

C4.3 Functional Analytic Methods for PDEs Lecture 8

Luc Nguyen luc.nguyen@maths

University of Oxford

MT 2021

- Trace of Sobolev functions.
- Gagliardo-Nirenberg-Sobolev's inequality.

- Gagliardo-Nirenberg-Sobolev's inequality.
- Morrey's inequality

• Recall that we would like to show, for $1 \le p < n$ and $p^* = \frac{np}{n-p}$ that

$$\|u\|_{L^{p^*}(\mathbb{R}^n)} \leq C_{n,p} \|\nabla u\|_{L^p(\mathbb{R}^n)} \text{ for all } u \in W^{1,p}(\mathbb{R}^n). \qquad (\#)$$

- Claim 1: If (#) holds for functions in C[∞]_c(ℝⁿ), then it holds for functions in W^{1,p}(ℝⁿ).
 - ★ Take an arbitrary $u \in W^{1,p}(\mathbb{R}^n)$. As $p < \infty$, $C_c^{\infty}(\mathbb{R}^n)$ is dense in $W^{1,p}(\mathbb{R}^n)$. Hence, we can select $u_m \in C_c^{\infty}(\mathbb{R}^n)$ such that $u_m \to u$ in $W^{1,p}$.
 - * If (#) holds for functions in $C_c^{\infty}(\mathbb{R}^n)$, then $\|u_m\|_{L^{p^*}} \leq C_{n,p} \|\nabla u_m\|_{L^p}$.
 - * As $u_m \to u$ in $W^{1,p}$, we have $\partial_i u_m \to \partial_i u$ in L^p and so $\|\nabla u_m\|_{L^p} \to \|\nabla u\|_{L^p}$.
 - * Warning: It is tempted to try to show $||u_m||_{L^{p^*}} \rightarrow ||u||_{L^{p^*}}$. However, this is false in general.

• Proof of Claim 1:

*
$$||u_m||_{L^{p^*}} \leq C_{n,p} ||\nabla u_m||_{L^p}.$$

$$\star \|\nabla u_m\|_{L^p} \to \|\nabla u\|_{L^p}.$$

* As $u_m \to u$ in $W^{1,p}$, we have $u_m \to u$ in L^p , and so, we can extract a subsequence (u_{m_j}) which converges a.e. in \mathbb{R}^n to u. By Fatou's lemma, we have

$$\int_{\mathbb{R}^n} |u|^{p^*} dx \leq \liminf_{j \to \infty} \int_{\mathbb{R}^n} |u_{m_j}|^{p^*} dx.$$

* So

$$\|u\|_{L^{p^*}} \leq \liminf_{j \to \infty} \|u_{m_j}\|_{L^{p^*}} \leq C_{n,p} \liminf_{j \to \infty} \|\nabla u_{m_j}\|_{L^p} = C_{n,p} \|\nabla u\|_{L^p}.$$

So (#) holds.

- Claim 2: If (#) holds for p = 1, then it holds for all 1 .
 - * Take an arbitrary non-trivial $u \in C_c^{\infty}(\mathbb{R}^n)$ and consider the function $v = |u|^{\gamma}$ with $\gamma > 1$ to be fixed. Clearly $v \in L^1(\mathbb{R}^n) \cap L^{\infty}(\mathbb{R}^n)$.
 - \star In Sheet 3, you will show that |u| is weakly differentiable and

$$\nabla |u| = \begin{cases} \nabla u & \text{in } \{x : u(x) > 0\}, \\ -\nabla u & \text{in } \{x : u(x) < 0\}, \\ 0 & \text{in } \{x : u(x) = 0\}. \end{cases}$$

