BO1 History of Mathematics Lecture V Successes of and difficulties with the calculus: the 18th-century beginnings of 'rigour' Part 1: Publication, acceptance, and successes

MT 2021 Week 3

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Summary

Part 1

- Publication and acceptance of the calculus
- Some successes of the calculus

Part 2

Functions

Part 3

- Problems with the calculus
- Some responses: beginnings of 'rigour' in Analysis

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Reminder: a comparison from lecture IV

Newton (1664-65):

rules for quadrature rules for tangents 'fundamental theorem'

dot notation

physical intuition: rates of change

PROBLEM: vanishing quantities *o* Leibniz (1673-76):

rules for quadrature rules for tangents 'fundamental theorem'

differential notation

algebraic intuition rules and procedures

PROBLEM: vanishing quantities du, dv, ...

・ロト・西・・日・・日・・日・

1669: 'De analysi' shown to Barrow and Collins

- 1669: 'De analysi' shown to Barrow and Collins
- 1671: 'Treatise on fluxions and infinite series' withdrawn before publication

- 1669: 'De analysi' shown to Barrow and Collins
- 1671: 'Treatise on fluxions and infinite series' withdrawn before publication
- 1676: two long letters to Leibniz, plus a coded message

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

- 1669: 'De analysi' shown to Barrow and Collins
- 1671: 'Treatise on fluxions and infinite series' withdrawn before publication
- 1676: two long letters to Leibniz, plus a coded message
- 1685: partial publication of the letters to Leibniz by Wallis in his *Treatise of algebra*

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

- 1669: 'De analysi' shown to Barrow and Collins
- 1671: 'Treatise on fluxions and infinite series' withdrawn before publication
- 1676: two long letters to Leibniz, plus a coded message
- 1685: partial publication of the letters to Leibniz by Wallis in his *Treatise of algebra*

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

1693: further partial publication by Wallis in his *Opera mathematica*

- 1669: 'De analysi' shown to Barrow and Collins
- 1671: 'Treatise on fluxions and infinite series' withdrawn before publication
- 1676: two long letters to Leibniz, plus a coded message
- 1685: partial publication of the letters to Leibniz by Wallis in his *Treatise of algebra*
- 1693: further partial publication by Wallis in his *Opera mathematica*
- 1704: 'Treatise of quadrature' appended to published Opticks

Newton's coded message

Copyright O Cambridge University Library det a Creative Commons Attribution/NeuCommercial 3 0 Directed Lisease (CC BY-NC 3 CUL MS Add.3977 f. 3r

Letter from Isaac Newton to Henry Oldenburg, 24 October 1676 ('Epistola posterior')

"The foundation of these operations is evident enough, in fact; but because I cannot proceed with the explanation of it now, I have preferred to conceal it thus: 6accdae13eff7i3/9n4o4qrr4s8t12vx."

・ロト ・ 一下・ ・ ヨト・

Newton's coded message

CUL MS Add.3977 f. 3r

Letter from Isaac Newton to Henry Oldenburg, 24 October 1676 ('Epistola posterior')

"The foundation of these operations is evident enough, in fact; but because I cannot proceed with the explanation of it now, I have preferred to conceal it thus: 6accdae13eff7i3/9n4o4qrr4s8t12vx."

"Data aequatione quotcunque fluentes quantitates involvente, fluxiones invenire: et vice versa."

= "Given an equation involving any number of fluent quantities, to find the fluxions: and vice versa."

Leibniz's publication of his calculus

1680s: Papers in Acta eruditorum (journal founded 1682)

Leibniz's publication of his calculus

1680s: Papers in Acta eruditorum (journal founded 1682)

1691: Bernoulli brothers (Johann and Jacob) begin to apply Leibniz' methods

◆□ > ◆□ > ◆豆 > ◆豆 > ・豆

Leibniz's publication of his calculus

1680s: Papers in Acta eruditorum (journal founded 1682)

- 1691: Bernoulli brothers (Johann and Jacob) begin to apply Leibniz' methods
- 1696: Exposition by L'Hôpital based on teachings of Johann Bernoulli

(日) (四) (日) (日) (日)

1687: Isochrone — curve of uniform descent (posed by Leibniz; solved by Jacob Bernoulli)

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

- Isochrone curve of uniform descent 1687: (posed by Leibniz; solved by Jacob Bernoulli)
- 1691: Catenary — curve of a hanging chain (posed by Jacob Bernoulli; solved by Johann Bernoulli, Huygens, Leibniz)

Leibniz' and Huygens' solutions, Acta eruditorum, 1691.

Solutions by Johann & Jacob Bernoulli, l'Hospital, and Newton, *Acta eruditorum*, 1696.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

1696: Brachistochrone — curve of fastest descent (posed by Johann Bernoulli; shown to be cycloid by Jacob Bernoulli, Leibniz, Newton, l'Hôpital)

Solutions by Johann & Jacob Bernoulli, l'Hospital, and Newton, *Acta eruditorum*, 1696.

- 1696: Brachistochrone curve of fastest descent (posed by Johann Bernoulli; shown to be cycloid by Jacob Bernoulli, Leibniz, Newton, l'Hôpital)
- 1697: Isoperimeter problems find curve of given length that maximises a certain integral (classical problem; variant posed by Jacob Bernoulli, solved by him 1701)

Solutions by Johann & Jacob Bernoulli, l'Hospital, and Newton, *Acta eruditorum*, 1696.

- 1696: Brachistochrone curve of fastest descent (posed by Johann Bernoulli; shown to be cycloid by Jacob Bernoulli, Leibniz, Newton, l'Hôpital)
- 1697: Isoperimeter problems find curve of given length that maximises a certain integral (classical problem; variant posed by Jacob Bernoulli, solved by him 1701)

And many others

People and connections

Influence of the challenge problems

These challenge problems and others helped to

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Influence of the challenge problems

These challenge problems and others helped to

consolidate and validate Leibnizian calculus

Influence of the challenge problems

These challenge problems and others helped to

consolidate and validate Leibnizian calculus

introduce new questions about 'functions', 'differentiability', 'continuity', ...

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