C4.3 Functional Analytic Methods for PDEs Lecture 7

Luc Nguyen
luc.nguyen@maths
University of Oxford

MT 2021

In the last 2 lectures

- Definition of Sobolev spaces
- Extension theorems for Sobolev functions.

This lecture

- Trace (boundary value) of Sobolev functions.
- Gagliardo-Nirenberg-Sobolev's inequality

More on extension

Theorem (Stein's extension theorem)

Assume that Ω is a bounded Lipschitz domain. Then there exists a linear operator E sending functions defined a.e. in Ω to functions defined a.e. in \mathbb{R}^{n} such that for every $k \geq 0,1 \leq p<\infty$ and $u \in W^{k, p}(\Omega)$ it hold that $E u=u$ a.e. in Ω and

$$
\|E u\|_{W^{k, p}\left(\mathbb{R}^{n}\right)} \leq C_{k, p, \Omega}\|u\|_{W^{k, p}(\Omega)}
$$

The operator E is called a total extension for Ω.

More on extension

- There exists domain Ω for which there is no bounded linear operator $E: W^{k, p}(\Omega) \rightarrow W^{k, p}\left(\mathbb{R}^{n}\right)$ such that $E u=u$ a.e. in Ω.

We knew that the function $u(x, y)=\sqrt{r} \cos \frac{\theta}{2}$ satisfies

So no extension of u belongs to $W^{1,2}\left(\mathbb{R}^{2}\right)$.

$$
\begin{gathered}
\Omega=\left\{x^{2}+y^{2}<1\right\} \backslash\{(x, 0) \mid x \geq 0\} \\
\bar{\Omega}=\left\{x^{2}+y^{2} \leq 1\right\} \\
D=\left\{x^{2}+y^{2}<1\right\}
\end{gathered}
$$

$$
\begin{aligned}
& \star u \in C^{\infty}(\Omega) \cap W^{1,2}(\Omega) \\
& \star u \notin W^{1,2}(D)
\end{aligned}
$$

Values of Sobolev functions on the boundary

- As prompted at the beginning of the course, in our later applications in the analysis of PDEs, solutions will live in a Sobolev space.
- When discussing PDEs on a domain, one needs to specify boundary conditions.
- A complication arises:
* On one hand, Sobolev 'functions' are equivalent classes of functions which are equal almost everywhere. Thus one can redefine the value of a Sobolev function on set of measure zero at will without changing the equivalent class it represents.
* On the other hand, the boundary of a domain usually has measure zero. So the boundary value of a Sobolev function cannot simply be defined by restricting as is the case for continuous functions.

Values of Sobolev functions on the boundary

Remark

Suppose $1 \leq p<\infty, \Omega$ is a bounded smooth domain and let $(X,\|\cdot\|)$ be a normed vector space which contains $C(\partial \Omega)$. There is NO bounded linear operator $T: L^{p}(\Omega) \rightarrow X$ such that $T u=\left.u\right|_{\partial \Omega}$ for all $u \in C(\bar{\Omega})$.

Proof

- Suppose by contradiction that such T exists. Consider $f_{m} \in C(\bar{\Omega})$ defined by

$$
f_{m}(x)= \begin{cases}m \operatorname{dist}(x, \partial \Omega) & \text { if } \operatorname{dist}(x, \partial \Omega)<1 / m \\ 1 & \text { if } \operatorname{dist}(x, \partial \Omega) \geq 1 / m\end{cases}
$$

- Then $\left\|f_{m}-1\right\|_{L^{p}(\Omega)}^{p} \leq|\{\operatorname{dist}(x, \partial \Omega)<1 / m\}| \leq \frac{C}{m}$ and so $f_{m} \rightarrow 1$ in $L^{p}(\Omega)$.
- Now as $T f_{m}=0 \nrightarrow 1=T 1$ in X, T cannot be bounded.

Values of Sobolev functions on the boundary

Theorem

Suppose $1 \leq p<\infty$, and that Ω is a bounded Lipschitz domain. Then there exists a bounded linear operator $T: W^{1, p}(\Omega) \rightarrow L^{p}(\partial \Omega)$, called the trace operator, such that $T u=\left.u\right|_{\partial \Omega}$ if $u \in W^{1, p}(\Omega) \cap C(\bar{\Omega})$.

