C4.3 Functional Analytic Methods for PDEs Lecture 8

Luc Nguyen
luc.nguyen@maths
University of Oxford

MT 2021

In the last lecture

- Trace of Sobolev functions.
- Gagliardo-Nirenberg-Sobolev's inequality.

This lecture

- Gagliardo-Nirenberg-Sobolev's inequality.
- Morrey's inequality

Proof of GNS's inequality

- Recall that we would like to show, for $1 \leq p<n$ and $p^{*}=\frac{n p}{n-p}$ that

$$
\|u\|_{L^{\rho^{*}}\left(\mathbb{R}^{n}\right)} \leq C_{n, p}\|\nabla u\|_{L^{p}\left(\mathbb{R}^{n}\right)} \text { for all } u \in W^{1, p}\left(\mathbb{R}^{n}\right) .
$$

- Claim 1: If (\#) holds for functions in $C_{c}^{\infty}\left(\mathbb{R}^{n}\right)$, then it holds for functions in $W^{1, p}\left(\mathbb{R}^{n}\right)$.
* Take an arbitrary $u \in W^{1, p}\left(\mathbb{R}^{n}\right)$. As $p<\infty, C_{c}^{\infty}\left(\mathbb{R}^{n}\right)$ is dense in $W^{1, p}\left(\mathbb{R}^{n}\right)$. Hence, we can select $u_{m} \in C_{c}^{\infty}\left(\mathbb{R}^{n}\right)$ such that $u_{m} \rightarrow u$ in $W^{1, p}$.
* If $(\#)$ holds for functions in $C_{c}^{\infty}\left(\mathbb{R}^{n}\right)$, then
$\left\|u_{m}\right\|_{L^{p^{*}}} \leq C_{n, p}\left\|\nabla u_{m}\right\|_{L^{p}}$.
\star As $u_{m} \rightarrow u$ in $W^{1, p}$, we have $\partial_{i} u_{m} \rightarrow \partial_{i} u$ in L^{p} and so $\left\|\nabla u_{m}\right\|_{L^{p}} \rightarrow\|\nabla u\|_{L^{p}}$.
\star Warning: It is tempted to try to show $\left\|u_{m}\right\|_{L^{p^{*}}} \rightarrow\|u\|_{L^{p^{*}}}$. However, this is false in general.

Proof of GNS's inequality

- Proof of Claim 1:
$\star\left\|u_{m}\right\|_{L^{p^{*}}} \leq C_{n, p}\left\|\nabla u_{m}\right\|_{L^{p}}$.
$\star\left\|\nabla u_{m}\right\|_{L^{p}} \rightarrow\|\nabla u\|_{L^{p}}$.
\star As $u_{m} \rightarrow u$ in $W^{1, p}$, we have $u_{m} \rightarrow u$ in L^{p}, and so, we can extract a subsequence $\left(u_{m_{j}}\right)$ which converges a.e. in \mathbb{R}^{n} to u. By Fatou's lemma, we have

$$
\int_{\mathbb{R}^{n}}|u|^{p^{*}} d x \leq \liminf _{j \rightarrow \infty} \int_{\mathbb{R}^{n}}\left|u_{m_{j}}\right|^{p^{*}} d x
$$

* So
$\|u\|_{L^{p^{*}}} \leq \liminf _{j \rightarrow \infty}\left\|u_{m_{j}}\right\|_{L^{p^{*}}} \leq C_{n, p} \liminf _{j \rightarrow \infty}\left\|\nabla u_{m_{j}}\right\| L_{L^{p}}=C_{n, p}\|\nabla u\|_{L^{p}}$.
So (\#) holds.

