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In the last lecture

@ Trace of Sobolev functions.

@ Gagliardo-Nirenberg-Sobolev's inequality.
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This lecture

@ Gagliardo-Nirenberg-Sobolev's inequality.
@ Morrey's inequality
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Proof of GNS's inequality

np
n—p

@ Recall that we would like to show, for 1 < p < n and p* =
that

ull o (mny < CopllVul|ony for all u € WhP(R™). (#)

e Claim 1: If (#) holds for functions in C2°(IR"), then it holds for
functions in WP(R™).

* Take an arbitrary u € WLHP(R™). As p < co, C°(R") is dense
in WLHP(R"). Hence, we can select u,, € C=°(R") such that
Uy — uin WLP.

* If (#) holds for functions in C2°(R"), then
Il < Copl Vit

* As u,, — uin WHP, we have djup, — Oju in LP and so
|Vuml|e = [|Vulle.

* Warning: It is tempted to try to show ||um||; 0+ — [|ul|;e*-
However, this is false in general.
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Proof of GNS's inequality

@ Proof of Claim 1:

* Numll o < CopllVuml| e

* ||Vuml|lee = [|Vul|Le.

* As Uy, — uin WP, we have u,, — v in LP, and so, we can
extract a subsequence (um,) which converges a.e. in R" to u.
By Fatou's lemma, we have

lulP” dx < lim inf/ |um:|P" dx.
R j—oo  JRrn J
* So

s < iminf lum o+ < Cop liminf [ Ve 1r = Copl| Ve

So (#) holds.
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Proof of GNS's inequality

e Claim 2: If (#) holds for p =1, then it holds for all 1 < p < n.

*

%

Take an arbitrary non-trivial u € C2°(R") and consider the
function v = |u|” with v > 1 to be fixed. Clearly

v € LYR™) N L®(R").

In Sheet 3, you will show that |u| is weakly differentiable and

Vu in {x:u(x) >0},
Viuf=4¢ —Vu in{x:u(x) <0},
0 in {x: u(x) = 0}.

It follows that Vv = ~v|u[""1V|u| € LI(R”) So v € WLHRM).
Applying (#) in W we get ||v|| 2, < Cof| V||
On the left side, we have

n—1
_ ot n_ Y
Mz ={ [ 17T 8} ™ = ol g,
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Proof of GNS's inequality

e Claim 2: If (#) holds for p =1, then it holds for all 1 < p < n.
AVl e < Gl Vv
* On the left side, we have [|v|| », = HUW%

* On the right side, we use the inequality |V|u|| < |Vul| and

compute using Holder's inequality:
1
{/ |V ulP dx}p
Rn

1
7

||VVHL1</ ~y|ul"™ 1|Vu|dx<7 / |u|(7 ”dx}

=l o IVl

* Now we select 7y such that (y —1)p’ =
obtain
-1
lullpe < Cavllull),

As u # 0, we can divide both side by |ul|7".
Step 2.

Lp* , and conclude
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Proof of GNS's inequality

@ In view of Claim 1 and Claim 2, it thus remains to show GNS's
inequality for smooth functions when p = 1. To better present
the idea of the proof, | will only give the proof when n =2, i.e.

]l 22y < Cl|[Vul|1(re) for all u € C§°(R2). Q)

(The case n > 3 can be dealt with in the same way (check
this!).)
* The starting point is the estimate

w0l =] [ dnutnm)an| < [ Futnaldn.

Likewise,

)l < [ IVuara)l dre

—00
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Proof of GNS's inequality

@ We are proving
HLI||L2(R2) < Cl|Vul|prey for all u € C>(R?). ()

* We have |u(x)| < [ |Vu(y1,x2)| dy1 and

lu(x)[ < f Vu( X1,)/2)’ dy>.
* Multiplying the two inequalities gives

) < { [ Vutom)ldaf{ [ Vata )l de ).

* Now note that the first integral on the right hand side is
independent of xj, and if one integrates the second integral on
the right hand side with respect to x;, one gets ||Vu||;:. Thus,
by integrating both side in x1, we get

| )P o < { [ 19utn ) ds bl

— 00 —0o0
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Proof of GNS's inequality

@ We are proving

||U||L2(R2) < C||Vu||L1(Rz) for all u € C?(]Rz). ()
* We have shown

| )P oo < { [ 19utn ) s bl

—0o0 —00

By the same line of argument, integrating the above in x» gives

/ / X1,X2 ’ dxy dxo < HVUHU,

which gives exactly () with C = 1.
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An improved Gagliardo-Nirenberg's inequality

By inspection, note that when p = 1, we actually prove the following
slightly stronger inequality:

1017 g ey < H 010y
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GNS'’s inequality for bounded domains

Theorem (Gagliardo-Nirenberg-Sobolev's inequality)

Assume that Q is a bounded Lipschitz domain and 1 < p < n. Then,
for every q € [1, p*], there exists C, , q.q such that

HU”Lq(Q) S Cn’p7q7Q”U”W1,p(Q) fOI’ all u € Wl’p(Q).

