

Let \mathcal{R} be a multiply connected domain. Ze be some pt in \mathcal{R} Θ be an argle in $[0, 2\overline{n}]$. Then there is a unique univalent map $f_{20,\Theta}$: $\mathcal{R} \rightarrow SD$ where Θ is the argle of the clits with the real axis, Zo is mapped to ∞ , and the lawent expansion of the map at Zo is of the form $f_{Z_0,\Theta}(Z) = \frac{1}{Z-Z_0} + a_1(Z-Z_0) + a_2(Z-Z_0)^2 + \cdots$

For the mapping on to the parallel slit domain. the class of admissible functions is the class of all univalent functions in R which takes the above form (for the Lawrent expansion at 20/ the function fize, 0 has the maximal value of Rei e^{-2iD}a₁)

(.) Conclution arus radial state.

2.7 Boundary Correspondence. Prop 2.7.1 Let f be a univdent map from $N \xrightarrow{onto} N'$ and Let Zn E R be a seq which tends to the bodry of R

/ then
$$f(E_n)$$
 tends to the bodry of Ω' .

The 2.7.3 let Γ be a simply connected bdd atomain in the conplax plane. and f be a univalent map $\Gamma \rightarrow ID$. Then for every accessible pt 5, the map f can be continuously extended to 8 and $|f_i(s)|=1$. Moreover for distinct accessible pts, the images are different. !!

Lemma 2.7.4 [koche] Let En, En' be two seqs n Dconverging to distinct pts S, S' on the unit circle. Let Yn be the Jordan are connecting En, and En' inside ID, but outside some fixed nord of O. Assume f analytic, bdd n D and f converges uniformly to O on Yn. i.l. $En = \sup |f| \rightarrow O$ Yn

$$\Rightarrow f = 0 \quad \text{on } D.$$

$$(Jordan & arc: is the intege of califictule, continuous may of a closed bild interval tails] to the plane).
Proof: Support f is not identically 0. Then either flot to or. $z_0 = 0$ is a zero of order $N \mod from f$.
Chore the zad case , we replace f in the following proof by f/z^n)-
For sufficiently large $m \in N$. I a sector S of angle $2\pi/m$ such that the radii connector $1, S'$ are both outside of S .
by performing $f(e^{2n}z)$ instead of f_1z_1
we can assume the line biscoring S dres in the real line.
Ital T_n by high on the biscoring S and there B no other
 pt N'' by the part of Y_n' connecting one of the endpt of the side
 pt $N'' by the part of Y_n' connecting one of the endpt of the side
 pt $N'' be the part of Y_n' connecting one of the endpt of the side
 $re Suith the first intersection of Y_n' with the real line.
By the flection products. $f(z)$ is called the real line.
By the flection products. $f(z)$ is called to $f = 1$.
By the flection products. $f(z)$ is called to $f(z)$ is a construct the real line.
By the flection products. $f(z)$ is called to $f(z)$ is a construct the form d with the real line.
By the flection products. $f(z)$ is called to $f(z)$ is analytic m and bid
by z_n on $T_n''$$$$$$