Proof of GNS's inequality

- Claim 2: If $(\#)$ holds for $p=1$, then it holds for all $1<p<n$.
\star Take an arbitrary non-trivial $u \in C_{c}^{\infty}\left(\mathbb{R}^{n}\right)$ and consider the function $v=|u|^{\gamma}$ with $\gamma>1$ to be fixed. Clearly
$v \in L^{1}\left(\mathbb{R}^{n}\right) \cap L^{\infty}\left(\mathbb{R}^{n}\right)$.
* In Sheet 3, you will show that $|u|$ is weakly differentiable and

$$
\nabla|u|= \begin{cases}\nabla u & \text { in }\{x: u(x)>0\} \\ -\nabla u & \text { in }\{x: u(x)<0\} \\ 0 & \text { in }\{x: u(x)=0\}\end{cases}
$$

\star It follows that $\nabla v=\gamma|u|^{\gamma-1} \nabla|u| \in L^{1}\left(\mathbb{R}^{n}\right)$. So $v \in W^{1,1}\left(\mathbb{R}^{n}\right)$.
\star Applying (\#) in $W^{1,1}$ we get $\|v\|_{L^{\frac{n}{n-1}}} \leq C_{n}\|\nabla v\|_{L^{1}}$.

* On the left side, we have

$$
\|v\|_{L^{\frac{n}{n-1}}}=\left\{\int_{\mathbb{R}^{n}}|v|^{\frac{n}{n-1}} d x\right\}^{\frac{n-1}{n}}=\|u\|_{L^{\frac{n \gamma}{n-1}}}^{\gamma} .
$$

Proof of GNS's inequality

- Claim 2: If $(\#)$ holds for $p=1$, then it holds for all $1<p<n$.
$\star\|v\|_{L^{\frac{n}{n-1}}} \leq C_{n}\|\nabla v\|_{L^{1}}$.
\star On the left side, we have $\|v\|_{L^{\frac{n}{n-1}}}=\|u\|_{L^{\frac{n \gamma}{n-1}}}^{\gamma}$.
\star On the right side, we use the inequality $|\nabla| u||\leq|\nabla u|$ and compute using Hölder's inequality:

$$
\begin{aligned}
\|\nabla v\|_{L^{1}} \leq \int_{\mathbb{R}^{n}} \gamma|u|^{\gamma-1}|\nabla u| d x & \leq \gamma\left\{\int_{\mathbb{R}^{n}}|u|^{(\gamma-1) p^{\prime}} d x\right\}^{\frac{1}{\rho^{\prime}}}\left\{\int_{\mathbb{R}^{n}}|\nabla u|^{p} d x\right\}^{\frac{1}{\rho}} \\
& =\gamma\|u\|_{L(\gamma-1) \rho^{\prime}}^{\gamma-1}\|\nabla u\|_{L^{p}} .
\end{aligned}
$$

^ Now we select γ such that $(\gamma-1) p^{\prime}=\frac{n \gamma}{n-1}$, i.e. $\gamma=\frac{(n-1) p}{n-p}$ and obtain

$$
\|u\|_{L^{p^{*}}}^{\gamma} \leq C_{n} \gamma\|u\|_{L^{p^{*}}}^{\gamma-1}\|\nabla u\|_{L^{p}} .
$$

As $u \not \equiv 0$, we can divide both side by $\|u\|_{L^{p^{*}}}^{\gamma-1}$, and conclude Step 2.

Proof of GNS's inequality

- In view of Claim 1 and Claim 2, it thus remains to show GNS's inequality for smooth functions when $p=1$. To better present the idea of the proof, I will only give the proof when $n=2$, ie.

$$
\|u\|_{L^{2}\left(\mathbb{R}^{2}\right)} \leq C\|\nabla u\|_{L^{1}\left(\mathbb{R}^{2}\right)} \text { for all } u \in C_{c}^{\infty}\left(\mathbb{R}^{2}\right)
$$

(The case $n \geq 3$ can be dealt with in the same way (check this!).)