In particular, WHP(Q) — L9(Q).

Proof
o Let E: WLP(Q) — WLP(R") be an extension operator. Then

lullir(@) < [|Eulloe@ny < CopllEullwrngny < Copllullwsge).
o By Halder inequality, we have ||ul|rqq) < ||u||LP*(Q)\Q|%_pL*.

1

1
e We conclude the proof with C, 50 = G, ,|Q|a 7.
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GNS'’s inequality — Can p = n?

@ Consider now the case p = n. Does it hold that

lull ooy < Gl Vul|omny for all u € CZ°(R")? (1)
+x When n =1, this is true as

)l =| [ v@as]< [ el =1l

* We next show that (}) does not hold when n > 2.

Luc Nguyen (University of Oxford) C4.3 — Lecture 8 MT 2021 13 /27



GNS'’s inequality — Can p = n?

e We know that if (1) holds then W1"(IR") < L>°(R"). Thus it
suffices to exhibit a function u € W1(R™) \ L>°(R").

e It is enough to find f € W"(B,) \ L°(By). The desired u then
takes the form u = f( for any ¢ € C°(B,) with ( =1 in B;.
@ We impose that f is rotationally symmetric so that

f(x) = f(|x|) = f(r). Then we need to find a function
f:(0,2) — R such that

2
/ [1F]" + |f'|"] r" *dr < oo but esssup |f| = oc.
0 (©0.1)
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GNS'’s inequality — Can p = n?

@ Then we need to find a function f : (0,2) — R such that

2
/ [1F]" + |f'|"] r" * dr < oo but esssup |f| = co.
0 (0,1)

@ The fact that |f'|"r""! is integrable implies that, near r = 0, f’
is ‘smaller’ than 1, so f is ‘smaller’ than Inr.

o If we try f = (In%)*, then |f/|"r"~1 = & (In 2)n(e=1) js
integrable for & < 2=%. Also, |f|"r"~! is continuous in [0,2] and
hence integrable. So f € W'"(B,) when a < =1,

@ On the other hand, if a > 0, then esssupq 1) |f| = co.
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Trudinger's inequality

Theorem (Trudinger's inequality)

There exists a small constant ¢, > 0 and a large constant C, > 0
such that if u € WYH(R"), then exp [(%) "_1] € L} _(R") and

”“”WLH(R" loc

Ch 1
sup / exp [(¢> 1] dx < C,.
x0€ER" J B (x0) ”u”Wl’"(R")
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A non-embedding theorem for unbounded domains

Suppose 1 < p < oo and Q C R" be an unbounded domain with
finite volume. Then WP(Q) does not embed into L(Q2) whenever
q>p.

Ideas

\

N e We may assume |Q| = 1. We need
\ .

| to construct a function

!

7

_ f e WHP(Q)\ L9(Q).

o |
L= @ Let rp = 0 and select r, such that
/ //I Q,:=QnN {rk < ‘X| < rk+1} has

1
kT -

n, rn, r,

e B volume
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A non-embedding theorem for unbounded domains

Sketch of proof

@ The function f will be of the form f(x) = f(|x|) which is
increasing in |x|. If we let b, = f(ry), then

171 = 3 [ 1P o< 3 el = 3 02
k k k P

Likewise, [|f]|f, > ) " bf2~*1.
k

e To make ||f]|.« = oo, we then require that b, = 2%/9 infinitely
many times.
If we also impose that by < 2*/9 for all k, then

)5 < Y2749 < .
k
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A non-embedding theorem for unbounded domains

Sketch of proof

o by = 2K/9 infinitely many times = ||f]|.s = oo,
b < 2K/9 for all k = ||f||r < c0.

e Consider now ||V f||.».

* On each Qy, we can arrange so that |Vf| ~ %.