- * It follows that $\nabla v = \gamma |u|^{\gamma-1} \nabla |u| \in L^1(\mathbb{R}^n)$. So $v \in W^{1,1}(\mathbb{R}^n)$.
- * Applying (#) in $W^{1,1}$ we get $\|v\|_{L^{\frac{n}{n-1}}} \leq C_n \|\nabla v\|_{L^1}$.
- ★ On the left side, we have

$$\|v\|_{L^{\frac{n}{n-1}}} = \left\{ \int_{\mathbb{R}^n} |v|^{\frac{n}{n-1}} \, dx \right\}^{\frac{n-1}{n}} = \|u\|_{L^{\frac{n\gamma}{n-1}}}^{\gamma}.$$

- Claim 2: If (#) holds for p = 1, then it holds for all 1 . $* <math>\|v\|_{L^{\frac{n}{p-1}}} \leq C_n \|\nabla v\|_{L^1}$.
 - * On the left side, we have $\|v\|_{L^{\frac{n}{n-1}}} = \|u\|_{L^{\frac{n}{n-1}}}^{\gamma}$.

* On the right side, we use the inequality $|\overline{\nabla}|u|| \leq |\nabla u|$ and compute using Hölder's inequality:

$$\begin{split} \|\nabla v\|_{L^{1}} &\leq \int_{\mathbb{R}^{n}} \gamma |u|^{\gamma-1} |\nabla u| \, dx \leq \gamma \Big\{ \int_{\mathbb{R}^{n}} |u|^{(\gamma-1)p'} \, dx \Big\}^{\frac{1}{p'}} \Big\{ \int_{\mathbb{R}^{n}} |\nabla u|^{p} \, dx \Big\}^{\frac{1}{p}} \\ &= \gamma \|u\|_{L^{(\gamma-1)p'}}^{\gamma-1} \|\nabla u\|_{L^{p}}. \end{split}$$

* Now we select γ such that $(\gamma - 1)p' = \frac{n\gamma}{n-1}$, i.e. $\gamma = \frac{(n-1)p}{n-p}$ and obtain

$$\|u\|_{L^{p^*}}^{\gamma} \leq C_n \gamma \|u\|_{L^{p^*}}^{\gamma-1} \|\nabla u\|_{L^p}.$$

As $u \neq 0$, we can divide both side by $||u||_{L^{p^*}}^{\gamma-1}$, and conclude Step 2.

• In view of Claim 1 and Claim 2, it thus remains to show GNS's inequality for smooth functions when p = 1. To better present the idea of the proof, I will only give the proof when n = 2, i.e.

$$\|u\|_{L^2(\mathbb{R}^2)} \le C \|\nabla u\|_{L^1(\mathbb{R}^2)} \text{ for all } u \in C^\infty_c(\mathbb{R}^2). \qquad (\diamondsuit)$$

(The case $n \ge 3$ can be dealt with in the same way (check this!).)

 $\star\,$ The starting point is the estimate

$$|u(x)| = \left|\int_{-\infty}^{x_1} \partial_{x_1} u(y_1, x_2) \, dy_1\right| \leq \int_{-\infty}^{\infty} |\nabla u(y_1, x_2)| \, dy_1.$$

Likewise,

$$|u(x)| \leq \int_{-\infty}^{\infty} |\nabla u(x_1, y_2)| \, dy_2.$$

• We are proving

$$\|u\|_{L^2(\mathbb{R}^2)} \le C \|
abla u\|_{L^1(\mathbb{R}^2)}$$
 for all $u \in C^\infty_c(\mathbb{R}^2)$. (\diamondsuit)

- * We have $|u(x)| \leq \int_{-\infty}^{\infty} |\nabla u(y_1, x_2)| dy_1$ and $|u(x)| \leq \int_{-\infty}^{\infty} |\nabla u(x_1, y_2)| dy_2.$
- ★ Multiplying the two inequalities gives

$$|u(x_1, x_2)|^2 \leq \Big\{ \int_{-\infty}^{\infty} |\nabla u(y_1, x_2)| \, dy_1 \Big\} \Big\{ \int_{-\infty}^{\infty} |\nabla u(x_1, y_2)| \, dy_2 \Big\}.$$

