

C4.3 Functional Analytic Methods for PDEs Lecture 7

Luc Nguyen luc.nguyen@maths

University of Oxford

MT 2021

- Definition of Sobolev spaces
- Extension theorems for Sobolev functions.

- Trace (boundary value) of Sobolev functions.
- Gagliardo-Nirenberg-Sobolev's inequality

Theorem (Stein's extension theorem)

Assume that Ω is a bounded Lipschitz domain. Then there exists a linear operator E sending functions defined a.e. in Ω to functions defined a.e. in \mathbb{R}^n such that for every $k \ge 0$, $1 \le p < \infty$ and $u \in W^{k,p}(\Omega)$ it hold that Eu = u a.e. in Ω and

$$\|Eu\|_{W^{k,p}(\mathbb{R}^n)} \leq C_{k,p,\Omega} \|u\|_{W^{k,p}(\Omega)}$$

The operator *E* is called a total extension for Ω .

More on extension

There exists domain Ω for which there is no bounded linear operator E : W^{k,p}(Ω) → W^{k,p}(ℝⁿ) such that Eu = u a.e. in Ω.

We knew that the function

$$u(x, y) = \sqrt{r} \cos \frac{\theta}{2}$$
 satisfies
 $\star \ u \in C^{\infty}(\Omega) \cap W^{1,2}(\Omega).$
 $\star \ u \notin W^{1,2}(D).$

So no extension of u belongs to $W^{1,2}(\mathbb{R}^2)$.

- As prompted at the beginning of the course, in our later applications in the analysis of PDEs, solutions will live in a Sobolev space.
- When discussing PDEs on a domain, one needs to specify boundary conditions.
- A complication arises:
 - On one hand, Sobolev 'functions' are equivalent classes of functions which are equal almost everywhere. Thus one can redefine the value of a Sobolev function on set of measure zero at will without changing the equivalent class it represents.
 - On the other hand, the boundary of a domain usually has measure zero. So the boundary value of a Sobolev function cannot simply be defined by restricting as is the case for continuous functions.

Remark

Suppose $1 \le p < \infty$, Ω is a bounded smooth domain and let $(X, \|\cdot\|)$ be a normed vector space which contains $C(\partial\Omega)$. There is NO <u>bounded</u> linear operator $T : L^p(\Omega) \to X$ such that $Tu = u|_{\partial\Omega}$ for all $u \in C(\overline{\Omega})$.

Proof

• Suppose by contradiction that such T exists. Consider $f_m \in C(\overline{\Omega})$ defined by

$$f_m(x) = \begin{cases} m \operatorname{dist}(x, \partial \Omega) & \text{if } \operatorname{dist}(x, \partial \Omega) < 1/m, \\ 1 & \text{if } \operatorname{dist}(x, \partial \Omega) \ge 1/m. \end{cases}$$

Theorem

Suppose $1 \leq p < \infty$, and that Ω is a bounded Lipschitz domain. Then there exists a <u>bounded</u> linear operator $T : W^{1,p}(\Omega) \to L^p(\partial\Omega)$, called the trace operator, such that $Tu = u|_{\partial\Omega}$ if $u \in W^{1,p}(\Omega) \cap C(\overline{\Omega})$.

We will only proof a weaker statement in a simpler situation:

 $\hat{\Gamma} = \{x = (x', 0) : |x'| < 2\}$ $\Gamma = \{x = (x', 0) : |x'| < 1\}$ We would like to define the trace operator relative to Γ : There exists a bounded linear operator $\mathcal{T}_{\Gamma} : W^{1,p}(\Omega) \to L^{p}(\Gamma)$ such that

$$T_{\Gamma}u = u|_{\Gamma}$$
 for all $u \in C^1(\overline{\Omega})$.

$$\Omega = \{x = (x', x_n) : |x'| < 2, \\ 0 < x_n < 2\}$$

$$0\leq \zeta\in \mathit{C}^\infty_c(\mathit{B}_{3/2})$$
 such that $\zeta\equiv 1$ in B_1

 $\hat{\Gamma} = \{x = (x', 0) : |x'| < 2\}$ $\Gamma = \{x = (x', 0) : |x'| < 1\}$

• We first prove the key estimate

$$\|u\|_{L^p(\Gamma)} \leq C_p \|u\|_{W^{1,p}(\Omega)}$$
 for all $u \in C^1(\overline{\Omega})$. (*)

