BO1 History of Mathematics Lecture X Linear algebra

MT 2021 Week 5

Summary

Part 1

- Linear equations

Part 2

- Determinants
- Eigenvalues
- Matrices

Part 3

- Vector spaces

Part 1: Linear Equations

Difficulties in the historical study of linear algebra

Linear algebra may be mathematically simple but its history is more complicated than any other topic in this book.
... [Its development is] a very tangled tale.
(Mathematics Emerging, p. 548.)

Difficulties in the historical study of linear algebra

Linear algebra may be mathematically simple but its history is more complicated than any other topic in this book.
... [Its development is] a very tangled tale.
(Mathematics Emerging, p. 548.)

- linear algebra is elementary but its manifestations are many and sophisticated

Difficulties in the historical study of linear algebra

Linear algebra may be mathematically simple but its history is more complicated than any other topic in this book.
... [Its development is] a very tangled tale.
(Mathematics Emerging, p. 548.)

- linear algebra is elementary but its manifestations are many and sophisticated
- there are hardly any obvious starting points

Difficulties in the historical study of linear algebra

Linear algebra may be mathematically simple but its history is more complicated than any other topic in this book.
... [Its development is] a very tangled tale.
(Mathematics Emerging, p. 548.)

- linear algebra is elementary but its manifestations are many and sophisticated
- there are hardly any obvious starting points
- theory often lagged behind practice

Difficulties in the historical study of linear algebra

Linear algebra may be mathematically simple but its history is more complicated than any other topic in this book.
... [Its development is] a very tangled tale.
(Mathematics Emerging, p. 548.)

- linear algebra is elementary but its manifestations are many and sophisticated
- there are hardly any obvious starting points
- theory often lagged behind practice
- practice sometimes lagged behind theory

Difficulties in the historical study of linear algebra

Linear algebra may be mathematically simple but its history is more complicated than any other topic in this book.
... [Its development is] a very tangled tale.
(Mathematics Emerging, p. 548.)

- linear algebra is elementary but its manifestations are many and sophisticated
- there are hardly any obvious starting points
- theory often lagged behind practice
- practice sometimes lagged behind theory
- 19th-century reliance on theory of quadratic and bilinear forms (e.g., $a x^{2}+2 b x y+c y^{2}$) - unfamiliar to students now

Difficulties in the historical study of linear algebra

Linear algebra may be mathematically simple but its history is more complicated than any other topic in this book.
... [Its development is] a very tangled tale.
(Mathematics Emerging, p. 548.)

- linear algebra is elementary but its manifestations are many and sophisticated
- there are hardly any obvious starting points
- theory often lagged behind practice
- practice sometimes lagged behind theory
- 19th-century reliance on theory of quadratic and bilinear forms (e.g., $a x^{2}+2 b x y+c y^{2}$) - unfamiliar to students now
Warning: matrices (etc.) are primary in modern teaching, determinants secondary. For about 200 years until 1940 (or thereabouts) the reverse was the case: determinants came first.

On the history of linear algebra

(Princeton University Press, 2014)

Jiǔzhāng Suànshù（China，c． 150 BC）

Nine chapters of the mathematical art 九章算術（from a 16th－century edition，derived from a 3rd－century commentary by Liu Hui 劉徽）

Jiǔzhāng Suànshù（China，c． 150 BC）

Nine chapters of the mathematical art 九章算術（from a 16th－century edition，derived from a 3rd－century commentary by Liu Hui 劉徽）

Content：calculation of areas （ $\pi \approx 3.14159$ ），rates of exchange， computation with fractions， proportion，extraction of square and cube roots，calculation of volumes，systems of linear equations，Pythagoras＇Theorem，

Chinese calculation

| \mid | \|l | \||| | \||II | \||III | T | II | III | TIII |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |

	π			
	$\\|$	\equiv	πI	
	$\pi I I I$			

	π	$=$		
	$\\|$	\equiv	$\pi ा$	
		$\pi I I$		

$$
\begin{gathered}
726 \\
9 \begin{array}{c}
6538 \\
63 \\
\hline 23 \\
\frac{18}{58} \\
\frac{54}{4}
\end{array} . \begin{array}{l}
\\
\hline
\end{array}{ }^{2} \\
\hline
\end{gathered}
$$

