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In the last 2 lectures

Definition of Sobolev spaces

Extension theorems for Sobolev functions.
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This lecture

Trace (boundary value) of Sobolev functions.

Gagliardo-Nirenberg-Sobolev’s inequality
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More on extension

Theorem (Stein’s extension theorem)

Assume that Ω is a bounded Lipschitz domain. Then there exists a
linear operator E sending functions defined a.e. in Ω to functions
defined a.e. in Rn such that for every k ≥ 0, 1 ≤ p <∞ and
u ∈ W k,p(Ω) it hold that Eu = u a.e. in Ω and

‖Eu‖W k,p(Rn) ≤ Ck,p,Ω‖u‖W k,p(Ω)

The operator E is called a total extension for Ω.

Luc Nguyen (University of Oxford) C4.3 – Lecture 7 MT 2021 4 / 21



More on extension

There exists domain Ω for which there is no bounded linear
operator E : W k,p(Ω)→ W k,p(Rn) such that Eu = u a.e. in Ω.

Ω = {x2 + y2 < 1} \ {(x, 0)|x ≥ 0}

Ω̄ = {x2 + y2 ≤ 1}

D = {x2 + y2 < 1}

u =
√

r

u = −
√

r

We knew that the function
u(x , y) =

√
r cos θ

2
satisfies

? u ∈ C∞(Ω) ∩W 1,2(Ω).

? u /∈ W 1,2(D).

So no extension of u belongs to
W 1,2(R2).
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Values of Sobolev functions on the boundary

As prompted at the beginning of the course, in our later
applications in the analysis of PDEs, solutions will live in a
Sobolev space.

When discussing PDEs on a domain, one needs to specify
boundary conditions.

A complication arises:

? On one hand, Sobolev ‘functions’ are equivalent classes of
functions which are equal almost everywhere. Thus one can
redefine the value of a Sobolev function on set of measure zero
at will without changing the equivalent class it represents.

? On the other hand, the boundary of a domain usually has
measure zero. So the boundary value of a Sobolev function
cannot simply be defined by restricting as is the case for
continuous functions.
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Values of Sobolev functions on the boundary

Remark
Suppose 1 ≤ p <∞, Ω is a bounded smooth domain and let
(X , ‖ · ‖) be a normed vector space which contains C (∂Ω). There is
NO bounded linear operator T : Lp(Ω)→ X such that Tu = u|∂Ω for
all u ∈ C (Ω̄).

Proof

Suppose by contradiction that such T exists. Consider
fm ∈ C (Ω̄) defined by

fm(x) =

{
mdist(x , ∂Ω) if dist(x , ∂Ω) < 1/m,
1 if dist(x , ∂Ω) ≥ 1/m.

Then ‖fm − 1‖pLp(Ω) ≤ |{dist(x , ∂Ω) < 1/m}| ≤ C
m

and so

fm → 1 in Lp(Ω).

Now as Tfm = 0 6→ 1 = T1 in X , T cannot be bounded.
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Values of Sobolev functions on the boundary

Theorem
Suppose 1 ≤ p <∞, and that Ω is a bounded Lipschitz domain.
Then there exists a bounded linear operator T : W 1,p(Ω)→ Lp(∂Ω),
called the trace operator, such that Tu = u|∂Ω if
u ∈ W 1,p(Ω) ∩ C (Ω̄).

We will only proof a weaker statement in a simpler situation:

Γ̂ = {x = (x′, 0) : |x′| < 2}
Γ = {x = (x′, 0) : |x′| < 1}

Ω = {x = (x′, xn) : |x′| < 2,

0 < xn < 2}

We would like to define the trace operator
relative to Γ: There exists a bounded linear
operator TΓ : W 1,p(Ω)→ Lp(Γ) such that

TΓu = u|Γ for all u ∈ C 1(Ω̄).
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Values of Sobolev functions on the boundary

Γ̂ = {x = (x′, 0) : |x′| < 2}
Γ = {x = (x′, 0) : |x′| < 1}

Ω = {x = (x′, xn) : |x′| < 2,

0 < xn < 2}

ζ ≡ 1

ζ ≡ 0

0 ≤ ζ ∈ C∞c (B3/2) such that ζ ≡ 1 in B1

We first prove the key estimate

‖u‖Lp(Γ) ≤ Cp‖u‖W 1,p(Ω) for all u ∈ C 1(Ω̄). (*)

? We have∫
Γ

|u|p dx ′≤
∫

Γ̂

ζ|u|p dx ′= −
∫

Γ̂

[ ∫ 2

0

∂xn(ζ|u|p) dxn
]
dx ′

= −
∫

Ω

∂xn(ζ|u|p) dx≤ Cp,ζ

∫
Ω

[|u|p + |Du||u|p−1] dx .
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Values of Sobolev functions on the boundary

Γ̂ = {x = (x′, 0) : |x′| < 2}
Γ = {x = (x′, 0) : |x′| < 1}

Ω = {x = (x′, xn) : |x′| < 2,

0 < xn < 2}

ζ ≡ 1

ζ ≡ 0

ζ ∈ C∞c (B3/2) such that ζ ≡ 1 in B1.

