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DNN Loss function and trainable parameters
High dimensional loss function

Consider a fully connected L layer deep net given by

h(`) = W (`)z(`) + b(`), z(`+1) = φ(h`)), ` = 0, . . . , L− 1,

for ` = 1, . . . , L with nonlinear activation φ(·) and W (`) ∈ Rn`×n` .
The trainable parameters for the DNN, θ := {W (`), b(`)}L`=1 are
learned by minimizing a high dimensional, |θ| ∼ n2L, loss function
such as

L(θ;X ,Y ) = (2m)−1
m∑
µ=1

nL∑
i=1

(H(xµ(i); θ)− yi ,µ)2.

The shape of L(θ) and our knowledge about a good initial
minimizer θ(0) strongly influence our ability to learn the parameters
θ for the DNN.
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Gradient calculated through back-propagation
Gradients by passing the error backward through the net

L(θ;X ,Y ) = (2m)−1
m∑
µ=1

nL∑
i=1

(H(xµ(i); θ)− yi ,µ)2

Letting δ` := ∂L
∂h(`)

and as before D(`) the diagonal matrix with

D
(`)
ii = φ′(h

(`)
i ) we have

δ` = D`(W (`))T δ`+1 and δL = D(L)gradh(L)L.

which gives the formula for computing the δ` for each layer as

δ` =
(

ΠL−1
k=`D

(k)(W (k))T
)
D(L)gradh(L)L.

and the resulting gradient gradθL with entries as

∂L
∂W (`)

= δ`+1 · hT` and
∂L
∂b(`)

= δ`+1
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Loss landscape example: 56 layers fully connected (Li et al. 18’)
Loss landscapes of DNNs are typically non-convex

http://papers.nips.cc/paper/7875-visualizing-the-loss-landscape-of-neural-nets.pdf
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Stochastic gradient descent (SGD)
Scalability and induced stochasticity

Given a loss function L(θ;X ,Y ), gradient descent is given by

θ(k+1) = θ(k) − α · gradθL(θ,X ,Y )

with α is referred to as the stepsize, or in DL the “learning rate.”
In DL L(θ;X ,Y ) is the sum of m individual loss functions for m
data point: L(θ;X ,Y ) = m−1

∑m
µ=1 l(θ; xµ, yµ)

For m� 1 gradient descent is computationally too costly and
instead one can break appart the m loss functions into
“mini-batches” and repeatedly solve

θ(k+1) = θ(k) − α|Sk |−1gradθ
∑
µ∈Sk

l(θ; xµ, yµ).

This is referred to as stochastic gradient descent as typically Sk is
chosen in some randomized method, usually as a partition of [m]
and a sequence of Sk which cover [m] is referred to as an “epoch.”
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Stochastic gradient descent: challenges and benefits
Learning rates, batch sizes, and induced noise

I SGD is preferable for large m as it reduces the per iteration
computational cost dependence on m to instead depend on
|Sk | which can be set by the user as opposed to m which is
given by the data set.

I SGD, and gradient descent, require selection of a learning rate
(stepsize) which in deep learning is typically selected using
some costly trial and error heuristics.

I The learning rate is typically chosen adaptively in a way that
satisfies

∑∞
k=1 αk =∞ and

∑∞
k=1 α

2
k <∞; in particular as

αk ∼ k−1.

I The optimal selection of learning weight, and selection of Sk ,
depends on the unknown local Lipschitz constant
‖gradl(θ1; xµ, yµ)− gradl(θ2; xµ, yµ)‖ ≤ Lµ‖θ1 − θ2‖.
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Global convergence of gradient descent

Lemma 1 [An overestimation property] Let L(θ) ∈ C 1(Rn) with
∇L Lipshitz continuous with constant L. Then for any θ and
d ∈ Rn and α ∈ R:

L(θ + αd) ≤ L(θ) + α∇L(θ)Td + α2L

2
‖d‖2.

In particular, if d = −∇L(θ) then

L(θ − α∇L(θ)) ≤ L(θ)− α‖∇L(θ)‖2 +
L

2
α2‖∇L(θ)‖22 and so

L(θ − α∇L(θ)) ≤ L(θ)− α
(

1− L

2
α

)
‖∇L(θ)‖2 (OPGD).