We will only proof a weaker statement in a simpler situation:

$$
\begin{gathered}
\Omega=\left\{x=\left(x^{\prime}, x_{n}\right):\left|x^{\prime}\right|<2,\right. \\
\left.0<x_{n}<2\right\} \\
\qquad \\
\hat{\Gamma}=\left\{x=\left(x^{\prime}, 0\right):\left|x^{\prime}\right|<2\right\} \\
\Gamma=\left\{x=\left(x^{\prime}, 0\right):\left|x^{\prime}\right|<1\right\}
\end{gathered}
$$

We would like to define the trace operator relative to Γ : There exists a bounded linear operator $T_{\Gamma}: W^{1, p}(\Omega) \rightarrow L^{p}(\Gamma)$ such that

$$
T_{\Gamma} u=\left.u\right|_{\Gamma} \text { for all } u \in C^{1}(\bar{\Omega})
$$

Values of Sobolev functions on the boundary

$$
\begin{aligned}
& \Omega=\left\{x=\left(x^{\prime}, x_{n}\right):\left|x^{\prime}\right|<2,\right. \\
& \left.0<x_{n}<2\right\} \\
& \hat{\Gamma}=\left\{x=\left(x^{\prime}, 0\right):\left|x^{\prime}\right|<2\right\} \\
& \Gamma=\left\{x=\left(x^{\prime}, 0\right):\left|x^{\prime}\right|<1\right\}
\end{aligned}
$$

- We first prove the key estimate

$$
\|u\|_{L^{P}(\Gamma)} \leq C_{p}\|u\|_{W^{1, p}(\Omega)} \text { for all } u \in C^{1}(\bar{\Omega}) .
$$

* We have

$$
\begin{aligned}
\int_{\Gamma}|u|^{p} d x^{\prime} & \leq \int_{\hat{r}} \zeta|u|^{p} d x^{\prime}=-\int_{\hat{r}}\left[\int_{0}^{2} \partial_{x_{n}}\left(\zeta|u|^{p}\right) d x_{n}\right] d x^{\prime} \\
& =-\int_{\Omega} \partial_{x_{n}}\left(\zeta|u|^{p}\right) d x \leq C_{p, \zeta} \int_{\Omega}\left[|u|^{p}+|D u||u|^{p-1}\right] d x .
\end{aligned}
$$

Values of Sobolev functions on the boundary

$\Omega=\left\{x=\left(x^{\prime}, x_{n}\right):\left|x^{\prime}\right|<2\right.$,
$\left.0<x_{n}<2\right\}$
$\zeta \equiv 0$
$\hat{\Gamma}=\left\{x=\left(x^{\prime}, 0\right):\left|x^{\prime}\right|<2\right\}$
$\Gamma=\left\{x=\left(x^{\prime}, 0\right):\left|x^{\prime}\right|<1\right\}$
$\zeta \in C_{c}^{\infty}\left(B_{3 / 2}\right)$ such that $\zeta \equiv 1$ in B_{1}.

- We first prove the key estimate

$$
\|u\|_{L^{P}(\Gamma)} \leq C_{p}\|u\|_{W^{1, p}(\Omega)} \text { for all } u \in C^{1}(\bar{\Omega}) .
$$

\star We have $\int_{\Gamma}|u|^{p} d x^{\prime} \leq C_{p, \zeta} \int_{\Omega}\left[|u|^{p}+|D u||u|^{p-1}\right] d x$.
\star Using the inequality $|a||b|^{p-1} \leq \frac{1}{p}|a|^{p}+\frac{p-1}{p}|b|^{p}$, we obtain

$$
\int_{\Gamma}|u|^{p} d x^{\prime} \leq C_{p, \zeta} \int_{\Omega}\left[|u|^{p}+|D u|^{p}\right] d x
$$

This proves (*).