Base 10 system of rods on counting board: red for positive, black for negative

Early linear equations in China

Chapter 7: solution of pairs of equations in two unknowns by the method of false position

Early linear equations in China

Chapter 7: solution of pairs of equations in two unknowns by the method of false position

Chapter 8: solution of systems of n equations in n unknowns for $n \leq 5$

Early linear equations in China

Chapter 7: solution of pairs of equations in two unknowns by the method of false position

Chapter 8: solution of systems of n equations in n unknowns for $n \leq 5$

There are three types of grain
3 bundles of the first, 2 of the second, and 1 of the third contain 39 measures

2 of the first, 3 of the second, and 1 of the third contain 34
1 of the first, 2 of the second, and 3 of the third contain 26
How many measures in a bundle of each type?

Early linear equations in China

Chapter 7: solution of pairs of equations in two unknowns by the method of false position

Chapter 8: solution of systems of n equations in n unknowns for $n \leq 5$

There are three types of grain
3 bundles of the first, 2 of the second, and 1 of the third contain 39 measures

2 of the first, 3 of the second, and 1 of the third contain 34
1 of the first, 2 of the second, and 3 of the third contain 26
How many measures in a bundle of each type?

Solved on a counting board by Gaussian elimination, known here as 'fāngchéng' 方程

Early linear equations in China

There are five families which share a well. 2 of A 's ropes are short of the well's depth by 1 of B's ropes. 3 of B's ropes are short of the depth by 1 of C's ropes. 4 of C's ropes are short by 1 of D's ropes. 5 of D's ropes are short by 1 of E's ropes. 6 of E's ropes are short by 1 of A's ropes. Find the depth of the well and the length of each rope.

Early linear equations in China

There are five families which share a well. 2 of A 's ropes are short of the well's depth by 1 of B's ropes. 3 of B's ropes are short of the depth by 1 of C's ropes. 4 of C's ropes are short by 1 of D's ropes. 5 of D's ropes are short by 1 of E's ropes. 6 of E's ropes are short by 1 of A's ropes. Find the depth of the well and the length of each rope.

Five equations in six unknowns, so indeterminate

Early linear equations in China

There are five families which share a well. 2 of A 's ropes are short of the well's depth by 1 of B's ropes. 3 of B's ropes are short of the depth by 1 of C's ropes. 4 of C's ropes are short by 1 of D's ropes. 5 of D's ropes are short by 1 of E's ropes. 6 of E's ropes are short by 1 of A's ropes. Find the depth of the well and the length of each rope.

Five equations in six unknowns, so indeterminate
Liu Hui: we can only give a solution in terms of proportions of the lengths

Early linear equations in Europe

$$
I O A N
$$

B VTEONIS
LOGISTICA, QVA
\& Arithmetica vulgò dicitur in lı-
bros quinque digefta:quorum index fummatim habetur in tergo. EIVSDEM,
-Ad locum Vitrany corruptum resthatutio, guti ife de proportione lapidum mittendop ramad Balifto.

LVGDVNI,
APVD GVLIELMVM ROVILLTVM, SVB SCVTO VENETO. Cum priuilegio Regis.

Jean Borrel [loannes Buteus] Logistica, quæ et Arithmetica vulgo dicitur in libros quinque digesta (Logistic, also known as Arithmetic, digested in five books), 1559

Linear equations in Borrel's Logistica

190

$\mathcal{L} \mathcal{I} E R$

$2 \mathcal{A}, 1 B[60$ fingulatim in 3 , fit $6 \mathcal{A}, 3 B$, [I8 O. Ex his detrahe $1 \mathcal{A}, 3 B[60$, restat $5 \mathcal{A}$ [120]. Partire in 5, prouenit 24 , qui primus eft numerus ex quafitis. Ex numero 30 aufer 24, rcfiduum fit 6 , quod eft dimidium fecundi, quare ip \int e eft 12 . Sunt igitur duo numeri $24, \mathcal{O}_{12}$, quos oportuit inuenire.

Tres numeros inuenire, quorum pris mus cum triente reliquorum faciat 14 . Sea cundus cum aliorum quadrante 8. Tertius item cum parte quinta reliquorum 8.

