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Move on to the 18th century

Eighteenth century:

▶ as in 17th century, much progress;

▶ also many questions and doubts
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Taylor series

Brook Taylor,
The method of direct and
inverse increments (1715)
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Taylor series

(See: Mathematics emerging, §8.2.1.)
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Taylor series

Taylor denoted a small change in x by x. (our δx),

a small change in x. by

x .. (our δ(δx)), and so on

Dependent variable x ; independent variable z increases uniformly with
time

x increases to x + δx in time δt; after a further interval of δt, x has
become x + δx + δ(x + δx) = x + 2δx + δ(δx); continuing:

x +
n

1
δx +

n(n − 1)

1 · 2
δ(δx) +

n(n − 1)(n − 2)

1 · 2 · 3
δ(δ(δx)) + · · ·

= x+δx
nδz

1δz
+δ(δx)

nδz(n − 1)δz

1 · 2 · (δz)2
+δ(δ(δx))

nδz(n − 1)δz(n − 2)δz

1 · 2 · 3(δz)3
+· · ·
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x + δx
nδz

1δz
+ δ(δx)

nδz(n − 1)δz

1 · 2 · (δz)2
+ δ(δ(δx))

nδz(n − 1)δz(n − 2)δz

1 · 2 · 3(δz)3
+ · · ·

Assumptions:

▶ (n − k)δz ≈ nδz , since δz is small, so replace each (n − k)δz by v ,
a constant

▶ δx ∝ ẋ and δz ∝ ż , so in each case the former can be replaced by
the latter

In essence (in modern terms):
δx

δz
→ dx

dz
,
δ(δx)

(δz)2
→ d2x

dz2
, and so on

Again in modern terms, we arrive at:

x +
dx

dz
v +

d2x

dz2
v2

1 · 2
+

d3x

dz3
v3

1 · 2 · 3
+ · · ·

Cf. Taylor’s notation in Mathematics Emerging, §8.1.2
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Maclaurin’s Treatise of fluxions, vol. II, p. 610
Suppose that y can be expressed as
A+ Bz + Cz2 + Dz3 + · · ·

When z vanishes, y = E , ẏ = Ė ,

ÿ = Ë ,
∴
y =

∴
E , and so on

z is assumed to flow uniformly, so
that ż = const

By repeatedly taking fluxions, we
may calculate in turn: A = E ,

B = Ė
ż , C = Ë

2z̈2
, D =

∴
E
6ż3

, etc.

“the law of the continuation of [the]
series is manifest”

(Mathematics emerging, §8.2.2.)
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2z̈2
, D =

∴
E
6ż3
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ÿ = Ë ,
∴
y =

∴
E , and so on

z is assumed to flow uniformly, so
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Euler’s Introductio

Leonhard Euler, Introduction
to analysis of the infinite
(1748)
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Euler’s Introductio

Incorporated power series into the definition of a function.

Since fractional or irrational functions of z are not confined
to complete forms A+ Bz + Cz2 + Dz3+ etc. where the
number of terms is finite, it is usual to seek expressions of
this kind carrying on to infinity, which exhibit the value of
the function whether fractional or irrational. And indeed
the nature of transcendental functions is thought to be
better understood if expressed in this kind of form, even
though infinite.

Euler derived series for sine, cosine, exp, log, etc.;

he also discovered relationships between them, for example:

cos v =
1

2
(e iv + e−iv )



D
r.
B
rig
it
te
St
en
ho
us
e,
M
at
he
m
at
ic
al
In
st
it
ut
e,
O
xf
or
d

D
r.
B
rig
it
te
St
en
ho
us
e,
M
at
he
m
at
ic
al
In
st
it
ut
e,
O
xf
or
d

Euler’s Introductio

Incorporated power series into the definition of a function.

Since fractional or irrational functions of z are not confined
to complete forms A+ Bz + Cz2 + Dz3+ etc. where the
number of terms is finite, it is usual to seek expressions of
this kind carrying on to infinity, which exhibit the value of
the function whether fractional or irrational. And indeed
the nature of transcendental functions is thought to be
better understood if expressed in this kind of form, even
though infinite.

Euler derived series for sine, cosine, exp, log, etc.;

he also discovered relationships between them, for example:

cos v =
1

2
(e iv + e−iv )



D
r.
B
rig
it
te
St
en
ho
us
e,
M
at
he
m
at
ic
al
In
st
it
ut
e,
O
xf
or
d

D
r.
B
rig
it
te
St
en
ho
us
e,
M
at
he
m
at
ic
al
In
st
it
ut
e,
O
xf
or
d

Euler’s Introductio

Incorporated power series into the definition of a function.

Since fractional or irrational functions of z are not confined
to complete forms A+ Bz + Cz2 + Dz3+ etc. where the
number of terms is finite, it is usual to seek expressions of
this kind carrying on to infinity, which exhibit the value of
the function whether fractional or irrational. And indeed
the nature of transcendental functions is thought to be
better understood if expressed in this kind of form, even
though infinite.

Euler derived series for sine, cosine, exp, log, etc.;

he also discovered relationships between them, for example:
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Doubts

D’Alembert, 1761:

... all reasoning and calculation
based on series that do not
converge, or that one may
suppose not to, always seems to
me extremely suspect, even when
the results of this reasoning agree
with truths known in other ways.

Introduced, without proof, what
came to be known (in a more
general setting) as d’Alembert’s
ratio test.

(See: Mathematics emerging,
§8.3.1.)
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Lagrange’s use of series

J.-L. Lagrange, Théorie des
fonctions analytiques (1797)

Lagrange’s use of series: an
attempt to liberate calculus
from infinitely small quantities
(essentially by treating only
those functions that may be
described by power series)
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Lagrange and convergence

... [one needs] a way of stopping the expansion of the
series at any term one wants and of estimating the value
of the remainder of the series.
This problem, one of the most important in the theory

of series, has not yet been resolved in a general way

Lagrange found bounds for the ‘remainder’ ...
and applied his findings to the binomial series ...

thus proving what Newton had taken for granted

(See: Mathematics emerging, §8.3.2.)