Values of Sobolev functions on the boundary

$$
\begin{gathered}
\Omega=\left\{x=\left(x^{\prime}, x_{n}\right):\left|x^{\prime}\right|<2,\right. \\
\left.0<x_{n}<2\right\} \\
\qquad \\
\hat{\Gamma}=\left\{x=\left(x^{\prime}, 0\right):\left|x^{\prime}\right|<2\right\} \\
\Gamma=\left\{x=\left(x^{\prime}, 0\right):\left|x^{\prime}\right|<1\right\}
\end{gathered}
$$

- We have proved the key estimate

$$
\|u\|_{L^{p}(\Gamma)} \leq C_{p}\|u\|_{W^{1, p}(\Omega)} \text { for all } u \in C^{1}(\bar{\Omega})
$$

- It follows that the map $\left.u \mapsto u\right|_{\Gamma=:} A u$ is a bounded linear operator from ($\left.C^{1}(\bar{\Omega}),\|\cdot\|_{W^{1, p}}\right)$ into $L^{p}(\Gamma)$.
- As Ω is Lipschitz, $C^{\infty}(\bar{\Omega})$ and hence $C^{1}(\bar{\Omega})$ is dense in $W^{1, p}(\Omega)$. Thus there exists a unique bounded linear operator $T_{\Gamma}: W^{1, p}(\Omega) \rightarrow L^{p}(\Gamma)$ which extends A, i.e. $T_{\Gamma} u=\left.u\right|_{\Gamma}$ for all $u \in C^{1}(\bar{\Omega})$.

IBP formula revisited

Proposition (Integration by parts)

Suppose that $1 \leq p<\infty, \Omega$ is a bounded Lipschitz domain, n be the outward unit normal to $\partial \Omega, T: W^{1, p}(\Omega) \rightarrow L^{p}(\Omega)$ is the trace operator, and $u \in W^{1, p}(\Omega)$. Then

$$
\int_{\Omega} \partial_{i} u v d x=\int_{\partial \Omega} T u v n_{i} d S-\int_{\Omega} u \partial_{i} v d x \text { for all } v \in C^{1}(\bar{\Omega}) .
$$

Proof

- We knew that $C^{\infty}(\bar{\Omega})$ is dense in $W^{1, p}(\Omega)$. Thus there exists $u_{m} \in C^{\infty}(\bar{\Omega})$ such that $u_{m} \rightarrow u$ in $W^{1, p}$.
- Fix some $v \in C^{1}(\bar{\Omega})$. We have

$$
\int_{\Omega} \partial_{i} u_{m} v d x=\int_{\partial \Omega} u_{m} v n_{i} d S-\int_{\Omega} u_{m} \partial_{i} v d x
$$

IBP formula revisited

Proof

- $\int_{\Omega} \partial_{i} u_{m} v d x=\int_{\partial \Omega} u_{m} v n_{i} d S-\int_{\Omega} u_{m} \partial_{i} v d x$.
- Note that $\partial_{i} u_{m} \rightarrow \partial_{i} u, u_{m} \rightarrow u$ in $L^{p}(\Omega)$ and $\left.u_{m}\right|_{\partial \Omega}=T u_{m} \rightarrow T u$ in $L^{p}(\partial \Omega)$. We can thus argue using Hölder's inequality to send $m \rightarrow \infty$ to obtain

$$
\int_{\Omega} \partial_{i} u v d x=\int_{\partial \Omega} T u v n_{i} d S-\int_{\Omega} u \partial_{i} v d x
$$

as wanted.

Functions of zero trace

Theorem (Trace-zero functions in $W^{1, p}$)

Suppose that $1 \leq p<\infty, \Omega$ is a bounded Lipschitz domain,
$T: W^{1, p}(\Omega) \rightarrow L^{p}(\Omega)$ is the trace operator, and $u \in W^{1, p}(\Omega)$. Then $u \in W_{0}^{1, p}(\Omega)$ if and only if $T u=0$.

Proof

- (\Rightarrow) Suppose $u \in W_{0}^{1, p}(\Omega)$. By definition, there exists $u_{m} \in C_{c}^{\infty}(\Omega)$ such that $u_{m} \rightarrow u$ in $W^{1, p}$. Clearly $T u_{m}=0$ and so by continuity, $T u=0$.
- (\Leftarrow) We will only consider the case Ω is the unit ball B. This proof can be generalised fairly quickly to star-shaped domains. The proof for Lipschitz domains is more challenging.