POne primum effe I \mathcal{A}, fecundum $\mathrm{I} B$, tertium : ${ }^{1} C$. Erit igitur $\mathrm{I}, A, \frac{1}{3} B,-\frac{1}{3} C[14$. Item I $B, \frac{1}{4} \mathcal{A}, \frac{1}{4} C\left[8\right.$. Et etiam $\mathrm{I} C, \frac{1}{3} \mathcal{A}, \frac{1}{5}$ $B[8$. Ex his autem sequationem fecundam $f a$ ciendo, habebis primam, fecundä, et tertiam, quales hic appofui. Ex tribus iffis

$$
\left.\begin{array}{llll}
3 \mathcal{A} . & 1 & B . & \text { I } C[42
\end{array}\right] 1^{a} .
$$ aquatioibus alie, vel

multiplicando, vel inuicem addendo funt facien. de, quoufque per detractionem minorum ex maio. ribus relinquatur fola quantitas vnius note, quod fiet hoc modo. Multiplica squationem fecundam in 3 ,fit $3 \mathcal{A}, 12 B, 3 C[96$. Aufer primane,re-:

To find three numbers, of which the first with a third of the rest makes 14. The second with a quarter of the rest makes 8 . Likewise the third with a fifth part of the rest makes 8 .

Linear equations in Borrel's Logistica

190

$\mathcal{L} \mathcal{I} E R$

$2 \mathcal{A}, 1 B[60$ fingulatim in 3 , fit $6 \mathcal{A}, 3 B$, [I8 O. Ex his detrahe $\mathrm{I} \mathcal{A}, 3 B[60$, restat $\mathrm{S} \mathcal{A}$ [120]. Partire in 5, prouenit 24 , qui primus eft numerus ex quafitis. Ex numero 30 aufer 24, rcfoduum fit 6 , quod eft dimidium fecundi, quare ip \int e eft 12 . Sunt igitur duo numeri $24, \mathcal{O}_{12}$, quos oportuit inuenire.

Tres numeros inuenire, quorum pris mus cum triente reliquorum faciat 14. Sea cundus cum aliorum quadrante 8. Tertius item cum parte quinta reliquorum 8 .

POne primum efje I \mathcal{A}_{3} fecundum $\mathrm{I} B$, tertium 1 C. Erit igitur $\mathrm{I} A, \div B,-\frac{1}{3} C[14$. Item I $B, \frac{1}{4} \mathcal{A}, \frac{1}{4} \mathcal{C}\left[8\right.$. Et etiam $\mathrm{I} C, \frac{1}{3} \mathcal{A}, \frac{1}{5}$ $B[8 \cdot$ Ex his autem squationem fecundam $f a$ ciendo, habcbis primam, fecundä, et ter- $\quad 3$ A. I B. IC $[42] 1^{a}$ tiam, qualeshic ap- I A. 4 B. IC $\left[32 \mid 2^{4}\right.$. pofui. Ex tribus isfis I A. I B. $5 C\left[4\right.$ 이 3^{a}. aquatioibus alie, vel
multiplicando, vel inuicem addendo funt facien. de, quoufque per detractionem minorum ex maio. ribus relinquatur fola quantitas pnius notue, quod fiet hoc modo. Multiplica squationem fecundam in 3 ,fit 3 A, 12 B, $3 C[$ 26. Aufer primam,re-: ftat

To find three numbers, of which the first with a third of the rest makes 14. The second with a quarter of the rest makes 8 . Likewise the third with a fifth part of the rest makes 8 .

Put the first to be $1 A$, the second 1B, the third 1C....
[Derives a system of equations with '.' for addition and '[' for equality.]

Linear equations in Borrel's Logistica

190

$\mathcal{L} \mathcal{I} E R$

$2 \mathcal{A}, \mathrm{I} B[60$ fingulatim in 3 , fit $6 \mathcal{A}, 3 B$, [180.Ex his detrahe $1 \mathcal{A}, 3 B[60$, restat $5 \mathcal{A}$ [120]. Partire in 5, prouenit 24 , qui primus eft numerus ex quafitis. Ex numero 30 aufer 24, rcfoduum fit 6 , quod eft dimidium fecundi, quare ip \int e eft 12 . Sunt igitur duo numeri $24, \mathrm{O}_{12} 12$, quos oportuit inuenire.