* The starting point is the estimate

$$
|u(x)|=\left|\int_{-\infty}^{x_{1}} \partial_{x_{1}} u\left(y_{1}, x_{2}\right) d y_{1}\right| \leq \int_{-\infty}^{\infty}\left|\nabla u\left(y_{1}, x_{2}\right)\right| d y_{1} .
$$

Likewise,

$$
|u(x)| \leq \int_{-\infty}^{\infty}\left|\nabla u\left(x_{1}, y_{2}\right)\right| d y_{2}
$$

Proof of GNS's inequality

- We are proving

$$
\|u\|_{L^{2}\left(\mathbb{R}^{2}\right)} \leq C\|\nabla u\|_{L^{1}\left(\mathbb{R}^{2}\right)} \text { for all } u \in C_{c}^{\infty}\left(\mathbb{R}^{2}\right)
$$

\star We have $|u(x)| \leq \int_{-\infty}^{\infty}\left|\nabla u\left(y_{1}, x_{2}\right)\right| d y_{1}$ and

$$
|u(x)| \leq \int_{-\infty}^{\infty}\left|\nabla u\left(x_{1}, y_{2}\right)\right| d y_{2} .
$$

\star Multiplying the two inequalities gives

$$
\left|u\left(x_{1}, x_{2}\right)\right|^{2} \leq\left\{\int_{-\infty}^{\infty}\left|\nabla u\left(y_{1}, x_{2}\right)\right| d y_{1}\right\}\left\{\int_{-\infty}^{\infty}\left|\nabla u\left(x_{1}, y_{2}\right)\right| d y_{2}\right\} .
$$

\star Now note that the first integral on the right hand side is independent of x_{1}, and if one integrates the second integral on the right hand side with respect to x_{1}, one gets $\|\nabla u\|_{L^{1}}$. Thus, by integrating both side in x_{1}, we get

$$
\int_{-\infty}^{\infty}\left|u\left(x_{1}, x_{2}\right)\right|^{2} d x_{1} \leq\left\{\int_{-\infty}^{\infty}\left|\nabla u\left(y_{1}, x_{2}\right)\right| d y_{1}\right\}\|\nabla u\|_{L^{1}}
$$

Proof of GNS's inequality

- We are proving

$$
\|u\|_{L^{2}\left(\mathbb{R}^{2}\right)} \leq C\|\nabla u\|_{L^{1}\left(\mathbb{R}^{2}\right)} \text { for all } u \in C_{c}^{\infty}\left(\mathbb{R}^{2}\right)
$$

* We have shown

$$
\int_{-\infty}^{\infty}\left|u\left(x_{1}, x_{2}\right)\right|^{2} d x_{1} \leq\left\{\int_{-\infty}^{\infty}\left|\nabla u\left(y_{1}, x_{2}\right)\right| d y_{1}\right\}\|\nabla u\|_{L^{1}}
$$

By the same line of argument, integrating the above in x_{2} gives

$$
\int_{-\infty}^{\infty} \int_{-\infty}^{\infty}\left|u\left(x_{1}, x_{2}\right)\right|^{2} d x_{1} d x_{2} \leq\|\nabla u\|_{L^{1}}^{2}
$$

which gives exactly (\diamond) with $C=1$.

An improved Gagliardo-Nirenberg's inequality

Remark

By inspection, note that when $p=1$, we actually prove the following slightly stronger inequality:

$$
\|u\|_{L^{\frac{n}{n-1}}\left(\mathbb{R}^{n}\right)}^{n} \leq \prod_{i=1}^{n}\left\|\partial_{i} u\right\|_{L^{1}\left(\mathbb{R}^{n}\right)}
$$

GNS's inequality for bounded domains

Theorem (Gagliardo-Nirenberg-Sobolev's inequality)

Assume that Ω is a bounded Lipschitz domain and $1 \leq p<n$. Then, for every $q \in\left[1, p^{*}\right]$, there exists $C_{n, p, q, \Omega}$ such that

$$
\|u\|_{L^{q}(\Omega)} \leq C_{n, p, q, \Omega}\|u\|_{W^{1, p}(\Omega)} \text { for all } u \in W^{1, p}(\Omega) .
$$

In particular, $W^{1, p}(\Omega) \hookrightarrow L^{q}(\Omega)$.