* Now note that the first integral on the right hand side is independent of x_1 , and if one integrates the second integral on the right hand side with respect to x_1 , one gets $\|\nabla u\|_{L^1}$. Thus, by integrating both side in x_1 , we get

$$\int_{-\infty}^{\infty} |u(x_1, x_2)|^2 dx_1 \leq \Big\{ \int_{-\infty}^{\infty} |\nabla u(y_1, x_2)| dy_1 \Big\} \|\nabla u\|_{L^1}.$$

• We are proving

$$\|u\|_{L^2(\mathbb{R}^2)} \le C \|\nabla u\|_{L^1(\mathbb{R}^2)} \text{ for all } u \in C^\infty_c(\mathbb{R}^2).$$
 (\diamondsuit)

 \star We have shown

$$\int_{-\infty}^{\infty} |u(x_1, x_2)|^2 dx_1 \le \Big\{ \int_{-\infty}^{\infty} |\nabla u(y_1, x_2)| dy_1 \Big\} \|\nabla u\|_{L^1}$$

By the same line of argument, integrating the above in x_2 gives

$$\int_{-\infty}^{\infty}\int_{-\infty}^{\infty}|u(x_1,x_2)|^2\,dx_1\,dx_2\leq \|\nabla u\|_{L^1}^2,$$

which gives exactly (\diamondsuit) with C = 1.

An improved Gagliardo-Nirenberg's inequality

Remark

By inspection, note that when p = 1, we actually prove the following slightly stronger inequality:

$$\|u\|_{L^{\frac{n}{n-1}}(\mathbb{R}^n)}^n \leq \prod_{i=1}^n \|\partial_i u\|_{L^1(\mathbb{R}^n)}.$$

GNS's inequality for bounded domains

Theorem (Gagliardo-Nirenberg-Sobolev's inequality)

Assume that Ω is a bounded Lipschitz domain and $1 \le p < n$. Then, for every $q \in [1, p^*]$, there exists $C_{n,p,q,\Omega}$ such that

$$\|u\|_{L^q(\Omega)} \leq C_{n,p,q,\Omega} \|u\|_{W^{1,p}(\Omega)}$$
 for all $u \in W^{1,p}(\Omega)$.

In particular, $W^{1,p}(\Omega) \hookrightarrow L^q(\Omega)$.

Proof

- Let $E: W^{1,p}(\Omega) \to W^{1,p}(\mathbb{R}^n)$ be an extension operator. Then $\|u\|_{L^{p*}(\Omega)} \le \|Eu\|_{L^{p*}(\mathbb{R}^n)} \le C_{n,p}\|Eu\|_{W^{1,p}(\mathbb{R}^n)} \le C_{n,p}\|u\|_{W^{1,p}(\Omega)}.$
- By Hölder inequality, we have $\|u\|_{L^q(\Omega)} \leq \|u\|_{L^{p^*}(\Omega)} |\Omega|^{\frac{1}{q} \frac{1}{p^*}}$.
- We conclude the proof with $C_{n,p,q,\Omega} = C_{n,p} |\Omega|^{\frac{1}{q} \frac{1}{p^*}}$.

• Consider now the case p = n. Does it hold that

$$\|u\|_{L^{\infty}(\mathbb{R}^n)} \leq C_n \|\nabla u\|_{L^n(\mathbb{R}^n)} \text{ for all } u \in C^{\infty}_c(\mathbb{R}^n)?$$
 (†)

 \star When n = 1, this is true as

$$|u(x)| = \left|\int_{-\infty}^{x} u'(s) ds\right| \leq \int_{-\infty}^{\infty} |u'(s)| ds = \|u'\|_{L^1(\mathbb{R})}.$$

* We next show that (†) does not hold when $n \ge 2$.

GNS's inequality – Can p = n?

