# BO1 History of Mathematics Lecture VI Infinite series <br> Part 2: The 17th century 

MT 2021 Week 3

## Infinite series 1600-1900: an overview

Lecture VI:

- mid-late 17th century: many discoveries
- early 18th century: much progress
- later 18th century: doubts and questions


## Infinite series 1600-1900: an overview

Lecture VI:

- mid-late 17th century: many discoveries
- early 18th century: much progress
- later 18th century: doubts and questions

Lecture VII:

- early 19th century: Fourier series
- early 19th century: convergence better understood


## Newton and the general binomial theorem

CUL Add. MS 3958.3, f. 72
(See lecture IV)


## Recall: Newton's integration of $(1+x)^{-1}$

|  | $(1+x)^{-1}$ | $(1+x)^{0}$ | $(1+x)^{1}$ | $(1+x)^{2}$ | $(1+x)^{3}$ | $(1+x)^{4}$ | $\cdots$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $x$ | 1 | 1 | 1 | 1 | 1 | 1 | $\cdots$ |
| $\frac{x^{2}}{2}$ | -1 | 0 | 1 | 2 | 3 | 4 | $\ldots$ |
| $\frac{x^{3}}{3}$ | 1 | 0 | 0 | 1 | 3 | 6 | $\cdots$ |
| $\frac{x^{4}}{4}$ | -1 | 0 | 0 | 0 | 1 | 4 | $\cdots$ |
| $\frac{x^{5}}{5}$ | 1 | 0 | 0 | 0 | 0 | 1 | $\cdots$ |
| $\vdots$ | $\ddots$ |

The entry in the row labelled $\frac{x^{m}}{m}$ and the column labelled $(1+x)^{n}$ is the coefficient of $\frac{x^{m}}{m}$ in $\int(1+x)^{n} d x$. (NB. Newton did not use the notation $\int(1+x)^{n} d x$.)

## Newton and the general binomial theorem



Newton's method of interpolation


## Newton's method of extrapolation

In fact, this method extends easily to any integer $n$

## Newton's method of extrapolation

In fact, this method extends easily to any integer $n$
Newton's explanation:
The property of which table is that the sum of any figure and the figure above it is equal to the figure next after it save one. Also the numerall progressions are of these forms.

| $a$ | $a$ | $a$ | $a$ |  |
| :--- | :--- | :--- | :--- | :--- |
| $b$ | $a+b$ | $2 a+b$ | $3 a+b$ |  |
| $c$ | $b+c$ | $a+2 b+c$ | $3 a+3 b+c$ | $\& c$. |
| $d$ | $c+d$ | $b+2 c+d$ | $a+3 b+3 c+d$ |  |
| $e$ | $d+e$ | $c+2 d+e$ | $b+3 c+3 d+e$ |  |

(See: Mathematics emerging, §8.1.1.)

## Newton's method of interpolation

|  | $\left(1-x^{2}\right)^{-1}$ | $\left(1-x^{2}\right)^{-\frac{1}{2}}$ | $\left(1-x^{2}\right)^{0}$ | $\left(1-x^{2}\right)^{\frac{1}{2}}$ | $\left(1-x^{2}\right)^{1}$ | $\left(1-x^{2}\right)^{\frac{3}{2}}$ | $\left(1-x^{2}\right)^{2}$ | $\ldots$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| x | 1 | 1 | 1 | 1 | 1 | 1 | 1 | $\ldots$ |
| $-\frac{x^{3}}{3}$ | -1 | $-\frac{1}{2}$ | 0 | $\frac{1}{2}$ | 1 | $\frac{3}{2}$ | 2 | $\ldots$ |
| $\frac{x^{5}}{5}$ | 1 | $\frac{3}{8}$ | 0 | $-\frac{1}{8}$ | 0 | $\frac{3}{8}$ | 1 | $\ldots$ |
| $-\frac{x^{7}}{7}$ | -1 | $-\frac{5}{16}$ | 0 | $\frac{3}{48}$ | 0 | $-\frac{1}{16}$ | 0 | $\ldots$ |
| $\frac{x^{9}}{}$ | 1 | $\frac{35}{128}$ | 0 | $-\frac{15}{384}$ | 0 | $\frac{3}{128}$ | 0 | $\ldots$ |
| $\vdots$ | $\vdots$ |  | $\vdots$ | $\vdots$ | $\vdots$ | : | : | \% |

The entry in the row labelled $\pm \frac{x^{m}}{m}$ and the column labelled $\left(1-x^{2}\right)^{n}$ is the coefficient of $\pm \frac{x^{m}}{m}$ in $\int\left(1-x^{2}\right)^{n} d x$.
(NB: possible slips in the last two rows of the original table)