Tres numeros inuenire, quorum pris mus cum triente reliquorum faciat 14 . Sen cundus cum aliorum quadrante 8. Tertius item cum parte quinta reliquorum 8.

POne primum efje I $\mathcal{A}, f e c$ cundum $\mathrm{I} B$, tertium 1 C. Erit igitur $\mathrm{r} A, \div B,-C[14$. Item $\underset{ }{1} B, \div \mathcal{A}, \div \mathcal{C}\left[8 . \operatorname{Et}\right.$ etiam $\mathrm{I} C, \frac{1}{3} \mathcal{A}, \div$ B [8. Ex his autem squationem fecundam $f a$ ciendo, habcebis pri-
 tiam, qualeshîc ap- IA. 4 B. IC $\left[32 \mid 2^{\text {a }}\right.$. pofui. Ex tribus isfis $1 \mathcal{A}$. I B. $5^{C}\left[4\right.$ 이 3^{a}. equatioibus alie,vel
multiplicando, vel inuicem addendo funt facien. de, quoufque per detractionem minorum ex maio. vibus relinquatur fola quantitas vnius notie, quod fiet hoc modo. Multiplica sequationem fecundam in 3 ,fit $3 \mathcal{A}, 12 B, 3 C[96$. Aufer primana, re-: ftat

To find three numbers, of which the first with a third of the rest makes 14. The second with a quarter of the rest makes 8 . Likewise the third with a fifth part of the rest makes 8 .

Put the first to be $1 A$, the second 1B, the third 1C....
[Derives a system of equations with '.' for addition and '[' for equality.]

Multiply by 3 , by 4 and by 5 respectively, etc.
(See Mathematics emerging, §17.1.1.)

More unknowns

GVL. GOS. DEARTE bunt 60 eqqualia I A, quare primus eft 60 , iam vero 2 B IC eqqualia fuerunt 100 , tollamus IC hoc eft 20 , reftabunt 80 xqualia $2 \mathrm{~B}, \&_{1}$ B eft 40 , funtquetres numeri quxfiti 604020 , quibus veftigatis opus fuit.

Problema, V.

Inueniamus quatior numeros quorum primus cum femiffe reliquorum faciat ${ }_{17}$, fécundus cumaliorum triente 12 , tertius cum aliorum quadrante Γ_{3}, quartus item cum aliorum fextante 13 :
Sint illi quatuor A B CD \& fint A $\frac{1}{2} B \frac{1}{2} C \frac{1}{2}$ D equalia ${ }_{17}, \mathrm{~B} \mathrm{~B}_{3}^{\frac{1}{3}} \mathrm{~A} \frac{-\mathrm{C}}{3}$ $\frac{1}{2}$ Dequalia $12, \mathrm{C} \frac{1}{4} \mathrm{~A} \frac{1}{4} \mathrm{~B} \frac{1}{4} \mathrm{D}$ xqualia ${ }_{13}, \mathrm{ID} \frac{1}{6} \mathrm{~A} \div \mathrm{B} \frac{4}{6} \mathrm{C}$ equalia ${ }_{13}$, reuocentur hęc ad integros numcros, exiftent 2 A 1 Bicid xqualia 34, IA
 xqualia \boldsymbol{s}_{2}; A A $\mathrm{B} \mp \mathrm{C} 6 \mathrm{D}$ xqualia 78,

Guillaume Gosselin, De arte magna seu de occulta parte numerorum quae et Algebra et Almucabala vulgo dicitur (On the great art or the hidden part of numbers commonly called Algebra and Almucabala), 1577

$$
\begin{aligned}
& 1 A+\frac{1}{2} B+\frac{1}{2} C+\frac{1}{2} D=17 \\
& 1 B+\frac{1}{3} A+\frac{1}{3} C+\frac{1}{3} D=12 \\
& 1 C+\frac{1}{4} A+\frac{1}{4} B+\frac{1}{4} D=13 \\
& 1 D+\frac{1}{6} A+\frac{1}{6} B+\frac{1}{6} C=13
\end{aligned}
$$