Functions of zero trace

Proof

- (\Leftarrow) Suppose that $u \in W^{1, p}(B)$ and $T u=0$. We would like to construct a sequence $u_{m} \in C_{c}^{\infty}(B)$ such that $u_{m} \rightarrow u$ in $W^{1, p}$.
\star Let \bar{u} be the extension by zero of u to \mathbb{R}^{n}.
* As $T u=0$, we have by the IBP formula that

$$
\int_{B} \partial_{i} u v d x=-\int_{B} u \partial_{i} v d x \text { for all } v \in C^{1}(\bar{B})
$$

It follows that

$$
\int_{B} \partial_{i} u v d x=-\int_{B} \bar{u} \partial_{i} v d x \text { for all } v \in C_{c}^{\infty}\left(\mathbb{R}^{n}\right)
$$

By definition of weak derivatives, this means

$$
\partial_{i} \bar{u}=\left\{\begin{array}{ll}
\partial_{i} u & \text { in } B \\
0 & \text { elsewhere }
\end{array}\right. \text { in the weak sense. }
$$

So $\bar{u} \in W^{1, p}\left(\mathbb{R}^{n}\right)$.

Functions of zero trace

Proof

- (\Leftarrow) We would like to construct a sequence $u_{m} \in C_{c}^{\infty}(B)$ such that $u_{m} \rightarrow u$ in $W^{1, p}(B)$.
\star Let $\bar{u}_{\lambda}(x)=\bar{u}(\lambda x)$. Observe that $\operatorname{Supp}\left(\bar{u}_{\lambda}\right) \subset B_{1 / \lambda}$.
\star In Sheet 1 , you showed that $\bar{u}_{\lambda} \rightarrow \bar{u}$ in L^{p} as $\lambda \rightarrow 1$.
Noting also that $\partial_{i} \bar{u}_{\lambda}(x)=\lambda \partial_{i} u(\lambda x)$, we also have that $\partial_{i} \bar{u}_{\lambda} \rightarrow \partial_{i} \bar{u}$ in L^{p} as $\lambda \rightarrow 1$. Hence $\bar{u}_{\lambda} \rightarrow \bar{u}$ in $W^{1, p}$ as $\lambda \rightarrow 1$.
\star Fix $\lambda_{m}>1$ such that $\left\|\bar{u}_{\lambda_{m}}-\bar{u}\right\|_{W^{1, p}\left(\mathbb{R}^{n}\right)} \leq 1 / m$.
* Let $\left(\varrho_{\varepsilon}\right)$ be a family of mollifiers: $\varrho_{\varepsilon}(x)=\varepsilon^{-n} \varrho(x / \varepsilon)$ with $\varrho \in C_{c}^{\infty}(B), \int_{\mathbb{R}^{n}} \varrho=1$. Then $\bar{u}_{\lambda_{m}} * \varrho_{\varepsilon} \rightarrow \bar{u}_{\lambda_{m}}$ in $W^{1, p}$ as $\varepsilon \rightarrow 0$. Also, $\operatorname{Supp}\left(\bar{u}_{\lambda_{m}} * \varrho_{\varepsilon}\right) \subset B_{\lambda_{m}^{-1}+\varepsilon}$. Thus, we can select ε_{m} sufficiently small such that $u_{m}:=\bar{u}_{\lambda_{m}} * \varrho_{\varepsilon_{m}} \in C_{c}^{\infty}(B)$ and $\left\|u_{m}-\bar{u}_{\lambda_{m}}\right\|_{W^{1, p}\left(\mathbb{R}^{n}\right)} \leq 1 / m$.
\star Now $\left\|u_{m}-u\right\|_{W^{1, p}(B)} \leq 2 / m$ and so we are done.

Embeddings

Let X_{1} and X_{2} be two Banach spaces.

- We say X_{1} is embedded in X_{2} if $X_{1} \subset X_{2}$.
- We say X_{1} is continuously embedded in X_{2} if X_{1} is embedded in X_{2} and the identity map I: $X_{1} \rightarrow X_{2}$ is a bounded linear operator, i.e. there exists a constant C such that $\|x\|_{X_{2}} \leq C\|x\|_{X_{1}}$. We write $X_{1} \hookrightarrow X_{2}$.
- We say X_{1} is compactly embedded in X_{2} if X_{1} is embedded in X_{2} and the identity map $I: X_{1} \rightarrow X_{2}$ is a compact bounded linear operator. This means that I is continuous and every bounded sequence $\left(x_{n}\right) \subset X_{1}$ has a subsequence which is convergent with respect to the norm on X_{2}.
Our interest: The possibility of embedding $W^{k, p}$ in L^{q} or C^{0}.