## Newton's method of interpolation

Can fill in some initial values by other methods

## Newton's method of interpolation

Can fill in some initial values by other methods
Newton applied the formula

$$
\binom{n}{k}=\frac{n(n-1)(n-2) \cdots(n-k+1)}{k!}
$$

to fractional $n$,

## Newton's method of interpolation

Can fill in some initial values by other methods
Newton applied the formula

$$
\binom{n}{k}=\frac{n(n-1)(n-2) \cdots(n-k+1)}{k!}
$$

to fractional $n$, so that

$$
\binom{1 / 2}{1}=\frac{1}{2}, \quad\binom{1 / 2}{2}=\frac{1 / 2(1 / 2-1)}{2!}=-\frac{1}{8}
$$

and so on

## Newton and the general binomial theorem

Newton went on to extend this method to other fractional powers, and also to $(a+b x)^{n}$, thereby convincing himself of the truth of the general binomial theorem

## Newton and the general binomial theorem

Newton went on to extend this method to other fractional powers, and also to $(a+b x)^{n}$, thereby convincing himself of the truth of the general binomial theorem - but this was not proved until the 19th century

## Newton and the general binomial theorem

Newton went on to extend this method to other fractional powers, and also to $(a+b x)^{n}$, thereby convincing himself of the truth of the general binomial theorem - but this was not proved until the 19th century

On Newton and the binomial theorem, see https://www.youtube.com/watch?v=xv_PWwdDWDk

## One more table

The table at the bottom of the page gives the interpolations for $(1+x)^{n}$ for half-integer $n$


## Further discoveries by Newton

By further interpolations and integrations (based on strong geometric intuition) Newton found further series for:

- $(1+x)^{p / q}$


## Further discoveries by Newton

By further interpolations and integrations (based on strong geometric intuition) Newton found further series for:

- $(1+x)^{p / q}$
- log, antilog


## Further discoveries by Newton

By further interpolations and integrations (based on strong geometric intuition) Newton found further series for:

- $(1+x)^{p / q}$
- log, antilog
- $\sin , \tan , \ldots$
(NB: cosine was not yet much in use)


## Further discoveries by Newton

By further interpolations and integrations (based on strong geometric intuition) Newton found further series for:

- $(1+x)^{p / q}$
- log, antilog
- $\sin , \tan , \ldots \quad$ (NB: cosine was not yet much in use)
- arcsin, arctan, ...
(See: Mathematics emerging, §§8.1.2-8.1.3.)


## Newton on the move from finite to infinite series

And whatever common analysis performs by equations made up of a finite number of terms (whenever it may be possible), this method may always perform by infinite equations: in consequence, I have never hesitated to bestow on it also the name of analysis.
(De analysi, 1669; Derek T. Whiteside, The mathematical papers of Isaac Newton, CUP, 1967-1981, vol. II, p. 241)

## Other 17th-century discoveries (1a)

Brouncker, c. 1655, published 1668: area under the hyperbola given by $\frac{1}{1 \times 2}+\frac{1}{3 \times 4}+\frac{1}{5 \times 6}+\cdots$


## Other 17th-century discoveries (1b)

$$
\begin{array}{r}
\text { If fay } \mathrm{ABCdEA}=\frac{1}{1 \times 2}+\frac{1}{3 \times 4}+\frac{1}{5 \times 6}+\frac{1}{7 \times 8}+\frac{1}{9 \times 10} \& \mathrm{c} . \\
\qquad \mathrm{EdCDE}=\frac{1}{2 \times 3}+\frac{1}{4 \times 5}+\frac{1}{6 \times 7}+\frac{1}{8 \times 9}+\frac{1}{10 \times 11} \& \mathrm{c} . \\
E \mathrm{EdCyE}=\frac{1}{2 \times 3 \times 4}+\frac{1}{4 \times 5 \times 6}+\frac{1}{6 \times 7 \times 8}+\frac{1}{8 \times 9 \times 10} \text { \&c. }
\end{array}
$$

And that therefore in the firf feries half the firft term is greater than the fum of the two next, and half this fum of the fecond and third greater than the fum of the
 four next, and half the fum of thofe four greater than the fum of the next eight, or $c$. in infinithm. For $\frac{1}{2} d D=b r+b n$; but $b n>f G$, therefore $\frac{r}{2} d D>b r+f G, \sigma \sigma$. And in the fecond feries half the firft term is lefs then the fum of the two next, and half this fum lefs then the fum of the four next, ofe in infinitum.