Proof

- Let $E: W^{1, p}(\Omega) \rightarrow W^{1, p}\left(\mathbb{R}^{n}\right)$ be an extension operator. Then

$$
\|u\|_{L^{p *}(\Omega)} \leq\|E u\|_{L^{p *}\left(\mathbb{R}^{n}\right)} \leq C_{n, p}\|E u\|_{W^{1, p}\left(\mathbb{R}^{n}\right)} \leq C_{n, p}\|u\|_{W^{1, p}(\Omega)}
$$

- By Hölder inequality, we have $\|u\|_{L^{q}(\Omega)} \leq\|u\|_{L^{p^{*}}(\Omega)}|\Omega|^{\frac{1}{q}-\frac{1}{p^{*}}}$.
- We conclude the proof with $C_{n, p, q, \Omega}=C_{n, p}|\Omega|^{\frac{1}{q}-\frac{1}{p^{*}}}$.

GNS's inequality - Can $p=n$?

- Consider now the case $p=n$. Does it hold that

$$
\|u\|_{L^{\infty}\left(\mathbb{R}^{n}\right)} \leq C_{n}\|\nabla u\|_{L^{n}\left(\mathbb{R}^{n}\right)} \text { for all } u \in C_{c}^{\infty}\left(\mathbb{R}^{n}\right) ?
$$

* When $n=1$, this is true as

$$
|u(x)|=\left|\int_{-\infty}^{x} u^{\prime}(s) d s\right| \leq \int_{-\infty}^{\infty}\left|u^{\prime}(s)\right| d s=\left\|u^{\prime}\right\|_{L^{1}(\mathbb{R})}
$$

* We next show that (\dagger) does not hold when $n \geq 2$.

GNS's inequality - Can $p=n$?

- We know that if (\dagger) holds then $W^{1, n}\left(\mathbb{R}^{n}\right) \hookrightarrow L^{\infty}\left(\mathbb{R}^{n}\right)$. Thus it suffices to exhibit a function $u \in W^{1, n}\left(\mathbb{R}^{n}\right) \backslash L^{\infty}\left(\mathbb{R}^{n}\right)$.
- It is enough to find $f \in W^{1, n}\left(B_{2}\right) \backslash L^{\infty}\left(B_{1}\right)$. The desired u then takes the form $u=f \zeta$ for any $\zeta \in C_{c}^{\infty}\left(B_{2}\right)$ with $\zeta \equiv 1$ in B_{1}.
- We impose that f is rotationally symmetric so that $f(x)=f(|x|)=f(r)$. Then we need to find a function $f:(0,2) \rightarrow \mathbb{R}$ such that

$$
\int_{0}^{2}\left[|f|^{n}+\left|f^{\prime}\right|^{n}\right] r^{n-1} d r<\infty \text { but } \underset{(0,1)}{\operatorname{ess} \sup }|f|=\infty
$$

GNS's inequality - Can $p=n$?

- Then we need to find a function $f:(0,2) \rightarrow \mathbb{R}$ such that

$$
\int_{0}^{2}\left[|f|^{n}+\left|f^{\prime}\right|^{n}\right] r^{n-1} d r<\infty \text { but } \underset{(0,1)}{\operatorname{esssup}}|f|=\infty
$$

- The fact that $\left|f^{\prime}\right|^{n} r^{n-1}$ is integrable implies that, near $r=0, f^{\prime}$ is 'smaller' than $\frac{1}{r}$, so f is 'smaller' than $\ln r$.
- If we try $f=\left(\ln \frac{4}{r}\right)^{\alpha}$, then $\left|f^{\prime}\right|^{n} r^{n-1}=\frac{\alpha^{n}}{r}\left(\ln \frac{4}{r}\right)^{n(\alpha-1)}$ is integrable for $\alpha \leq \frac{n-1}{n}$. Also, $|f|^{n} r^{n-1}$ is continuous in [0, 2] and hence integrable. So $f \in W^{1, n}\left(B_{2}\right)$ when $\alpha \leq \frac{n-1}{n}$.
- On the other hand, if $\alpha>0$, then $\operatorname{ess} \sup _{(0,1)}|f|=\infty$.