- We know that if (†) holds then W^{1,n}(ℝⁿ) → L[∞](ℝⁿ). Thus it suffices to exhibit a function u ∈ W^{1,n}(ℝⁿ) \ L[∞](ℝⁿ).
- It is enough to find $f \in W^{1,n}(B_2) \setminus L^{\infty}(B_1)$. The desired u then takes the form $u = f\zeta$ for any $\zeta \in C_c^{\infty}(B_2)$ with $\zeta \equiv 1$ in B_1 .
- We impose that f is rotationally symmetric so that f(x) = f(|x|) = f(r). Then we need to find a function $f: (0,2) \rightarrow \mathbb{R}$ such that

$$\int_0^2 [|f|^n + |f'|^n] r^{n-1} dr < \infty \text{ but } \operatorname{ess\,sup}_{(0,1)} |f| = \infty.$$

• Then we need to find a function $f:(0,2)
ightarrow \mathbb{R}$ such that

$$\int_0^2 [|f|^n + |f'|^n] r^{n-1} dr < \infty \text{ but } \operatorname{ess \, sup}_{(0,1)} |f| = \infty.$$

- The fact that $|f'|^n r^{n-1}$ is integrable implies that, near r = 0, f' is 'smaller' than $\frac{1}{r}$, so f is 'smaller' than $\ln r$.
- If we try $f = (\ln \frac{4}{r})^{\alpha}$, then $|f'|^n r^{n-1} = \frac{\alpha^n}{r} (\ln \frac{4}{r})^{n(\alpha-1)}$ is integrable for $\alpha \leq \frac{n-1}{n}$. Also, $|f|^n r^{n-1}$ is continuous in [0, 2] and hence integrable. So $f \in W^{1,n}(B_2)$ when $\alpha \leq \frac{n-1}{n}$.
- On the other hand, if $\alpha > 0$, then $\operatorname{ess\,sup}_{(0,1)} |f| = \infty$.

Theorem (Trudinger's inequality)

There exists a small constant $c_n > 0$ and a large constant $C_n > 0$ such that if $u \in W^{1,n}(\mathbb{R}^n)$, then $\exp\left[\left(\frac{c_n|u|}{\|u\|_{W^{1,n}(\mathbb{R}^n)}}\right)^{\frac{n}{n-1}}\right] \in L^1_{loc}(\mathbb{R}^n)$ and $\sup_{x_0 \in \mathbb{R}^n} \int_{B_1(x_0)} \exp\left[\left(\frac{c_n|u|}{\|u\|_{W^{1,n}(\mathbb{R}^n)}}\right)^{\frac{n}{n-1}}\right] dx \le C_n.$

Fact

Suppose $1 \le p < \infty$ and $\Omega \subset \mathbb{R}^n$ be an unbounded domain with finite volume. Then $W^{1,p}(\Omega)$ does not embed into $L^q(\Omega)$ whenever q > p.

Ideas

- We may assume |Ω| = 1. We need to construct a function f ∈ W^{1,p}(Ω) \ L^q(Ω).
- Let $r_0 = 0$ and select r_k such that $\Omega_k := \Omega \cap \{r_k \le |x| < r_{k+1}\}$ has volume $\frac{1}{2^{k+1}}$.

A non-embedding theorem for unbounded domains

Sketch of proof

• The function f will be of the form f(x) = f(|x|) which is increasing in |x|. If we let $b_k = f(r_k)$, then

$$\|f\|_{L^p}^p = \sum_k \int_{\Omega_k} |f|^p \, dx \le \sum_k b_{k+1}^p |\Omega_k| = \sum_k b_{k+1}^p 2^{-k-1}.$$