We first prove the key estimate

‖u‖Lp(Γ) ≤ Cp‖u‖W 1,p(Ω) for all u ∈ C 1(Ω̄). (*)

? We have

∫
Γ
|u|p dx ′ ≤ Cp,ζ

∫
Ω

[|u|p + |Du||u|p−1] dx .

? Using the inequality |a||b|p−1 ≤ 1
p |a|

p + p−1
p |b|

p, we obtain∫
Γ
|u|p dx ′ ≤ Cp,ζ

∫
Ω

[|u|p + |Du|p] dx

This proves (*).
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Values of Sobolev functions on the boundary

Γ̂ = {x = (x′, 0) : |x′| < 2}
Γ = {x = (x′, 0) : |x′| < 1}

Ω = {x = (x′, xn) : |x′| < 2,

0 < xn < 2}

We have proved the key estimate

‖u‖Lp(Γ) ≤ Cp‖u‖W 1,p(Ω) for all u ∈ C 1(Ω̄). (*)

It follows that the map u 7→ u|Γ =: Au is a bounded linear
operator from (C 1(Ω̄), ‖ · ‖W 1,p) into Lp(Γ).
As Ω is Lipschitz, C∞(Ω̄) and hence C 1(Ω̄) is dense in W 1,p(Ω).
Thus there exists a unique bounded linear operator
TΓ : W 1,p(Ω)→ Lp(Γ) which extends A, i.e. TΓu = u|Γ for all
u ∈ C 1(Ω̄).
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IBP formula revisited

Proposition (Integration by parts)

Suppose that 1 ≤ p <∞, Ω is a bounded Lipschitz domain, n be the
outward unit normal to ∂Ω, T : W 1,p(Ω)→ Lp(Ω) is the trace
operator, and u ∈ W 1,p(Ω). Then∫

Ω

∂iu v dx =

∫
∂Ω

Tu v ni dS −
∫

Ω

u ∂iv dx for all v ∈ C 1(Ω̄).

Proof

We knew that C∞(Ω̄) is dense in W 1,p(Ω). Thus there exists
um ∈ C∞(Ω̄) such that um → u in W 1,p.

Fix some v ∈ C 1(Ω̄). We have∫
Ω

∂ium v dx =

∫
∂Ω

um v ni dS −
∫

Ω

um ∂iv dx .
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IBP formula revisited

Proof∫
Ω
∂ium v dx =

∫
∂Ω

um v ni dS −
∫

Ω
um ∂iv dx .

Note that ∂ium → ∂iu, um → u in Lp(Ω) and
um|∂Ω = Tum → Tu in Lp(∂Ω). We can thus argue using
Hölder’s inequality to send m→∞ to obtain∫

Ω

∂iu v dx =

∫
∂Ω

Tu v ni dS −
∫

Ω

u ∂iv dx

as wanted.
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Functions of zero trace

Theorem (Trace-zero functions in W 1,p)

Suppose that 1 ≤ p <∞, Ω is a bounded Lipschitz domain,
T : W 1,p(Ω)→ Lp(Ω) is the trace operator, and u ∈ W 1,p(Ω). Then
u ∈ W 1,p

0 (Ω) if and only if Tu = 0.

Proof

(⇒) Suppose u ∈ W 1,p
0 (Ω). By definition, there exists

um ∈ C∞c (Ω) such that um → u in W 1,p. Clearly Tum = 0 and
so by continuity, Tu = 0.

(⇐) We will only consider the case Ω is the unit ball B . This
proof can be generalised fairly quickly to star-shaped domains.
The proof for Lipschitz domains is more challenging.
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Functions of zero trace

Proof

(⇐) Suppose that u ∈ W 1,p(B) and Tu = 0. We would like to
construct a sequence um ∈ C∞c (B) such that um → u in W 1,p.

? Let ū be the extension by zero of u to Rn.
? As Tu = 0, we have by the IBP formula that∫

B
∂iu v dx = −

∫
B
u ∂iv dx for all v ∈ C 1(B̄).

It follows that∫
B
∂iu v dx = −

∫
B
ū ∂iv dx for all v ∈ C∞c (Rn).

By definition of weak derivatives, this means

∂i ū =

{
∂iu in B
0 elsewhere

in the weak sense.