Optimization algorithms for training DNNs 7



Global convergence and global rate for GD methods

Proof of Lemma 1. By Taylor’s theorem in integral form we have

L(θ + αd) = L(θ) +
∫ t=1
t=0 ∇L(θ + αtd)T (αd) · dt

= L(θ) + α∇L(θ)Td + α
∫ t=1
t=0 [∇L(θ + αtd)−∇L(θ)]Td · dt

≤ L(θ) + α∇L(θ)Td + α
∫ t=1
t=0 ‖∇L(θ + αtd)−∇L(θ)‖ · ‖d‖dt

by Cauchy-Schwarz inequality

≤ L(θ) + α∇L(θ)Td + αL‖d‖
∫ t=1
t=0 ‖θ + αtd − θ‖dt

by Lipschitz continuity of the gradient

≤ L(θ) + α∇L(θ)Td + α2L‖d‖2
∫ t=1
t=0 tdt,

which gives the required overestimation inequality.�

Optimization algorithms for training DNNs 8



Stochastic GD: Expected descent
Conditions used to derive convergence

If |Sk | = 1 (one data element), the expected gradient wrt data
point G k := gradθ

∑
µ∈Sk l(θ; xµ, yµ):

ESk [G k ] = E[G k |Sk ] =
m∑
i=1

E[G k |Sk = i ] · P[Sk = i ] =
m∑
i=1

∇li (θk) · 1

m
= ∇L(θk).

I Similarly for larger sets Sk drawn uniformly from
( m
|Sk |
)

possible configurations; referred to as mini-batches.

I Above, we used E[G k |Sk = i ] = ∇li (θk) (true due to iid
choice of Sk and G k). More generally, we require an unbiased
estimator of the true gradient: ESk [G k ] = ∇L(θk).

I (A realization of) −G k may not be a descent direction:
∇L(θk)T(−G k) < 0 cannot be guaranteed, but is guaranteed
in expectation. Therefore, we analyse the expected descent of
the random iterates (θk).
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Global convergence of SGD - in expectation

Assumptions for our analysis (|Sk | = 1):

(1) for all i ≤ m, ∇li is Lipschitz continuous, constant L
⇒ ∇l Lipschitz continuous, L

(2) ∃M > 0 s.t.
VAR(G k |Sk) := E[(G k −∇l(θk))T(G k −∇l(θk))|Sk ] ≤ M for all k
(bounded total variance can usually be guaranteed in a
neighbourhood of θ∗ but not globally for strongly convex L(·).)

Recall that G k conditioned on current batch is an unbiased
estimator of the true gradient; this is true here (and when
|Sk | > 1), but it would have to be assumed in a more general
stochastic framework. (A more thorough analysis would also
condition on θk .)
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Global convergence of SGD - in expectation

Lemma 2 [An overestimation property - in expectation] Assume
Assumption (1) holds. When applying SGD to L(θ) with |Sk | = 1,
we have

ESk
[
L(θk+1)

]
≤ L(θk)− α∇L(θk)T ESk

[
G k
]

+ Lα2

2 ESk
[
‖G k‖2

]
.

If Assumption (2) also holds, then

ESk
[
L(θk+1)

]
≤ L(θk)− αk

(
Lαk

2 − 1
)
‖∇L(θk)‖2 + ML(αk )2

2 .
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Global convergence of SGD - in expectation

Proof of Lemma 2. Apply Lemma 1 to L with θ = θk , d = G k and
α = αk : using θk+1 = θk + αkG k ,

L(θk+1) ≤ L(θk)− αk∇L(θk)TG k + L
2 (αk)2‖G k‖2.

Applying expectation on both sides wrt Sk ,

ESk [L(θk+1] ≤ L(θk)− αk∇L(θk)T ESk [G k ] + L
2 (αk)2 ESk [‖G k‖2].

where we used that L(θk) and ∇L(θk) do not depend on Sk . We
already showed/assumed that ESk [G k ] = ∇L(θk).

VAR(G k |Sk) = ESk
[
‖G k‖2

]
− 2∇L(θk)T ESk [G k ] + ‖∇L(θk)‖2

= ESk
[
‖G k‖2

]
− ‖∇L(θk)‖2.

Thus ESk
[
‖G k‖2

]
≤ M + ‖∇L(θk)‖2. �
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Global convergence of SGD: the strongly convex case

Let L be (for now) strongly convex with parameter µ > 0, namely
L(x + s) ≥ L(x) + sT∇L(x) + µ

2‖s‖
2 for all x , s.

Theorem 3 Let L be smooth, strongly convex and satisfying
Assumption (1), (2). Let SGD with fixed stepsize be applied to
minimize L, where αk = α = η

L where η ∈ (0, 1]. Then SGD
converges linearly to a residual error in the following sense: for all
k ≥ 0,

E[L(θk)]− L(θ∗)− ηM

2µ
≤
(

1− ηµ

L

)k
·
[
L(θ0)− f (θ∗)− ηM

2µ

]
.