Trudinger's inequality

Theorem (Trudinger's inequality)

There exists a small constant $c_{n}>0$ and a large constant $C_{n}>0$ such that if $u \in W^{1, n}\left(\mathbb{R}^{n}\right)$, then $\exp \left[\left(\frac{c_{n}|u|}{\|u\|_{W^{1, n}\left(\mathbb{R}^{n}\right)}}\right)^{\frac{n}{n-1}}\right] \in L_{l o c}^{1}\left(\mathbb{R}^{n}\right)$ and

$$
\sup _{x_{0} \in \mathbb{R}^{n}} \int_{B_{1}\left(x_{0}\right)} \exp \left[\left(\frac{c_{n}|u|}{\|u\|_{W^{1, n}\left(\mathbb{R}^{n}\right)}}\right)^{\frac{n}{n-1}}\right] d x \leq C_{n}
$$

A non-embedding theorem for unbounded domains

Fact

Suppose $1 \leq p<\infty$ and $\Omega \subset \mathbb{R}^{n}$ be an unbounded domain with finite volume. Then $W^{1, p}(\Omega)$ does not embed into $L^{q}(\Omega)$ whenever $q>p$.

Ideas

- We may assume $|\Omega|=1$. We need to construct a function $f \in W^{1, p}(\Omega) \backslash L^{q}(\Omega)$.
- Let $r_{0}=0$ and select r_{k} such that $\Omega_{k}:=\Omega \cap\left\{r_{k} \leq|x|<r_{k+1}\right\}$ has volume $\frac{1}{2^{k+1}}$.

A non-embedding theorem for unbounded domains

Sketch of proof

- The function f will be of the form $f(x)=f(|x|)$ which is increasing in $|x|$. If we let $b_{k}=f\left(r_{k}\right)$, then

$$
\|f\|_{L^{p}}^{p}=\sum_{k} \int_{\Omega_{k}}|f|^{p} d x \leq \sum_{k} b_{k+1}^{p}\left|\Omega_{k}\right|=\sum_{k} b_{k+1}^{p} 2^{-k-1} .
$$

Likewise, $\|f\|_{L^{q}}^{q} \geq \sum_{k} b_{k}^{q} 2^{-k-1}$.

- To make $\|f\|_{L q}=\infty$, we then require that $b_{k}=2^{k / q}$ infinitely many times.
If we also impose that $b_{k} \leq 2^{k / q}$ for all k, then

$$
\|f\|_{L^{p}}^{p} \leq \sum_{k} 2^{-k\left(1-\frac{p}{q}\right)}<\infty .
$$

A non-embedding theorem for unbounded domains

Sketch of proof

- $b_{k}=2^{k / q}$ infinitely many times $\Rightarrow\|f\|_{L q}=\infty$, $b_{k} \leq 2^{k / q}$ for all $k \Rightarrow\|f\|_{L^{p}}<\infty$.
- Consider now $\|\nabla f\|_{L^{p}}$.
* On each Ω_{k}, we can arrange so that $|\nabla f| \sim \frac{b_{k+1}-b_{k}}{r_{k+1}-r_{k}}$.
\star It is important to note that, for any fixed $\varepsilon>0$, the inequality that $r_{k+1}-r_{k}>2^{-\varepsilon k}$ must hold infinitely frequently. (As otherwise, $r_{k} \nrightarrow \infty$.) Label them as $k_{1}<k_{2}<\ldots$
$\star \ln \Omega_{k_{j}}$, we have $|\nabla f| \sim \frac{b_{k_{j}+1}-b_{k_{j}}}{r_{k_{j}+1}-r_{k_{j}}} \leq 2^{k_{j}(1 / q+\varepsilon)}$.
* $\ln \Omega_{k}$ with $k \neq k_{j}$, we control $|\nabla f|$ by imposing $b_{k+1}=b_{k}$ so that $|\nabla f|=0$.
* To meet the requirement in the first bullet point, we ask $b_{k_{j}}=2^{k_{j} / q}$.

