+$ \&ic. it follows that when $z=0, A$ is equal to y; but (by the fuppofition) E is then equal to ;; confequendy $A=\mathbf{E}$. By taking the fluxions, and dividing by $\dot{\#}, \frac{\dot{z}}{z}=\mathrm{B}+2 \mathrm{C} \tilde{z}+{ }_{3} \mathrm{D} z^{\prime}+8 \mathrm{cc}$. and when $z=0, B$ is equal to $\underset{z}{\dot{z}}$, that is to $\underset{z}{\stackrel{\dot{E}}{z}}$. By taking the fluxionssgain, and dividing by $\dot{\xi}$ (which is fuppofed invariable) $\frac{\ddot{y}}{z^{\prime}}=$ $=\mathrm{C}+6 \mathrm{D} z+\& \mathrm{cc}$. let $z=0$, and fubftivucing $\ddot{\mathrm{E}}$ for $\ddot{y}, \frac{\ddot{E}}{z^{4}}=$ $=C$, or $C=\frac{\ddot{E}}{2 z^{*}}$. By taking the fluxions again, and dividing by i; $\sum_{z^{\prime}}=6 \mathrm{D}+\& \mathrm{c}$. and by fuppofing $z=0$, we have $\mathrm{D}=\frac{\mathrm{E}}{6 \dot{\xi}^{\prime}}$ Thus it appears that $g=\mathrm{A}+\mathrm{Bz}+\mathrm{C} z^{\prime}+\mathrm{D} z^{\prime}+\& \mathrm{c} .=$
 pofition may be likerife deduced from the binonial theorem

When z vanishes, $y=E, \dot{y}=\dot{E}$, $\ddot{y}=\ddot{E}, \dot{y}=\dot{E}$, and so on

Maclaurin's Treatise of fluxions, vol. II, p. 610

Suppose that y can be expressed as $A+B z+C z^{2}+D z^{3}+\cdots$
610. Of sbe inverfo metbod of F/Wxiots. Book II.
ties muluplicd by $k+1 x^{7}+m x^{2 x} \&{ }^{2} \mathrm{c}$. ruifed to 2 power of any exponent k Ds quadrat. currar. prop. s. \& 6.
75 . The following theorem is likewise of great ufe in this doctrine. Suppofe that y is any quascity that can be exprefied by a feries of this form $A+B z+C z^{2}+D z^{3}+\& e$., where A, B, C, \&c. reprefent invariable coofficients as ufual, wny of which may be fappofed to vanifh. When z vaniftes, let E be the value of f, and let $\dot{E}, \stackrel{E}{E}, \dot{E}$, \&c. be thea the refpetive values of $\dot{j}, \ddot{j}, \dot{j}, \&<c . z$ being fuppofed to flow uniformly. Then $y=E+\frac{\dot{\mathrm{E}} z}{\dot{z}}+\frac{\hat{E}_{z^{\prime}}}{1 \times 2 \dot{z}^{\prime}}+\frac{\hat{E} z^{\prime}}{1 \times 2 \times 3 z^{\prime}}+\frac{\mathrm{E}_{z^{*}}}{1 \times 2 \times 3 \times \dot{z}^{\prime}}+$ \&c. the law of the continuation of which feries is manifeft. For fince $y=\mathrm{A}+\mathrm{Bz}+\mathrm{C} z^{2}+\mathrm{D} z^{\prime}+8 \mathrm{~F}^{\mathrm{c}}$. it follows that when $z=0$, A is equal to y; but (by the fuppofition) E is thea equal to ;; confequendly $\Lambda=\mathbf{E}$. By taking the fluxions, and dividing by $\dot{\#}, \frac{\dot{z}}{z}=\mathrm{B}+2 \mathrm{C} \tilde{z}+{ }_{3} \mathrm{D} z^{\prime}+8 \mathrm{cc}$. and when $z=0, B$ is equal to $\underset{\tilde{z}}{\dot{j}}$, that is to $\frac{\dot{E}}{\underset{\sim}{E}}$. By taking the fluxionssgain, and dividing by $\dot{\xi}$ (which is fuppofed invariable) $\frac{\ddot{y}}{z^{\prime}}=$ $=\mathrm{C}+6 \mathrm{D} z+\& c$. let $z=0$, and fabftituxing \ddot{E} for $\ddot{y}, \frac{\ddot{E}}{z^{\prime}}=$ $=C$, or $C=\frac{\ddot{E}}{2 z^{*}}$. By taking the fluxions again, and dividing by i; $\sum_{z^{\prime}}=6 \mathrm{D}+\& \mathrm{c}$. and by fuppofing $z=0$, we have $\mathrm{D}=\frac{\mathrm{E}}{6 \dot{\xi}^{\prime}}$ Thus it appears that $g=\mathrm{A}+\mathrm{Bz}+\mathrm{C} z^{\prime}+\mathrm{D} z^{\prime}+\& \mathrm{c} .=$
 z
pofition may be likewife deduced from the binonial theoremm
Ier