A 17th-century example

After reading Gosselin ...
John Pell to Sir Charles Cavendish (1646):
Exemplum ... satis determinatis

$$
\begin{gathered}
3 a-4 b+5 c=2 \\
5 a+3 b-2 c=58 \\
7 a-5 b+4 c=14
\end{gathered}
$$

A 17th-century example

After reading Gosselin ... John Pell to Sir Charles Cavendish (1646):

Exemplum ... satis determinatis

$$
\begin{gathered}
3 a-4 b+5 c=2 \\
5 a+3 b-2 c=58 \\
7 a-5 b+4 c=14
\end{gathered}
$$

(Solved via Pell's 'three-column method')

A 17th-century example

After reading Gosselin ...
John Pell to Sir Charles Cavendish (1646):
Exemplum ... satis determinatis

$$
\begin{gathered}
3 a-4 b+5 c=2 \\
5 a+3 b-2 c=58 \\
7 a-5 b+4 c=14
\end{gathered}
$$

(Solved via Pell's 'three-column method')
Exemplum ... non satis determinatis

$$
\begin{aligned}
& 5 a+3 b-2 c=24 \\
& -2 a+4 b+3 c=5
\end{aligned}
$$

($a, b, c>0$; found bounds for the possible values: e.g., $a<15 \frac{9}{11}$)

Linear equations - systematic practical methods

Gaussian elimination:

Linear equations - systematic practical methods

Gaussian elimination:

- The nine chapters of the mathematical art, China (c. 150 BC)

Linear equations - systematic practical methods

Gaussian elimination:

- The nine chapters of the mathematical art, China (c. 150 BC)
- Colin Maclaurin, A treatise of algebra (1748), §§82-85

Maclaurin on Gaussian elimination

A

TREATISE ©
ALGEBRA,

IN

THREEPARTS. CONTAINING
I. Tbe Fundamental Rales and Operiations.
II. Tbe Compofition ind Refolution of Equa= tions of all Degrees; and the different Affestions of their Roots:
iII. Tbe Application of Algebira and Geometry to each otber.

To which is added ani
A P P E N D I X,
Concerning the genieral Properties of Gbometrical Lines.

By COLIN MACLAURIN, M. A.
Late Profissor of M $\bar{M}_{\text {athematics }}$ in the Univerfity of Edinnburgb, and Fallow of the Regal Socirty.

LONDON:
Printed for A. Millar, and J. Nourse, oppofite to Catherine-Street, in the Strand. M.DCC.XLVIII.

Chap.if. ALGEBRA.

$$
\begin{aligned}
& \left\{\begin{array}{l}
x: y:: a: b \\
x^{3}-y^{3}=d
\end{array}\right. \\
& x=\frac{a y}{b} \text { and } x^{3}=\frac{a^{3} y^{3}}{b^{3}}
\end{aligned}
$$

bur $x^{3}=d+y^{3}$
whence $\quad d+y^{3}=\frac{a^{3} y^{3}}{b^{1}}$
and $a^{3} y^{3}-b^{3} y^{3}=d b^{3}$.
$y^{3}=\frac{d b^{3}}{a^{3}-b^{3}}$
$y=\sqrt[3]{\frac{d b^{3}}{a^{3}-b^{3}}}$
and $x=\sqrt[3]{\frac{d a^{3}}{a^{3}-b^{3}}}$.
DIRECTION.V.
582. "If tbero afe zbree unknown Ruantitios, thers muft be tbree Equations in order to dafermine them. by comparing wbicb yous may, in all

- Cafes, find two Equations involving onty two -unknown Quantities; and tben, by Direct. 3d, from thefe two yau may deduce an Equation involving only one unknown 2uantity; wobicb may be refolved by the Rules of the laft Cbapser."

From 3 Equations involving any three unknown Quantities, x, y, and z, to deduce two Equations involving only two unknown Quancities, the following Rule will always ferve.

RULE.