A non-embedding theorem for unbounded domains

Sketch of proof

- $\|f\|_{L^{q}}=\infty$ and $\|f\|_{L^{p}}<\infty$.
- Consider $\|\nabla f\|_{L^{p}}$.
* Putting things together, we have

$$
\begin{aligned}
&\|\nabla f\|_{L^{p}}^{p}= \sum_{j} \\
& \int_{\Omega_{k_{j}}}|\nabla f|^{p} d x \\
& \leq \sum_{j} 2^{k_{j}(1 / q+\varepsilon) p_{2}} 2^{-k_{j}-1} \leq \sum_{j} 2^{-k_{j}\left(1-\frac{p}{q}-\varepsilon p\right)} .
\end{aligned}
$$

Choosing $\varepsilon<\frac{1}{\rho}-\frac{1}{q}$, we see that this sum is finite.

- We conclude that $f \in W^{1, p}(\Omega)$ but $f \notin L^{q}(\Omega)$.

Hölder and Lipschitz continuity

- Let D be a subset of \mathbb{R}^{n}.
- For $\alpha \in(0,1]$, we say that a function $u: D \rightarrow \mathbb{R}$ is (uniformly) α-Hölder continuous in D if there exists $C \geq 0$ such that

$$
|u(x)-u(y)| \leq C|x-y|^{\alpha} \text { for all } x, y \in D
$$

The set of all α-Hölder continuous functions in D is denoted as $C^{0, \alpha}(D)$.

- When $\alpha=1$, we use the term 'Lipschitz continuity' instead of '1-Hölder continuity'.

Hölder and Lipschitz continuity

- Note that, in our notation, when Ω is a bounded domain, $C^{0, \alpha}(\Omega)=C^{0, \alpha}(\bar{\Omega})$.
In some text $C^{0, \alpha}(\Omega)$ is used to denote the set of continuous functions in Ω which is α-Hölder continuous on every compact subsets of Ω. In this course, we will use instead $C_{\text {loc }}^{0, \alpha}(\Omega)$ to denote this latter set, if such occasion arises.

$C^{0, \alpha}(D)$ is a Banach space

- For $u \in C^{0, \alpha}(D)$, let

$$
[u]_{C^{0, \alpha}(D)}:=\sup _{x, y \in D, x \neq y} \frac{|u(x)-u(y)|}{|x-y|^{\alpha}}<\infty
$$

and

$$
\|u\|_{C^{0, \alpha}(D)}:=\sup _{D}|u|+[u]_{C^{0, \alpha}(D)} .
$$

Proposition

Let D be a subset of \mathbb{R}^{n}. Then $\left(C^{0, \alpha}(D),\|\cdot\|_{C^{0, \alpha}(D)}\right)$ is a Banach space.

Hölder and Lipschitz continuity

Sketch of proof

- Piece 1: $\|\cdot\|_{C^{0, \alpha}(D)}$ is a norm.
\star We will only give a proof for the statement that $[\cdot]_{C^{0, \alpha}(D)}$ satisfies the triangle inequality (i.e. it is a semi-norm). The rest is left as an exercise.
* Take $u, v \in C^{0, \alpha}(D)$. We want to show that $[u+v]_{C^{0, \alpha}(D)} \leq a+b$ where $a=[u]_{C^{0, \alpha}(D)}$ and $b=[v]_{C^{0, \alpha}(D)}$.
\star Indeed, for any $x \neq y \in D$, we have $|u(x)-u(y)| \leq a|x-y|^{\alpha}$ and $|v(x)-v(y)| \leq b|x-y|^{\alpha}$. It follows that

$$
|(u+v)(x)-(u+v)(y)| \leq(a+b)|x-y|^{\alpha} .
$$

Divide both sides by $|x-y|^{\alpha}$ and take supremum we get

$$
[u+v]_{C^{0, \alpha}(D)}=\sup _{x \neq y \in D} \frac{|u(x)-u(y)|}{|x-y|^{\alpha}} \leq a+b
$$

as wanted.