When z vanishes, $y=E, \dot{y}=\dot{E}$,
$\ddot{y}=\ddot{E}, \dot{y}=\dot{E}$, and so on
z is assumed to flow uniformly, so that $\dot{z}=$ const

Maclaurin's Treatise of fluxions, vol. II, p. 610

Suppose that y can be expressed as $A+B z+C z^{2}+D z^{3}+\cdots$
610. Of the inverfo method of F/Wxiots. Book II.
ties muluplicd by $k+1 x^{7}+m x^{2 x} \&{ }^{2} \mathrm{c}$. ruifed to 2 power of any exponent k Ds quadrat. currar. prop. s. \& 6.
75t. The following theorem is likewise of great ufe in this doctrine. Suppofe that y is any quascicy that can be exprefied by a feries of this form $\mathrm{A}+\mathrm{B} z+\mathrm{C} z^{2}+\mathrm{D} z^{3}+\& \mathrm{C}$. where $A, B, C, \& \%$. reprefent invariable coofficients as uffual, wny of which may be fappofed to vanifh. When z vaniftes, let E be the value of f, and let $\dot{E}, \stackrel{E}{E}, \dot{E}$, \&c. be then the refpective values of $\dot{j}, \ddot{j} ; \dot{j}, \&<c . z$ being fuppofed to flow uniformly. Then $y=E+\frac{\dot{\mathrm{E}} z}{\dot{z}}+\frac{\hat{E}_{z^{\prime}}}{1 \times 2 \dot{z}^{\prime}}+\frac{\hat{E} z^{\prime}}{1 \times 2 \times 3 z^{\prime}}+\frac{\mathrm{E}_{z^{*}}}{1 \times 2 \times 3 \times \dot{z}^{\prime}}+$ \&c. the law of the continuation of which feries is manifeft. For fince $y=\mathrm{A}+\mathrm{Bz}+\mathrm{C} z^{2}+\mathrm{D} z^{\prime}+8 \mathrm{~F}^{\mathrm{c}}$. it follows that when $z=0$, A is equal to y; but (by the fuppofition) E is thea equal to ;; confequendly $\Lambda=\mathbf{E}$. By taking the fluxions, and dividing by $\dot{\#}, \frac{\dot{z}}{z}=\mathrm{B}+2 \mathrm{C} \tilde{z}+{ }_{3} \mathrm{D} z^{\prime}+8 \mathrm{cc}$. and when $z=0, B$ is equal to $\underset{\tilde{z}}{\dot{j}}$, that is to $\frac{\dot{E}}{\underset{\sim}{E}}$. By taking the fluxionssgain, and dividing by $\dot{幺}$ (which is fuppofed invariable) $\frac{\ddot{y}}{\frac{z^{\prime}}{}}=$ $=\mathrm{C}+6 \mathrm{D} z+\& c$. let $z=0$, and fabftituxing \ddot{E} for $\ddot{y}, \frac{\ddot{E}}{z^{\prime}}=$ $=C$, or $C=\frac{\ddot{E}}{2 z^{*}}$. By taking the fluxions again, and dividing by i; $\sum_{z^{\prime}}=6 \mathrm{D}+\& \mathrm{c}$. and by fuppofing $z=0$, we have $\mathrm{D}=\frac{\mathrm{E}}{6 \dot{\xi}^{\prime}}$ Thus it appears that $g=\mathrm{A}+\mathrm{Bz}+\mathrm{C} z^{2}+\mathrm{Dz} z^{\prime}+\& \mathrm{c} .=$
 z
pofition may be likerife deduced from the binonial theorem.
Let

When z vanishes, $y=E, \dot{y}=\dot{E}$,
$\ddot{y}=\ddot{E}, \dot{y}=\dot{\dot{E}}$, and so on
z is assumed to flow uniformly, so that $\dot{z}=$ const

By repeatedly taking fluxions, we may calculate in turn: $A=E$,
$B=\frac{\dot{E}}{\dot{z}}, C=\frac{\ddot{E}}{2 \dot{z}^{2}}, D=\frac{\ddot{E}}{6 \dot{z}^{3}}$, etc.