★ We have

$$\begin{split} \int_{\Gamma} |u|^{p} dx' &\leq \int_{\widehat{\Gamma}} \zeta |u|^{p} dx' = -\int_{\widehat{\Gamma}} \left[\int_{0}^{2} \partial_{x_{n}}(\zeta |u|^{p}) dx_{n} \right] dx' \\ &= -\int_{\Omega} \partial_{x_{n}}(\zeta |u|^{p}) dx \leq C_{p,\zeta} \int_{\Omega} [|u|^{p} + |Du||u|^{p-1}] dx. \end{split}$$

$$\Omega = \{x = (x', x_n) : |x'| < 2, \\ 0 < x_n < 2\}$$

$$\zeta \in \mathit{C}^\infty_{c}(\mathit{B}_{3/2})$$
 such that $\zeta \equiv 1$ in B_1 .

 $\hat{\Gamma} = \{x = (x', 0) : |x'| < 2\}$ $\Gamma = \{x = (x', 0) : |x'| < 1\}$

• We first prove the key estimate

$$\begin{aligned} \|u\|_{L^{p}(\Gamma)} &\leq C_{p} \|u\|_{W^{1,p}(\Omega)} \text{ for all } u \in C^{1}(\bar{\Omega}). \end{aligned} (*) \\ \star \text{ We have } \int_{\Gamma} |u|^{p} dx' &\leq C_{p,\zeta} \int_{\Omega} [|u|^{p} + |Du||u|^{p-1}] dx. \\ \star \text{ Using the inequality } |a||b|^{p-1} &\leq \frac{1}{p} |a|^{p} + \frac{p-1}{p} |b|^{p}, \text{ we obtain} \\ \int_{\Gamma} |u|^{p} dx' &\leq C_{p,\zeta} \int_{\Omega} [|u|^{p} + |Du|^{p}] dx \end{aligned}$$

This proves (*).

• We have proved the key estimate

$$\|u\|_{L^p(\Gamma)} \leq C_p \|u\|_{W^{1,p}(\Omega)}$$
 for all $u \in C^1(\overline{\Omega})$. (*)

- It follows that the map u → u|_Γ =: Au is a bounded linear operator from (C¹(Ω), || · ||_{W^{1,p}}) into L^p(Γ).
- As Ω is Lipschitz, C[∞](Ω̄) and hence C¹(Ω̄) is dense in W^{1,p}(Ω). Thus there exists a unique bounded linear operator T_Γ : W^{1,p}(Ω) → L^p(Γ) which extends A, i.e. T_Γu = u|_Γ for all u ∈ C¹(Ω̄).

Proposition (Integration by parts)

Suppose that $1 \leq p < \infty$, Ω is a bounded Lipschitz domain, n be the outward unit normal to $\partial\Omega$, $T : W^{1,p}(\Omega) \to L^p(\Omega)$ is the trace operator, and $u \in W^{1,p}(\Omega)$. Then

$$\int_{\Omega} \partial_i u \, v \, dx = \int_{\partial \Omega} T u \, v \, n_i \, dS - \int_{\Omega} u \, \partial_i v \, dx \, \text{ for all } v \in C^1(\bar{\Omega}).$$

Proof

- We knew that $C^{\infty}(\overline{\Omega})$ is dense in $W^{1,p}(\Omega)$. Thus there exists $u_m \in C^{\infty}(\overline{\Omega})$ such that $u_m \to u$ in $W^{1,p}$.
- Fix some $v \in C^1(\overline{\Omega})$. We have

$$\int_{\Omega} \partial_i u_m \, v \, dx = \int_{\partial \Omega} u_m \, v \, n_i \, dS - \int_{\Omega} u_m \, \partial_i v \, dx.$$

٠

Proof

•
$$\int_{\Omega} \partial_i u_m v \, dx = \int_{\partial \Omega} u_m v \, n_i \, dS - \int_{\Omega} u_m \, \partial_i v \, dx.$$

• Note that $\partial_i u_m \to \partial_i u$, $u_m \to u$ in $L^p(\Omega)$ and $u_m|_{\partial\Omega} = Tu_m \to Tu$ in $L^p(\partial\Omega)$. We can thus argue using Hölder's inequality to send $m \to \infty$ to obtain

$$\int_{\Omega} \partial_i u \, v \, dx = \int_{\partial \Omega} T u \, v \, n_i \, dS - \int_{\Omega} u \, \partial_i v \, dx$$

as wanted.