So ū ∈W 1,p(Rn).
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Functions of zero trace

Proof

(⇐) We would like to construct a sequence um ∈ C∞c (B) such
that um → u in W 1,p(B).

? Let ūλ(x) = ū(λx). Observe that Supp(ūλ) ⊂ B1/λ.
? In Sheet 1, you showed that ūλ → ū in Lp as λ→ 1.

Noting also that ∂i ūλ(x) = λ∂iu(λx), we also have that
∂i ūλ → ∂i ū in Lp as λ→ 1.
Hence ūλ → ū in W 1,p as λ→ 1.

? Fix λm > 1 such that ‖ūλm − ū‖W 1,p(Rn) ≤ 1/m.
? Let (%ε) be a family of mollifiers: %ε(x) = ε−n%(x/ε) with
% ∈ C∞c (B),

∫
Rn % = 1. Then ūλm ∗ %ε → ūλm in W 1,p as ε→ 0.

Also, Supp(ūλm ∗ %ε) ⊂ Bλ−1
m +ε. Thus, we can select εm

sufficiently small such that um := ūλm ∗ %εm ∈ C∞c (B) and
‖um − ūλm‖W 1,p(Rn) ≤ 1/m.

? Now ‖um − u‖W 1,p(B) ≤ 2/m and so we are done.
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Embeddings

Let X1 and X2 be two Banach spaces.

We say X1 is embedded in X2 if X1 ⊂ X2.

We say X1 is continuously embedded in X2 if X1 is embedded in
X2 and the identity map I : X1 → X2 is a bounded linear
operator, i.e. there exists a constant C such that
‖x‖X2 ≤ C‖x‖X1 . We write X1 ↪→ X2.

We say X1 is compactly embedded in X2 if X1 is embedded in X2

and the identity map I : X1 → X2 is a compact bounded linear
operator. This means that I is continuous and every bounded
sequence (xn) ⊂ X1 has a subsequence which is convergent with
respect to the norm on X2.

Our interest: The possibility of embedding W k,p in Lq or C 0.

Luc Nguyen (University of Oxford) C4.3 – Lecture 7 MT 2021 17 / 21



Gagliardo-Nirenberg-Sobolev’s inequality

Theorem (Gagliardo-Nirenberg-Sobolev’s inequality)

Assume 1 ≤ p < n and let p∗ = np
n−p . Then there exists a constant

Cn,p such that

‖u‖Lp∗ (Rn) ≤ Cn,p‖∇u‖Lp(Rn) for all u ∈ W 1,p(Rn).

In particular, W 1,p(Rn) ↪→ Lp
∗
(Rn).

The number p∗ = np
n−p is called the Sobolev conjugate of p. It

satisfies 1
p∗

= 1
p
− 1

n
.

The case p = 1 is referred to as Gagliardo-Nirenberg’s inequality.
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GNS’s inequality – Why p < n and why p∗?

Question
For what p and q does it hold

‖u‖Lq(Rn) ≤ Cn,p,q‖∇u‖Lp(Rn) for all u ∈ C∞c (Rn)? (*)

This will be answered by a scaling argument:

Fix a non-zero function u ∈ C∞c (Rn). Define uλ(x) = u(λx).
Then uλ ∈ C∞c (Rn) and so

‖uλ‖Lq(Rn) ≤ Cn,p,q‖∇uλ‖Lp(Rn). (**)

We compute

‖uλ‖qLq =

∫
Rn

|u(λx)|q dx =
1

λn

∫
Rn

|u(y)|q dy = λ−n‖u‖qLq .
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GNS’s inequality – Why p < n and why p∗?

uλ(x) = u(λx) and

‖uλ‖Lq(Rn) ≤ Cn,p,q‖∇uλ‖Lp(Rn). (**)

We compute ‖uλ‖Lq = λ−n/q‖u‖Lq .

Next,

‖∇uλ‖pLp =

∫
Rn

|λ∇u(λx)|p dx

= λp−n
∫
Rn

|∇u(y)|p dy = λp−n‖∇u‖pLp .

That is ‖∇uλ‖Lp = λ1−n/p‖∇u‖Lp .
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GNS’s inequality – Why p < n and why p∗?

Putting in (**), we get

λ−n/q‖u‖Lq ≤ Cn,p,qλ
1−n/p‖∇u‖Lp .

Rearranging, we have

λ−1+ n
p
− n

q ≤ Cn,p,q‖∇u‖Lp
‖u‖Lq

.

Since the last inequality is valid for all λ, we must have that
−1 + n

p
− n

q
= 0, i.e. q = np

n−p = p∗. As q > 0, we must also
have p ≤ n.

We conclude that a necessary condition in order for the
inequality (*) to hold is that p ≤ n and q = p∗.
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