* It is important to note that, for any fixed € > 0, the inequality
that i1 — re > 27K must hold infinitely frequently. (As
otherwise, ry /» 00.) Label them as k; < kp < ...

by..1—by.
* In Q. we have |VF| ~ 121 < 2ki(1/ate),

Mi+1—rk; —
* In Qi with k # k;, we control |Vf| by imposing bii1 = by so
that |[Vf| = 0.
* To meet the requirement in the first bullet point, we ask
bkj = 2ki/a,
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A non-embedding theorem for unbounded domains

Sketch of proof

o ||f]|e =00 and ||f]|r < 0.
e Consider ||V f]|e.
* Putting things together, we have

IV =S /Q VFIP dx
J kj

< Z oki(1/q+e)pg—ki—1 < Zz—kj(l—g—ap).
J J

Choosing ¢ < % — %, we see that this sum is finite.

e We conclude that f € WYP(Q) but f ¢ L9(Q).
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Holder and Lipschitz continuity

@ Let D be a subset of R".

e For a € (0, 1], we say that a function v : D — R is (uniformly)
a-Holder continuous in D if there exists C > 0 such that

lu(x) — u(y)| < C|x — y|* for all x,y € D.

The set of all a-Holder continuous functions in D is denoted as
Co(D).

@ When o = 1, we use the term ‘Lipschitz continuity’ instead of
‘1-Holder continuity’.

Luc Nguyen (University of Oxford) C4.3 — Lecture 8 MT 2021 21/27



Holder and Lipschitz continuity

@ Note that, in our notation, when Q is a bounded domain,
Co(Q) = C>*(Q).
In some text C%%(Q) is used to denote the set of continuous
functions in € which is a-Holder continuous on every compact
subsets of Q. In this course, we will use instead C*(Q) to
denote this latter set, if such occasion arises.
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C%%(D) is a Banach space

e For u e C%*(D), let
|u(x) — u(y)|

uUlcoapy == sup ———= < o0.
] ®) x,y€D,xzy Ix — y|*

and
lullcoeoy = sup|ul + [ulcoo)-

Proposition

Let D be a subset of R". Then (C%*(D), || - ||co(p)) is a Banach
space.
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Holder and Lipschitz continuity

Sketch of proof
@ Piece 1: || - [[co.a(p) is @ norm.

* We will only give a proof for the statement that []co.q(p)

satisfies the triangle inequality (i.e. it is a semi-norm). The rest
is left as an exercise.

* Take u,v € C%*(D). We want to show that
[u+ V]coa(py < a+ b where a = [u]coap) and b = [v]coa(p).
* Indeed, for any x # y € D, we have |u(x) — u(y)| < a|x — y|*
and |v(x) — v(y)| < b|x — y|®. It follows that

[(u+v)(x) = (v +V)(¥) < (a+ b)Ix —y|*.

Divide both sides by |x — y|“ and take supremum we get

[U+V]C01Q(D) = sup M

<a+b,
x#y€eD ’X - y|a

as wanted.
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C%%(D) is a Banach space

Sketch of proof
@ Piece 2: C%%(D) is complete.
* Suppose that (upy) is Cauchy in C%¥(D).
* As ||+ [[sup < [| - [[co.(py, this implies that (up) is Cauchy in
C%(D) and hence converges uniformly to some u € C°(D).
x Claim: u € C%(D). Fix e > 0. For every x,y € D, we have

[(um = ) (x) = (um = uj)(¥)|

< [um — uj]coa(pylx — y|*
< glx — y|® for large m, .

Sending j — oo, we thus have
(tm — 0)(x) = (tm — 6)(¥)] < elx — y|* for large m.
Choose one such m we arrive at
u(x) = u()| < ([umlcon(oy +¢)Ix = I
So u € CO(D).
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C%%(D) is a Banach space

Sketch of proof
@ Piece 2: C%%(D) is complete.

* Finally, we show that u, — uin C%%(D). As up, converges to
u uniformly, it remains to show that [u — u]co.a(py — 0.

* Fix € > 0. Recall from the previous slide that, for x,y € D, we
have

|(um — u)(x) = (um — u)(y)| < e|x — y|* for large m.
Divide both sides by |x — y|* and take supremum, we have
[um — U]CO,a(D) < ¢ for large m.

* As ¢ is arbitrary, we conclude that [up, — u]Co,a(D) — 0.
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Morrey's inequality

Theorem (Morrey's inequality)
Assume that n < p < co. Then every u € WP(R") has a

(1-— Iﬂ))-Hélder continuous representative. Furthermore there exists a
constant C, , such that

HUHCO’l‘%(Rn) < Gopllullwrrgn- *)

In particular, WHP(R") < C%'~5(R").
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