Maclaurin's Treatise of fluxions, vol. II, p. 610

Suppose that y can be expressed as $A+B z+C z^{2}+D z^{3}+\cdots$
610. Of the inverfo method of F/Wxiots. Book II.
ties muluplicd by $k+1 x^{3}+m x^{2 \pi} \& \mathrm{c}$. ruifed to 2 power of any exponent k Ds quadrat. currar. prop. 5. \& 6 .
75 t. The following theorem is likewife of grear ufe in this doctrine. Suppofe that y is any quaxicy that can be exprefied by a feries of this form $A+B z+C z^{2}+D z^{3}+\& e$., where $A, B, C, \& \%$. reprefent invariable coofficients as uffual, wny of which may be fappofed to vanifh. When z vaniftes, let E be the value of f, and let $\dot{E}, \stackrel{E}{E}, \dot{E}$, \&c. be thea the refpetive values of $\dot{j}, \ddot{j}, \dot{j}, \&<c . z$ being fuppofed to flow uniformly.
 \&c. the law of the continuation of which feries is manifett. For fince $y=A+B z+C z^{2}+D z^{\prime}+8$ c. it follows that when $z=0, A$ is equal to y; but (by the fuppofition) E is thea equal to ;; confequendy $A=\mathbf{E}$. By taking the fluxions, and dividing by $\dot{\#}, \frac{\dot{z}}{z}=\mathrm{B}+2 \mathrm{C} \tilde{z}+{ }_{3} \mathrm{D} z^{\prime}+8 \mathrm{cc}$. and when $z=0, B$ is equal to $\underset{z}{\dot{z}}$, that is to $\frac{\dot{E}}{\underset{\sim}{E}}$. By taking the fluxionssgain, and dividing by $\dot{幺}$ (which is fuppofed invariable) $\frac{\ddot{y}}{\tilde{z}^{\prime}}=$ $=\mathrm{C}+6 \mathrm{D} z+\& c$. let $z=0$, and fabftituxing \ddot{E} for $\ddot{y}, \frac{\ddot{E}}{z^{\prime}}=$ $=C$, or $C=\frac{\ddot{E}}{2 z^{*}}$. By taking the fluxions again, and dividing by $\dot{\#} \dot{\sum}_{z^{\prime}}=6 \mathrm{D}+8 \mathrm{c}$. and by fuppofing $z=0$, we have $\mathrm{D}=\frac{\mathrm{E}}{6 \dot{\sigma}^{\dot{j}}}$ Thus it appears that $g=\mathrm{A}+\mathrm{Bz}+\mathrm{C} z^{\prime}+\mathrm{D} z^{\prime}+\& \mathrm{c} .=$
 pofition may be likewife deduced from the binonial theorem

When z vanishes, $y=E, \dot{y}=\dot{E}$,
$\ddot{y}=\ddot{E}, \dot{y}=\dot{E}$, and so on
z is assumed to flow uniformly, so that $\dot{z}=$ const

By repeatedly taking fluxions, we may calculate in turn: $A=E$,
$B=\frac{\dot{E}}{\dot{z}}, C=\frac{\ddot{E}}{2 \dot{z}^{2}}, D=\frac{\ddot{E}}{6 \dot{z}^{3}}$, etc.
"the law of the continuation of [the] series is manifest"
(Mathematics emerging, §8.2.2.)

Euler's Introductio

Leonhard Euler, Introduction to analysis of the infinite (1748)

INTRODUCTIO
 INANALYSIN
 I N FINITORUM.
 AUCTORE

LEONHARDO EULERO,
Profeffore Regio Berolinensi, Ǵ Academic Imperialis Scientiarum Petropolitane Socio.

Euler's Introductio

Incorporated power series into the definition of a function.

Euler's Introductio

Incorporated power series into the definition of a function.
Since fractional or irrational functions of z are not confined to complete forms $A+B z+C z^{2}+D z^{3}+$ etc. where the number of terms is finite, it is usual to seek expressions of this kind carrying on to infinity, which exhibit the value of the function whether fractional or irrational. And indeed the nature of transcendental functions is thought to be better understood if expressed in this kind of form, even though infinite.

Euler's Introductio

Incorporated power series into the definition of a function.
Since fractional or irrational functions of z are not confined to complete forms $A+B z+C z^{2}+D z^{3}+$ etc. where the number of terms is finite, it is usual to seek expressions of this kind carrying on to infinity, which exhibit the value of the function whether fractional or irrational. And indeed the nature of transcendental functions is thought to be better understood if expressed in this kind of form, even though infinite.

Euler derived series for sine, cosine, exp, log, etc.;

Euler's Introductio

Incorporated power series into the definition of a function.
Since fractional or irrational functions of z are not confined to complete forms $A+B z+C z^{2}+D z^{3}+$ etc. where the number of terms is finite, it is usual to seek expressions of this kind carrying on to infinity, which exhibit the value of the function whether fractional or irrational. And indeed the nature of transcendental functions is thought to be better understood if expressed in this kind of form, even though infinite.