That the firlt feries are the even terms, viz. the $2^{\mathrm{d}}, 4^{\text {th }}, 6^{\text {th }}, 8^{\text {th }}, 10^{\text {th }}$, of $c$. and the fecond, the odd, viz, the $1^{4}, 3^{4}, 5^{\text {th }}, 7^{\text {th }}, 9^{\text {th }}$, or of the following feries, viz. $\frac{1}{1,2} \cdot \frac{1}{1 \times 3}$ $\frac{1}{4 \times 4} \cdot \frac{1}{4 \times 3} \cdot \frac{1}{5 \times 0} \cdot \frac{1}{1 \times 7}$. ©r. in infinitum $=\mathrm{I}$. Whereof a being put for the number of terms taken at pleafure, $\frac{1}{a-r}$ is the laft, $\frac{a}{a-r}$ is the fum of all thofe terms from the beginning, and $\frac{1}{a-1}$ the fum of the reft to the end.
That $\div$ of the firft terme in the third feries is lefs than the fum of the two next, and a quarter of this fum, lefs than the fum of the four next, and one fourth of this laft fumlefs than the next eight, I thus demonftrate.
Let a $\cdots$ the $3^{\text {i }}$ or laf number of any term of the firt Column, viz: of Divifors,

## Other 17th-century discoveries (2)

Mercator's series (1668), found by long division:

$$
\frac{1}{1+a}=1-a+a a-a^{3}+a^{4}(\& c .)
$$

Gives rise to series for log


## Other 17th-century discoveries (3)



James Gregory (1671):

- general binomial expansion


## Other 17th-century discoveries (3)



## James Gregory (1671):

- general binomial expansion
- series for tan, sec, and others, including

$$
\begin{aligned}
& \quad \theta=\tan \theta-\frac{1}{2} \tan ^{3} \theta+\frac{1}{5} \tan ^{5} \theta-\cdots \\
& \text { for }-\frac{\pi}{4} \leq \theta \leq \frac{\pi}{4}
\end{aligned}
$$

## Other 17th-century discoveries (3)



James Gregory (1671):

- general binomial expansion
- series for tan, sec, and others, including

$$
\begin{aligned}
& \quad \theta=\tan \theta-\frac{1}{2} \tan ^{3} \theta+\frac{1}{5} \tan ^{5} \theta-\cdots \\
& \text { for }-\frac{\pi}{4} \leq \theta \leq \frac{\pi}{4}
\end{aligned}
$$

Gregory to Collins, 23rd November 1670:
I suppose these series I send here enclosed, may have some affinity with those inventions you advertise me that Mr. Newton had discovered.
(On Gregory's work, see: Mathematics emerging, §8.1.4.)

## Other 17th-century discoveries (4)

Gottfried Wilhelm Leibniz (1675):
The area of a circle with unit diameter is given by

$$
\frac{\pi}{4}=1-\frac{1}{3}+\frac{1}{5}-\frac{1}{7}+\frac{1}{9}-\frac{1}{11}+\& c
$$

## Other 17th-century discoveries (4)

Gottfried Wilhelm Leibniz (1675):
The area of a circle with unit diameter is given by

$$
\frac{\pi}{4}=1-\frac{1}{3}+\frac{1}{5}-\frac{1}{7}+\frac{1}{9}-\frac{1}{11}+\& c .
$$

The error in the sum is successively less than $\frac{1}{3}, \frac{1}{5}, \frac{1}{7}$, etc.
Therefore the series as a whole contains all approximations at once, or values greater than correct and less than correct: for according to how far it is understood to be continued, the error will be smaller than a given fraction, and therefore also less than any given quantity. Therefore the series as a whole expresses the exact value.
(See: Mathematics emerging, §8.3.)

## Series in the 17th century: 'convergence'

John Wallis (1656), Arithmetica infinitorum:

$$
\square=\frac{4}{\pi}=\frac{3 \times 3 \times 5 \times 5 \times 7 \times 7 \times \cdots}{2 \times 4 \times 4 \times 6 \times 6 \times 8 \times \cdots}
$$

## Series in the 17th century: 'convergence'

John Wallis (1656), Arithmetica infinitorum:

$$
\square=\frac{4}{\pi}=\frac{3 \times 3 \times 5 \times 5 \times 7 \times 7 \times \cdots}{2 \times 4 \times 4 \times 6 \times 6 \times 8 \times \cdots}
$$