Likewise,
$$||f||_{L^q}^q \ge \sum_k b_k^q 2^{-k-1}.$$

To make ||f||_{L^q} = ∞, we then require that b_k = 2^{k/q} infinitely many times.
 If we also impose that b_k < 2^{k/q} for all k, then

$$\|f\|_{L^p}^p \leq \sum_k 2^{-k(1-\frac{p}{q})} < \infty.$$

A non-embedding theorem for unbounded domains

Sketch of proof

- $b_k = 2^{k/q}$ infinitely many times $\Rightarrow ||f||_{L^q} = \infty$, $b_k \le 2^{k/q}$ for all $k \Rightarrow ||f||_{L^p} < \infty$.
- Consider now $\|\nabla f\|_{L^p}$.
 - * On each Ω_k , we can arrange so that $|\nabla f| \sim \frac{b_{k+1}-b_k}{r_{k+1}-r_k}$.
 - * It is important to note that, for any fixed $\varepsilon > 0$, the inequality that $r_{k+1} r_k > 2^{-\varepsilon k}$ must hold infinitely frequently. (As otherwise, $r_k \not\to \infty$.) Label them as $k_1 < k_2 < \ldots$
 - \star In Ω_{k_j} , we have $|\nabla f| \sim rac{b_{k_j+1}-b_{k_j}}{r_{k_j+1}-r_{k_j}} \leq 2^{k_j(1/q+arepsilon)}$.
 - * In Ω_k with $k \neq k_j$, we control $|\nabla f|$ by imposing $b_{k+1} = b_k$ so that $|\nabla f| = 0$.
 - ★ To meet the requirement in the first bullet point, we ask $b_{k_j} = 2^{k_j/q}$.

A non-embedding theorem for unbounded domains

Sketch of proof

•
$$\|f\|_{L^q} = \infty$$
 and $\|f\|_{L^p} < \infty$.

• Consider $\|\nabla f\|_{L^p}$.

 $\star\,$ Putting things together, we have

$$\begin{aligned} \|\nabla f\|_{L^p}^p &= \sum_j \int_{\Omega_{k_j}} |\nabla f|^p \, dx \\ &\leq \sum_j 2^{k_j (1/q+\varepsilon)p} 2^{-k_j - 1} \leq \sum_j 2^{-k_j (1-\frac{p}{q}-\varepsilon p)}. \end{aligned}$$

Choosing $\varepsilon < \frac{1}{p} - \frac{1}{q}$, we see that this sum is finite. • We conclude that $f \in W^{1,p}(\Omega)$ but $f \notin L^q(\Omega)$.

- Let D be a subset of \mathbb{R}^n .
- For α ∈ (0, 1], we say that a function u : D → ℝ is (uniformly) α-Hölder continuous in D if there exists C ≥ 0 such that

$$|u(x) - u(y)| \le C|x - y|^{lpha}$$
 for all $x, y \in D$.

The set of all α -Hölder continuous functions in D is denoted as $C^{0,\alpha}(D)$.

• When $\alpha = 1$, we use the term 'Lipschitz continuity' instead of '1-Hölder continuity'.

 Note that, in our notation, when Ω is a bounded domain, C^{0,α}(Ω) = C^{0,α}(Ω
 In some text C^{0,α}(Ω) is used to denote the set of continuous functions in Ω which is α-Hölder continuous on every compact subsets of Ω. In this course, we will use instead C^{0,α}_{loc}(Ω) to denote this latter set, if such occasion arises.

$C^{0,\alpha}(D)$ is a Banach space

• For
$$u \in C^{0,\alpha}(D)$$
, let

$$[u]_{C^{0,\alpha}(D)}:=\sup_{x,y\in D, x\neq y}\frac{|u(x)-u(y)|}{|x-y|^{\alpha}}<\infty.$$

and

$$||u||_{C^{0,\alpha}(D)} := \sup_{D} |u| + [u]_{C^{0,\alpha}(D)}.$$

Proposition

Let D be a subset of \mathbb{R}^n . Then $(C^{0,\alpha}(D), \|\cdot\|_{C^{0,\alpha}(D)})$ is a Banach space.