$C^{0, \alpha}(D)$ is a Banach space

Sketch of proof

- Piece 2: $C^{0, \alpha}(D)$ is complete.
\star Suppose that $\left(u_{m}\right)$ is Cauchy in $C^{0, \alpha}(D)$.
\star As $\|\cdot\|_{\text {sup }} \leq\|\cdot\|_{C^{0, \alpha}(D)}$, this implies that $\left(u_{m}\right)$ is Cauchy in $C^{0}(\bar{D})$ and hence converges uniformly to some $u \in C^{0}(\bar{D})$.
\star Claim: $u \in C^{0, \alpha}(D)$. Fix $\varepsilon>0$. For every $x, y \in D$, we have

$$
\begin{aligned}
\left|\left(u_{m}-u_{j}\right)(x)-\left(u_{m}-u_{j}\right)(y)\right| & \leq\left[u_{m}-u_{j}\right]_{C^{0, \alpha}(D)}|x-y|^{\alpha} \\
& \leq \varepsilon|x-y|^{\alpha} \text { for large } m, j .
\end{aligned}
$$

Sending $j \rightarrow \infty$, we thus have

$$
\left|\left(u_{m}-u\right)(x)-\left(u_{m}-u\right)(y)\right| \leq \varepsilon|x-y|^{\alpha} \text { for large } m
$$

Choose one such m we arrive at

$$
|u(x)-u(y)| \leq\left(\left[u_{m}\right]_{C^{0, \alpha}(D)}+\varepsilon\right)|x-y|^{\alpha} .
$$

So $u \in C^{0, \alpha}(D)$.

$C^{0, \alpha}(D)$ is a Banach space

Sketch of proof

- Piece 2: $C^{0, \alpha}(D)$ is complete.
\star Finally, we show that $u_{m} \rightarrow u$ in $C^{0, \alpha}(D)$. As u_{m} converges to u uniformly, it remains to show that $\left[u_{m}-u\right]_{C^{0, \alpha}(D)} \rightarrow 0$.
\star Fix $\varepsilon>0$. Recall from the previous slide that, for $x, y \in D$, we have

$$
\left|\left(u_{m}-u\right)(x)-\left(u_{m}-u\right)(y)\right| \leq \varepsilon|x-y|^{\alpha} \text { for large } m
$$

Divide both sides by $|x-y|^{\alpha}$ and take supremum, we have

$$
\left[u_{m}-u\right]_{C^{0, \alpha}(D)} \leq \varepsilon \text { for large } m
$$

\star As ε is arbitrary, we conclude that $\left[u_{m}-u\right]_{C^{0, \alpha}(D)} \rightarrow 0$.

Morrey's inequality

Theorem (Morrey's inequality)

Assume that $n<p \leq \infty$. Then every $u \in W^{1, p}\left(\mathbb{R}^{n}\right)$ has a ($1-\frac{n}{p}$)-Hölder continuous representative. Furthermore there exists a constant $C_{n, p}$ such that

$$
\|u\|_{C^{0,1-\frac{n}{p}}\left(\mathbb{R}^{n}\right)} \leq C_{n, p}\|u\|_{W^{1, p}\left(\mathbb{R}^{n}\right)} .
$$

In particular, $W^{1, p}\left(\mathbb{R}^{n}\right) \hookrightarrow C^{0,1-\frac{n}{\rho}}\left(\mathbb{R}^{n}\right)$.