Theorem (Trace-zero functions in $W^{1,p}$)

Suppose that $1 \le p < \infty$, Ω is a bounded Lipschitz domain, $T: W^{1,p}(\Omega) \to L^p(\Omega)$ is the trace operator, and $u \in W^{1,p}(\Omega)$. Then $u \in W_0^{1,p}(\Omega)$ if and only if Tu = 0.

Proof

- (\Rightarrow) Suppose $u \in W_0^{1,p}(\Omega)$. By definition, there exists $u_m \in C_c^{\infty}(\Omega)$ such that $u_m \to u$ in $W^{1,p}$. Clearly $Tu_m = 0$ and so by continuity, Tu = 0.
- (⇐) We will only consider the case Ω is the unit ball B. This proof can be generalised fairly quickly to star-shaped domains. The proof for Lipschitz domains is more challenging.

Functions of zero trace

Proof

- (\Leftarrow) Suppose that $u \in W^{1,p}(B)$ and Tu = 0. We would like to construct a sequence $u_m \in C_c^{\infty}(B)$ such that $u_m \to u$ in $W^{1,p}$.
 - * Let \bar{u} be the extension by zero of u to \mathbb{R}^n .
 - \star As Tu = 0, we have by the IBP formula that

$$\int_B \partial_i u \, v \, dx = - \int_B u \, \partial_i v \, dx$$
 for all $v \in C^1(ar B).$

It follows that

$$\int_B \partial_i u \, v \, dx = - \int_B \bar{u} \, \partial_i v \, dx \text{ for all } v \in C^\infty_c(\mathbb{R}^n).$$

By definition of weak derivatives, this means

$$\partial_i \bar{u} = \begin{cases} \partial_i u & \text{in } B\\ 0 & \text{elsewhere} \end{cases} \text{ in the weak sense.}$$

So $\bar{u} \in W^{1,p}(\mathbb{R}^n)$.

Functions of zero trace

Proof

- (\Leftarrow) We would like to construct a sequence $u_m \in C_c^{\infty}(B)$ such that $u_m \to u$ in $W^{1,p}(B)$.
 - \star Let $ar{u}_\lambda(x)=ar{u}(\lambda x).$ Observe that $Supp(ar{u}_\lambda)\subset B_{1/\lambda}.$
 - * In Sheet 1, you showed that $\bar{u}_{\lambda} \to \bar{u}$ in L^{p} as $\lambda \to 1$. Noting also that $\partial_{i}\bar{u}_{\lambda}(x) = \lambda \partial_{i}u(\lambda x)$, we also have that $\partial_{i}\bar{u}_{\lambda} \to \partial_{i}\bar{u}$ in L^{p} as $\lambda \to 1$. Hence $\bar{u}_{\lambda} \to \bar{u}$ in $W^{1,p}$ as $\lambda \to 1$.
 - * Fix $\lambda_m > 1$ such that $\|\bar{u}_{\lambda_m} \bar{u}\|_{W^{1,p}(\mathbb{R}^n)} \leq 1/m$.
 - * Let (ϱ_{ε}) be a family of mollifiers: $\varrho_{\varepsilon}(x) = \varepsilon^{-n}\varrho(x/\varepsilon)$ with $\varrho \in C_{c}^{\infty}(B)$, $\int_{\mathbb{R}^{n}} \varrho = 1$. Then $\bar{u}_{\lambda_{m}} * \varrho_{\varepsilon} \to \bar{u}_{\lambda_{m}}$ in $W^{1,p}$ as $\varepsilon \to 0$. Also, $Supp(\bar{u}_{\lambda_{m}} * \varrho_{\varepsilon}) \subset B_{\lambda_{m}^{-1}+\varepsilon}$. Thus, we can select ε_{m} sufficiently small such that $u_{m} := \bar{u}_{\lambda_{m}} * \varrho_{\varepsilon_{m}} \in C_{c}^{\infty}(B)$ and $\|u_{m} - \bar{u}_{\lambda_{m}}\|_{W^{1,p}(\mathbb{R}^{n})} \leq 1/m$. * Now $\|u_{m} - u\|_{W^{1,p}(B)} \leq 2/m$ and so we are done.

Embeddings

Let X_1 and X_2 be two Banach spaces.

