BO1 History of Mathematics Lecture V

Successes of and difficulties with the calculus: the 18th-century beginnings of 'rigour' Part 2: Functions

MT 2021 Week 3

Functions: isoperimeter problem

Classical Problem (Virgil's Aeneid): Find the closed curve of given length L that maximises the area enclosed.

Functions: isoperimeter problem

Classical Problem (Virgil's Aeneid): Find the closed curve of given length L that maximises the area enclosed.

Modern Formulation: Find a function f and corresponding curve $y=f(x)$ between $(a, 0)$ and $(b, 0)$ of given length L (where $L>b-a$) that maximises the area beneath it.

Functions: isoperimeter problem

Classical Problem (Virgil's Aeneid): Find the closed curve of given length L that maximises the area enclosed.

Modern Formulation: Find a function f and corresponding curve $y=f(x)$ between $(a, 0)$ and $(b, 0)$ of given length L (where $L>b-a$) that maximises the area beneath it.

But what is meant by 'function'?

Functions: isoperimeter problem

Isoperimeter problem posed by Jacob Bernoulli to Johann Bernoulli, May 1697, verbally and geometrically (ratio and proportion)

Functions: isoperimeter problem

Isoperimeter problem posed by Jacob Bernoulli to Johann Bernoulli, May 1697, verbally and geometrically (ratio and proportion)

December 1697: problem rephrased by Johann in terms of powers

Functions: isoperimeter problem

Isoperimeter problem posed by Jacob Bernoulli to Johann Bernoulli, May 1697, verbally and geometrically (ratio and proportion)

December 1697: problem rephrased by Johann in terms of powers
Solved by Johann in June 1698; published in 1706, with problem phrased in terms of functions (undefined)

Functions: isoperimeter problem

Isoperimeter problem posed by Jacob Bernoulli to Johann Bernoulli, May 1697, verbally and geometrically (ratio and proportion)

December 1697: problem rephrased by Johann in terms of powers
Solved by Johann in June 1698; published in 1706, with problem phrased in terms of functions (undefined)

In 1718, gave the following definition:
Here one calls a function of a variable magnitude, a quantity composed in any manner possible from this variable magnitude and constants.
(See Mathematics emerging, §9.1.1.)

Functions: the wave equation

Another success of calculus: the wave equation

$$
\frac{\partial^{2} y}{\partial s^{2}}=c^{2} \frac{\partial^{2} y}{\partial t^{2}}
$$

Functions: the wave equation

Another success of calculus: the wave equation

$$
\frac{\partial^{2} y}{\partial s^{2}}=c^{2} \frac{\partial^{2} y}{\partial t^{2}}
$$

Solved by d'Alembert (1747) and Euler (1748) with solutions of the form

$$
y=\Psi(s+c t)-\Phi(s-c t)
$$

Functions: the wave equation

Functions: the wave equation

But which 'functions' are admissible as solutions?

Functions: the wave equation

But which 'functions' are admissible as solutions?
Must they be

- continuous?

Functions: the wave equation

But which 'functions' are admissible as solutions?
Must they be

- continuous?
- differentiable?

Functions: the wave equation

But which 'functions' are admissible as solutions?
Must they be

- continuous?
- differentiable?
- ... whatever these mean ...

What is a function?

Euler's definition of a function (1748):
A function of a variable quantity is an analytic expression composed in any way from that variable quantity and from numbers or constant quantities.

Functions are divided into algebraic and transcendental; the former are those composed by algebraic operations alone, but the latter are those in which transcendental operations are involved.
L. Euler: Introductio in analysin infinitorum (1748) [Introduction to the analysis of the infinite], available in translation, Springer-Verlag, 1988.

What is a function?

Euler's new definition of a function (1755):
Moreover, the quantities that depend in this way on others, so that the latter having changed, they themselves also undergo change, are usually called functions; which name opens up most generally all the ways in which one quantity may be determined from others involved with it.
L. Euler: Institutiones calculi differentialis [Foundations of differential calculus] (1755)

What is a function?

In fact, this question took a long time to settle.
Nineteenth-century authors were split between those who preferred Euler's definition of 1748 and that of 1755 (see Mathematics emerging, §9.3).

What is a function?

In fact, this question took a long time to settle.
Nineteenth-century authors were split between those who preferred Euler's definition of 1748 and that of 1755 (see Mathematics emerging, §9.3).

The idea of a function as a mapping began to emerge at the end of the nineteenth century, in, for example, Dedekind's Was sind und was sollen die Zahlen? (1888), a text that we will come back to in a later lecture.

What is a function?

In fact, this question took a long time to settle.
Nineteenth-century authors were split between those who preferred Euler's definition of 1748 and that of 1755 (see Mathematics emerging, §9.3).

The idea of a function as a mapping began to emerge at the end of the nineteenth century, in, for example, Dedekind's Was sind und was sollen die Zahlen? (1888), a text that we will come back to in a later lecture.
[For a list of different definitions of functions, ranging from 1718 to 1939, see: Dieter Rüthing, Some definitions of the concept of function from Joh. Bernoulli to N. Bourbaki, The Mathematical Intelligencer 6(4) (1984) 72-77]