Euler derived series for sine, cosine, exp, log, etc.;
he also discovered relationships between them, for example:

$$
\cos v=\frac{1}{2}\left(e^{i v}+e^{-i v}\right)
$$

Doubts

$\mathbf{X X X V}^{\text {me }}$ MÉMOIRE.

Réflexions fur les Suites \&o fur les Racines imaginaires.

s. I.

Réflexions fur les fuites divergentes ou convergentes.

1. SI on éleve $1+\mu$ à la puiffance m, le terme $n^{\text {e }}$ de la ferie fera $\mu^{n-1} \times \frac{m(m-1) \ldots(m-n+2)}{2 \cdot 3 \cdot 4 \cdots \cdots n-1}$, \& le fuivant, c'eft-à-dire le $(n+1)^{e}$, fera $\mu^{n} \times \frac{n(m-1) \cdots(\ldots(m-n+2)(m-n+1)}{2 \cdot 3 \cdot 4 \cdots n-1 \cdot n}$; donc le rapport du $(n+1)^{e}$ terme au n^{e} fera $\frac{\mu(m-n+1)}{n}$; or pour que la ferie foit convergente, il faut que ce rapport (abftraction faite du figne quil doit avoir) foit $<$ que l'unité.
2. Remarquons d’abord que la formule précédente donnera le moyen de former très-promptement les termes d'unf fuite : par exemple, fi $m=\frac{1}{2}$, il faudra multiplier le premier terme par $\mu \times \frac{1}{2}$ pouravoir le fecond; Y ij

D'Alembert, 1761:
... all reasoning and calculation based on series that do not converge, or that one may suppose not to, always seems to me extremely suspect, even when the results of this reasoning agree with truths known in other ways.

Doubts

$\mathbf{X X X V}^{\text {me }}$ MÉMOIRE.

Réflexions fur les Suites \&o fur les Racines imaginaires.

s. I.

Réflexions fur les fuites divergentes ou convergentes.

1. SI on éleve $1+\mu$ à la puiffance m, le terme n^{e} de la ferie fera $\mu^{n-1} \times \frac{m(m-1) \ldots(n-n+2)}{2 \cdot 3 \cdot 4 \cdots \cdots n-1}$, \& le fuivant, c'eft-à-dire le $(n+1)^{e}$, fera $\mu^{n} \times \frac{n(m-1) \cdots(\ldots(m-n+2)(m-n+1)}{2 \cdot 3 \cdot 4 \cdots n-1 \cdot n}$; donc le rapport du $(n+1)^{e}$ terme au n^{e} fera $\frac{\mu(m-n+1)}{n}$; or pour que la ferie foit convergente, il faut que ce rapport (abftraction faite du figne quil doit avoir) foit $<$ que l'unite.
2. Remarquons d’abord que la formule précédente donnera le moyen de former très-promptement les termes d'une fuite : par exemple, fi $m=\frac{1}{2}$, il faudra multiplier le premier terme par $\mu \times \frac{1}{3}$ pouravoir le fecond; \mathbf{Y} ij

D'Alembert, 1761:
... all reasoning and calculation based on series that do not converge, or that one may suppose not to, always seems to me extremely suspect, even when the results of this reasoning agree with truths known in other ways.

Introduced, without proof, what came to be known (in a more general setting) as d'Alembert's ratio test.
(See: Mathematics emerging, §8.3.1.)

Lagrange's use of series

J.-L. Lagrange, Théorie des fonctions analytiques (1797) Lagrange's use of series: an attempt to liberate calculus from infinitely small quantities (essentially by treating only those functions that may be described by power series)

T H É O R I E

DES FONCTIONS ANALYTIQUES,

LES PRINCIPES DU CALCUL DIFFÉRENTIEL,

DÉGAGEES DE TOUTE CONSIDERATION
D'INFINLMENT PETITS OU D'ÉVANOUISSANS,
DE LIMITES OU DEFLUXIONS,

A L'ANALYE Y A L G E BRIQU E
DES QUANTITES FINIES;

Par 1. L. LAGRANGE, de IInstitut national.

Primial an Vi.

Lagrange and convergence

... [one needs] a way of stopping the expansion of the series at any term one wants and of estimating the value of the remainder of the series.

This problem, one of the most important in the theory of series, has not yet been resolved in a general way

Lagrange found bounds for the 'remainder' ...
and applied his findings to the binomial series ... thus proving what Newton had taken for granted
(See: Mathematics emerging, §8.3.2.)