(Determined that

$$
\square>\sqrt{\frac{3}{2}}
$$

## Series in the 17th century: 'convergence'

John Wallis (1656), Arithmetica infinitorum:

$$
\square=\frac{4}{\pi}=\frac{3 \times 3 \times 5 \times 5 \times 7 \times 7 \times \cdots}{2 \times 4 \times 4 \times 6 \times 6 \times 8 \times \cdots}
$$

(Determined that

$$
\square>\sqrt{\frac{3}{2}}, \quad \square<\frac{3}{2} \sqrt{\frac{3}{4}},
$$

## Series in the 17th century: 'convergence'

John Wallis (1656), Arithmetica infinitorum:

$$
\square=\frac{4}{\pi}=\frac{3 \times 3 \times 5 \times 5 \times 7 \times 7 \times \cdots}{2 \times 4 \times 4 \times 6 \times 6 \times 8 \times \cdots}
$$

(Determined that

$$
\square>\sqrt{\frac{3}{2}}, \quad \square<\frac{3}{2} \sqrt{\frac{3}{4}}, \quad \square>\left(\frac{3 \times 3}{2 \times 4}\right) \sqrt{\frac{5}{4}},
$$

and so on)

## Series in the 17th century: 'convergence'

John Wallis (1656), Arithmetica infinitorum:

$$
\square=\frac{4}{\pi}=\frac{3 \times 3 \times 5 \times 5 \times 7 \times 7 \times \cdots}{2 \times 4 \times 4 \times 6 \times 6 \times 8 \times \cdots}
$$

(Determined that

$$
\square>\sqrt{\frac{3}{2}}, \quad \square<\frac{3}{2} \sqrt{\frac{3}{4}}, \quad \square>\left(\frac{3 \times 3}{2 \times 4}\right) \sqrt{\frac{5}{4}},
$$

and so on)
Brouncker (1668): grouping of terms

## Series in the 17th century: 'convergence'

John Wallis (1656), Arithmetica infinitorum:

$$
\square=\frac{4}{\pi}=\frac{3 \times 3 \times 5 \times 5 \times 7 \times 7 \times \cdots}{2 \times 4 \times 4 \times 6 \times 6 \times 8 \times \cdots}
$$

(Determined that

$$
\square>\sqrt{\frac{3}{2}}, \quad \square<\frac{3}{2} \sqrt{\frac{3}{4}}, \quad \square>\left(\frac{3 \times 3}{2 \times 4}\right) \sqrt{\frac{5}{4}},
$$

and so on)
Brouncker (1668): grouping of terms
Leibniz (1675): 'alternating' series

## Power series in the 17th century

Power series (infinite polynomials):

- enabled term-by-term integration for difficult quadratures;


## Power series in the 17th century

Power series (infinite polynomials):

- enabled term-by-term integration for difficult quadratures;
- helped establish sine, log, ... as 'functions' (transcendental);


## Power series in the 17th century

Power series (infinite polynomials):

- enabled term-by-term integration for difficult quadratures;
- helped establish sine, log, ... as 'functions' (transcendental);
- encouraged a move from geometric to algebraic descriptions;


## Power series in the 17th century

Power series (infinite polynomials):

- enabled term-by-term integration for difficult quadratures;
- helped establish sine, log, ... as 'functions' (transcendental);
- encouraged a move from geometric to algebraic descriptions;
- for Newton (and others) inextricably linked with calculus.


## Power series in the 17th century

Power series (infinite polynomials):

- enabled term-by-term integration for difficult quadratures;
- helped establish sine, log, ... as 'functions' (transcendental);
- encouraged a move from geometric to algebraic descriptions;
- for Newton (and others) inextricably linked with calculus.

Power series rank with calculus as a major advance of the 17th century

## Calculus and series combined

## THE <br> METHOD of FLUXIONS

AND

I NFINITE SERIES;
WITHITS
Application to the Geometry of Curve-Lines.

```
    By the Inventor
    Sir I SAAC NEWTONN,K
        Late Prefident of the Royal Society.
```

Tranflated from the AUTHOR's Latin Original not yet made publick.
Newton's treatise of 1671, published 1736

## To which is fubjoin'd,

A Perpetual Comment upon the whole Work,
Confifting of
Annotations, Illustrations, and Supplements, In order to make this Treatife
A compleat Inflitution for the ufe of Learners.

By $\mathcal{F} O H N C O L S O N$, M. A. and F.R.S.
Mafter of Sir Yofeph Williampor's free Mathematical-School at Rocheffer.
$L O N D O N$ :
Printed by Henry Woodfall;
And Sold by John Nourse, at the Lamb without Fimple-Bar. M.DCC.XXXVI.