- We say X_1 is embedded in X_2 if $X_1 \subset X_2$.
- We say X₁ is continuously embedded in X₂ if X₁ is embedded in X₂ and the identity map I : X₁ → X₂ is a bounded linear operator, i.e. there exists a constant C such that ||x||_{X₂} ≤ C ||x||_{X₁}. We write X₁ → X₂.
- We say X₁ is compactly embedded in X₂ if X₁ is embedded in X₂ and the identity map I : X₁ → X₂ is a compact bounded linear operator. This means that I is continuous and every bounded sequence (x_n) ⊂ X₁ has a subsequence which is convergent with respect to the norm on X₂.

Our interest: The possibility of embedding $W^{k,p}$ in L^q or C^0 .

Theorem (Gagliardo-Nirenberg-Sobolev's inequality)

Assume $1 \le p < n$ and let $p^* = \frac{np}{n-p}$. Then there exists a constant $C_{n,p}$ such that

$$\|u\|_{L^{p^*}(\mathbb{R}^n)} \leq C_{n,p} \|\nabla u\|_{L^p(\mathbb{R}^n)}$$
 for all $u \in W^{1,p}(\mathbb{R}^n)$.

In particular, $W^{1,p}(\mathbb{R}^n) \hookrightarrow L^{p^*}(\mathbb{R}^n)$.

The number $p^* = \frac{np}{n-p}$ is called the Sobolev conjugate of p. It satisfies $\frac{1}{p^*} = \frac{1}{p} - \frac{1}{n}$. The case p = 1 is referred to as Gagliardo-Nirenberg's inequality.

GNS's inequality – Why p < n and why p^* ?

Question

For what p and q does it hold

$$\|u\|_{L^q(\mathbb{R}^n)} \leq C_{n,p,q} \|
abla u\|_{L^p(\mathbb{R}^n)}$$
 for all $u \in C^\infty_c(\mathbb{R}^n)$?

This will be answered by a scaling argument:

• Fix a non-zero function $u \in C_c^{\infty}(\mathbb{R}^n)$. Define $u_{\lambda}(x) = u(\lambda x)$. Then $u_{\lambda} \in C_c^{\infty}(\mathbb{R}^n)$ and so

$$\|u_{\lambda}\|_{L^{q}(\mathbb{R}^{n})} \leq C_{n,p,q} \|\nabla u_{\lambda}\|_{L^{p}(\mathbb{R}^{n})}.$$
(**)

• We compute

$$\|u_{\lambda}\|_{L^q}^q = \int_{\mathbb{R}^n} |u(\lambda x)|^q \, dx = \frac{1}{\lambda^n} \int_{\mathbb{R}^n} |u(y)|^q \, dy = \lambda^{-n} \|u\|_{L^q}^q.$$

GNS's inequality – Why p < n and why p^* ?

•
$$u_{\lambda}(x) = u(\lambda x)$$
 and

$$\|u_{\lambda}\|_{L^{q}(\mathbb{R}^{n})} \leq C_{n,p,q} \|\nabla u_{\lambda}\|_{L^{p}(\mathbb{R}^{n})}.$$
(**)

• We compute
$$\|u_{\lambda}\|_{L^q} = \lambda^{-n/q} \|u\|_{L^q}.$$

• Next,

$$\begin{split} \|\nabla u_{\lambda}\|_{L^{p}}^{p} &= \int_{\mathbb{R}^{n}} |\lambda \nabla u(\lambda x)|^{p} dx \\ &= \lambda^{p-n} \int_{\mathbb{R}^{n}} |\nabla u(y)|^{p} dy = \lambda^{p-n} \|\nabla u\|_{L^{p}}^{p}. \end{split}$$

That is
$$\|\nabla u_{\lambda}\|_{L^p} = \lambda^{1-n/p} \|\nabla u\|_{L^p}$$
.

GNS's inequality – Why p < n and why p^* ?

• Putting in (**), we get

$$\lambda^{-n/q} \|u\|_{L^q} \leq C_{n,p,q} \lambda^{1-n/p} \|\nabla u\|_{L^p}.$$

Rearranging, we have

$$\lambda^{-1+\frac{n}{p}-\frac{n}{q}} \leq \frac{C_{n,p,q} \|\nabla u\|_{L^p}}{\|u\|_{L^q}}.$$

- Since the last inequality is valid for all λ , we must have that $-1 + \frac{n}{p} \frac{n}{q} = 0$, i.e. $q = \frac{np}{n-p} = p^*$. As q > 0, we must also have $p \le n$.
- We conclude that a necessary condition in order for the inequality (*) to hold is that p ≤ n and q = p*.