I Thus limk→∞(E[L(θk)]− L(θ∗)) ≤ αML
2µ = ηM

2µ . Convergence is

obtained, in expectation, up to the level ηM2µ (noise level !), which
can be decreased in various ways.

I The ratio L
µ is a condition number of L (connect to second

derivatives).
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Global convergence of SGD: the strongly convex case

Proof of Theorem 3. Lemma 3 and Lα
2 − 1 = η

2 − 1 < −1
2 give

ESk
[
L(θk+1)

]
≤ L(θk)− α

2 ‖∇L(θk)‖2 + MLα2

2 .
Taking expectation E with respect to the past, namely,
S0, . . . ,Sk−1 on both sides of the above, we note that we have a
memoryless property so current iterate only depends on previous
sample size (E = Ek := E(·|S0, . . . ,Sk) = ESk ):

Ek

[
L(θk+1)

]
−L(θ∗) ≤ Ek−1

[
L(θk)

]
−L(θ∗)− α

2
Ek−1

[
‖∇L(θk)‖2

]
+

MLα2

2
.

A consequence the strong convexity property, is that θ∗ global
minimizer is unique and L(θk)− L(θ∗) ≥ 1

2µ‖∇L(θk)‖2; thus

Ek−1(L[(θk ]− L(θ∗)) ≥ 1
2µ Ek−1(‖∇L(θk)‖2).
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Global convergence of SGD: the strongly convex case

Proof of Theorem 3. (continued) We deduce

Ek

[
L(θk+1)

]
−L(θ∗) ≤ (1− µα)

(
Ek−1

[
L(θk)

]
− L(θ∗)

)
+
MLα2

2
,

or equivalently,

Ek

[
L(θk+1)

]
−L(θ∗)−αML

2µ
≤ (1− µα))

(
Ek−1

[
L(θk)

]
− L(θ∗)− αML

2µ

)
.

Note that α = η/L ≤ 1/L ≤ 1/µ. Replacing α gives

Ek

[
L(θk+1)

]
−L(θ∗)−Mη

2µ
≤
(

1− ηµ

L

)(
Ek−1

[
L(θk)

]
− L(θ∗)− Mη

2µ

)
,

The claim now follows by induction.�

Optimization algorithms for training DNNs 15



Decreasing the SGD “noise floor”: technique 1

Though not always desirable (due to the needs for small
‘generalization error’), the SGD “floor” (noise level) of ηM

2µ can be

removed so that limk→∞ E[L(θk)] = L(θ∗).

Dynamic stepsize reduction. Technique 1: Dynamically reduce
αk = ηk

L . Note that ηk → 0 makes the residual ηkM2µ → 0 but it

also means that
(
1− ηk

L

)
→ 1, so the price is that we lose linear

convergence!

Theorem 4. [Dynamic stepsize stochastic gradient descent
(DS-SGD)] Let αk = 2

2L+kµ , for all k ≥ 0. Then SGD satisfies

0 ≤ E[L(θk)]− L(θ∗) ≤ ν

2 L
µ + k

(*)

for all k ≥ 0, where ν := 2 L
µ ×max

{
M
µ ,L(θ0)− L(θ∗)

}
. Thus

limk→∞ E[L(θk)] = L(θ∗). But rate is O
(
1
k

)
- sublinear !
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Decreasing the SGD “floor”: technique 1

Dynamic stepsize reduction (continued)
Proof of Theorem 4. (similar to proof of Theorem 3) Note that
αk ≤ 1/L ≤ 1/µ and all arguments continue to hold in the proof
of Th 3 until and including, and so for all k ≥ 0,

Ek

[
L(θk+1)

]
−L(θ∗)−α

kML

2µ
≤
(
1− µαk)

)(
Ek−1

[
L(θk)

]
− L(θ∗)− αkML

2µ

)
.

We are now going to prove the desired conclusion (*) by
induction. Clearly at k = 0, (*) holds. Assume (*) holds at k > 0,
and substitute (*) into the above displayed equation. We obtain

Ek

[
L(θk+1)

]
− L(θ∗)− αkML

2µ
≤
(
1− µαk)

)( ν

2 L
µ + k

− αkML

2µ

)
.