Hölder and Lipschitz continuity

Sketch of proof

- Piece 1: $\|\cdot\|_{C^{0,\alpha}(D)}$ is a norm.
 - ★ We will only give a proof for the statement that $[\cdot]_{C^{0,\alpha}(D)}$ satisfies the triangle inequality (i.e. it is a semi-norm). The rest is left as an exercise.
 - * Take $u, v \in C^{0,\alpha}(D)$. We want to show that $[u+v]_{C^{0,\alpha}(D)} \leq a+b$ where $a = [u]_{C^{0,\alpha}(D)}$ and $b = [v]_{C^{0,\alpha}(D)}$. + Indeed for any $x \neq v \in D$, we have $|u(x) - u(v)| \leq a|x - v|^{\alpha}$.
 - * Indeed, for any $x \neq y \in D$, we have $|u(x) u(y)| \le a|x y|^{\alpha}$ and $|v(x) - v(y)| \le b|x - y|^{\alpha}$. It follows that

$$|(u+v)(x) - (u+v)(y)| \le (a+b)|x-y|^{\alpha}.$$

Divide both sides by $|x-y|^{\alpha}$ and take supremum we get

$$[u+v]_{\mathcal{C}^{0,\alpha}(D)} = \sup_{x\neq y\in D} \frac{|u(x)-u(y)|}{|x-y|^{\alpha}} \leq a+b,$$

$C^{0,\alpha}(D)$ is a Banach space

Sketch of proof

• Piece 2: $C^{0,\alpha}(D)$ is complete.

* Suppose that (u_m) is Cauchy in $C^{0,\alpha}(D)$.

- * As $\|\cdot\|_{sup} \leq \|\cdot\|_{C^{0,\alpha}(D)}$, this implies that (u_m) is Cauchy in $C^0(\bar{D})$ and hence converges uniformly to some $u \in C^0(\bar{D})$.
- * Claim: $u \in C^{0,\alpha}(D)$. Fix $\varepsilon > 0$. For every $x, y \in D$, we have

$$\begin{aligned} |(u_m - u_j)(x) - (u_m - u_j)(y)| &\leq [u_m - u_j]_{C^{0,\alpha}(D)} |x - y|^{\alpha} \\ &\leq \varepsilon |x - y|^{\alpha} \text{ for large } m, j. \end{aligned}$$

Sending $j \to \infty$, we thus have

$$|(u_m - u)(x) - (u_m - u)(y)| \le \varepsilon |x - y|^{\alpha}$$
 for large m .

Choose one such m we arrive at

$$|u(x) - u(y)| \leq ([u_m]_{C^{0,\alpha}(D)} + \varepsilon)|x - y|^{\alpha}.$$

So $u \in C^{0,\alpha}(D)$.

Sketch of proof

• Piece 2: $C^{0,\alpha}(D)$ is complete.

- * Finally, we show that $u_m \to u$ in $C^{0,\alpha}(D)$. As u_m converges to u uniformly, it remains to show that $[u_m u]_{C^{0,\alpha}(D)} \to 0$.
- ★ Fix $\varepsilon > 0$. Recall from the previous slide that, for $x, y \in D$, we have

$$|(u_m - u)(x) - (u_m - u)(y)| \le \varepsilon |x - y|^{lpha}$$
 for large m .

Divide both sides by $|x-y|^{lpha}$ and take supremum, we have

$$[u_m - u]_{C^{0,\alpha}(D)} \leq \varepsilon$$
 for large m .

* As ε is arbitrary, we conclude that $[u_m - u]_{C^{0,\alpha}(D)} \to 0$.

Theorem (Morrey's inequality)

Assume that $n . Then every <math>u \in W^{1,p}(\mathbb{R}^n)$ has a $(1 - \frac{n}{p})$ -Hölder continuous representative. Furthermore there exists a constant $C_{n,p}$ such that

$$\|u\|_{C^{0,1-\frac{n}{p}}(\mathbb{R}^n)} \le C_{n,p} \|u\|_{W^{1,p}(\mathbb{R}^n)}.$$
 (*)

In particular, $W^{1,p}(\mathbb{R}^n) \hookrightarrow C^{0,1-\frac{n}{p}}(\mathbb{R}^n).$