Gagliardo-Nirenberg-Sobolev's inequality

Theorem (Gagliardo-Nirenberg-Sobolev's inequality)

Assume $1 \leq p<n$ and let $p^{*}=\frac{n p}{n-p}$. Then there exists a constant $C_{n, p}$ such that

$$
\|u\|_{L^{*}\left(\mathbb{R}^{n}\right)} \leq C_{n, p}\|\nabla u\|_{L^{p}\left(\mathbb{R}^{n}\right)} \text { for all } u \in W^{1, p}\left(\mathbb{R}^{n}\right) \text {. }
$$

In particular, $W^{1, p}\left(\mathbb{R}^{n}\right) \hookrightarrow L^{p^{*}}\left(\mathbb{R}^{n}\right)$.
The number $p^{*}=\frac{n p}{n-p}$ is called the Sobolev conjugate of p. It satisfies $\frac{1}{p^{*}}=\frac{1}{p}-\frac{1}{n}$.
The case $p=1$ is referred to as Gagliardo-Nirenberg's inequality.

GNS's inequality - Why $p<n$ and why p^{*} ?

Question

For what p and q does it hold

$$
\begin{equation*}
\|u\|_{L^{q}\left(\mathbb{R}^{n}\right)} \leq C_{n, p, q}\|\nabla u\|_{L^{p}\left(\mathbb{R}^{n}\right)} \text { for all } u \in C_{c}^{\infty}\left(\mathbb{R}^{n}\right) ? \tag{}
\end{equation*}
$$

This will be answered by a scaling argument:

- Fix a non-zero function $u \in C_{c}^{\infty}\left(\mathbb{R}^{n}\right)$. Define $u_{\lambda}(x)=u(\lambda x)$. Then $u_{\lambda} \in C_{c}^{\infty}\left(\mathbb{R}^{n}\right)$ and so

$$
\left\|u_{\lambda}\right\|_{L^{q}\left(\mathbb{R}^{n}\right)} \leq C_{n, p, q}\left\|\nabla u_{\lambda}\right\|_{L^{p}\left(\mathbb{R}^{n}\right)}
$$

- We compute

$$
\left\|u_{\lambda}\right\|_{L^{q}}^{q}=\int_{\mathbb{R}^{n}}|u(\lambda x)|^{q} d x=\frac{1}{\lambda^{n}} \int_{\mathbb{R}^{n}}|u(y)|^{q} d y=\lambda^{-n}\|u\|_{L^{q}}^{q} .
$$

GNS's inequality - Why $p<n$ and why p^{*} ?

- $u_{\lambda}(x)=u(\lambda x)$ and

$$
\left\|u_{\lambda}\right\|_{L^{q}\left(\mathbb{R}^{n}\right)} \leq C_{n, p, q}\left\|\nabla u_{\lambda}\right\|_{L^{p}\left(\mathbb{R}^{n}\right)}
$$

- We compute $\left\|u_{\lambda}\right\|_{L^{q}}=\lambda^{-n / q}\|u\|_{L^{q}}$.
- Next,

$$
\begin{aligned}
&\left\|\nabla u_{\lambda}\right\|_{L^{p}}^{p}=\int_{\mathbb{R}^{n}}|\lambda \nabla u(\lambda x)|^{p} d x \\
&=\lambda^{p-n} \int_{\mathbb{R}^{n}}|\nabla u(y)|^{p} d y=\lambda^{p-n}\|\nabla u\|_{L^{p}}^{p}
\end{aligned}
$$

That is $\left\|\nabla u_{\lambda}\right\|_{L^{p}}=\lambda^{1-n / p}\|\nabla u\|_{L^{p}}$.

GNS's inequality - Why $p<n$ and why p^{*} ?

- Putting in $\left({ }^{* *}\right)$, we get

$$
\lambda^{-n / q}\|u\|_{L^{q}} \leq C_{n, p, q} \lambda^{1-n / p}\|\nabla u\|_{L^{p}}
$$

Rearranging, we have

$$
\lambda^{-1+\frac{n}{p}-\frac{n}{q}} \leq \frac{C_{n, p, q}\|\nabla u\|_{L^{p}}}{\|u\|_{L^{q}}}
$$

- Since the last inequality is valid for all λ, we must have that $-1+\frac{n}{p}-\frac{n}{q}=0$, i.e. $q=\frac{n p}{n-p}=p^{*}$. As $q>0$, we must also have $p \leq n$.
- We conclude that a necessary condition in order for the inequality $\left(^{*}\right)$ to hold is that $p \leq n$ and $q=p^{*}$.