Using the expression of αk in the above and simplifying the
expressions provides (*) with k replaced by (k + 1).�
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Decreasing the SGD “noise floor”: technique 2

Increase mini-batch sizes from |Sk | = 1 to |Sk | = p ≥ 1. Use
G k = 1

p

∑
j∈Sk ∇lj(θ

k), where j ∈ Sk i.i.d. ∼ U({1, . . . ,m}):

VAR(G k |Sk) =
∑
j∈Sk

1

p2
ESk

[
‖∇lj(θk)−∇L(θk)‖2

]
+2
∑
j<i

1

p2
ESk

[
∇lj(θk)−∇L(θk)

]T
ESk

[
∇li (θk)−∇L(θk)

]
=

1

p2

∑
j∈Sk

VAR(∇lj(θk)) + 0 ≤ M

p
,

where we have used |Sk | = p and the independence of i and j indices in
Sk in the first equality as well as the lack of bias
ESk

[
∇lj(θk)

]
= ∇L(θk). We also have ESk

[
G k
]

= ∇L(θk) - unbiased
batch gradient.
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Decreasing the SGD “noise floor”: technique 2

Increase mini-batch sizes from |Sk | = 1 to |Sk | = p ≥ 1.
(continued)
Then, as in Theorem 3, we deduce, under the same assumptions,

E[L(θk)]− L(θ∗)− ηM

2µp
≤
(

1− ηµ

L

)k
·
[
L(θ0)− L(θ∗)− ηM

2µp

]
.

Thus the noise level is decreased by batch size p, without
impacting the convergence factor.
(Compare and contrast Techniques 1 and 2.)
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Decreasing the SGD “noise floor”: technique 3

Momentum for gradient variance reduction
Technique 3: use acceleration by momentum to reduce VAR(G k |Sk).
This yields E [L(θk)]→ L(θ∗) with linear convergence rate, with a much
smaller cost per iteration than mini-batching (see the ‘Katyusha’ paper).
https://www.jmlr.org/papers/volume18/16-410/16-410.pdf

Other techniques (earlier than Katyusha): variance reduction (SVRG),
SAG (Schmidt, Le Roux, Bach’15: restores linear rate for SGD), SAGA
(Defazio et al’14).

Conclusions: each of the three approaches for accelerating SGD have
merit and are often all used at once. In particular, once SGD appears to
stagnate one both reduces the stepsize and increases the batch-size;
though this is stopped once validation error begins to increase.

What about SGD performance when L is nonconvex (as in DNNs)?
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Global convergence of SGD: the nonconvex case

Theorem 5. [SGD with fixed stepsize] Let L ∈ C1(Rn) be bounded
below by Llow, with ∇L Lipschitz continuous with Lipschitz
constant L (Assumption (1)). Let Assumption (2) hold (bounded
variance). Apply the SGD method with fixed stepsize α = η/L and
|S|k = 1, where η ∈ (0, 1], to minimizing L. Then

min
0≤i≤k

E[‖∇L(θi )‖2] ≤ αLM+
2(L(θ0)− Llow)

kα
= ηM+

2L(L(θ0)− Llow)

kη
.

and so the SGD method takes at most k ≤ 2L(L(θ0)−Llow)
ηε

iterations/evaluations to generate E[‖∇L(θk)‖2] ≤ ε+ ηM.

I again, note the ‘noise floor’ that limits the accuracy that can
be obtained.
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Global convergence of SGD: the nonconvex case

Proof of Theorem 5. The first part of Theorem 3 still applies, and
we still have the following expected decrease:

Ek

[
L(θk+1)

]
≤ Ek−1

[
L(θk)

]
− α

2
Ek−1

[
‖∇L(θk)‖2

]
+

MLα2

2
.

We need to connect the per iteration decrease with the gradient.
We have for all k ≥ 0:

Ek−1
[
L(θk)

]
− Ek

[
L(θk+1)

]
≥ α

2
Ek−1

[
‖∇L(θk)‖2

]
− MLα2

2
.

Summing up the above bound from i = 0 to k , we deduce

L(θ0)− Llow ≥ L(θ0)− Ek

[
L(θk+1)

]
≥ α

2

∑k
i=0 Ei−1

[
‖∇L(θi )‖2

]
− (k + 1)MLα2

2 .

≥ α
2 (k + 1)

[
min0≤i≤k E[‖∇L(θi )‖2]−MLα

]
�
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Global convergence of SGD: the nonconvex case

To reduce the ’noise floor’ use: decreasing stepsize, mini-batching.
(Acceleration/momentum difficult in the nonconvex case.)

Re decreasing stepsize, let αk = ηk/L where ηk ∈ (0, 1].

Similarly to the proof of Theorem 5, we obtain∑k
i=0 α

i Ei−1
[
‖∇L(θi )‖2

]
≤ 2(L(θ0)− Llow) + ML

∑k
i=0(αi )2.

And so to reduce the noise term, assume that
∑∞

i=0 α
i =∞ and∑∞

i=0(αi )2 <∞.
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