Linear equations - systematic practical methods

Gaussian elimination:

- The nine chapters of the mathematical art, China (c. 150 BC)
- Colin Maclaurin, A treatise of algebra (1748), §§82-85

Linear equations - systematic practical methods

Gaussian elimination:

- The nine chapters of the mathematical art, China (c. 150 BC)
- Colin Maclaurin, A treatise of algebra (1748), §§82-85
- C. F. Gauss: calculation of asteroid orbits (1810)

Linear equations - systematic practical methods

Gaussian elimination:

- The nine chapters of the mathematical art, China (c. 150 BC)
- Colin Maclaurin, A treatise of algebra (1748), §§82-85
- C. F. Gauss: calculation of asteroid orbits (1810)
- from surveying, e.g., Wilhelm Jordan, Handbuch der Vermessungskunde, 3rd edition (1888)

Maclaurin and linear equations

Chap. 12. A L G E B R A.
83
EXAMPLEI.
Supp. $\left\{\begin{array}{l}5^{x}+7 y=100\end{array}\right.$
$\left\{\begin{array}{l}3 x+8 y=80\end{array}\right.$
then $y=\frac{5 \times 80-3 \times 100}{5 \times 8-3 \times 7}=\frac{100}{19}=5 \frac{5}{19}$
and $\alpha=\frac{240}{19}=12 \frac{12}{19}$.
EXAMPLEII.
$\left\{\begin{array}{l}4 x+8 y=90 \\ 3^{x-2 y}=160\end{array}\right.$
$y=\frac{4 \times 160-3 \times 90}{4 x-2-3 \times 8}=\frac{640-270}{-8-44}=\frac{370}{-32}=-12 \frac{9}{16}$
THEOREM II.
\$87. Suppofe now that there are three und known Quantities and three Equations, them call the unknown Quantities x, y, and z.

Thus,

$$
\left\{\begin{array}{l}
a x+b y+c z=z \\
d x+y+f z=n \\
g x+b y+k z=p
\end{array}\right.
$$

Then thall $x=\frac{a c t-a b+d b x-d p+g b n-g u m}{a c k-a b j+d k c-d b+8 f-g c c}$.
Where the Numerator confifts of all the difrent Products that can be made of three oppofite Coefficients taken from the Orders in which \boldsymbol{z} is not found ; and the Denominator confifts of all the Products that can be made of the three op-

G 2
pofite

Colin Maclaurin, A treatise of algebra, 1748, p. 83

Three equations in three unknowns solved using a 'determinant-like' quantity

Maclaurin and linear equations

Chap. 12. A L G E B R A.
83
EXAMPLEI.
Supp. $\left\{\begin{array}{l}5 x+7 y=100 \\ 3 x+8 y=80\end{array}\right.$
$\left\{\begin{array}{l}3 x+8 y=80\end{array}\right.$
then $y=\frac{5 \times 80-3 \times 100}{5 \times 8-3 \times 7}=\frac{100}{19}=5 \frac{5}{19}$
and $x=\frac{240}{19}=12 \frac{12}{19}$.
EXAMPLE II.
$\left\{\begin{array}{l}4 x+8 y=90 \\ 3 x-2 y=160\end{array}\right.$
$y=\frac{4 \times 160-3 \times 90}{4 \times-2-3 \times 8}=\frac{640-270}{-8-44}=\frac{370}{-32}=-12 \frac{9}{16}$
THEOREM II.
887. Suppofe now that there are three und known Quantities and three Equations, them call the unknown Quantities x, y, and z.

Thus,

$$
\left\{\begin{array}{l}
a x+b y+c z=m \\
d x+c y+f z=n \\
g x+b y+k=p
\end{array}\right.
$$

Then thall $x=\frac{a c k-a b n+d b m-d b+g b n-g c e}{a c k-a b f+d b c-d b k+g b f-g c c}$.
Where the Numerator confifts of all the difrent Products that can be made of three oppofite Coefficients taken from the Orders in which \boldsymbol{z} is not found ; and the Denominator confifts of all the Products that can be made of the three opG 2 pofite

Colin Maclaurin, A treatise of algebra, 1748, p. 83

Three equations in three unknowns solved using a 'determinant-like' quantity

Chap.13. A L G E B R A. 85
If four Equations are given, involving four unknown Quantities, their Values may be found much after the fame Manner; by taking all the Products that can be made of four oppofite Coefficients, and always prefixing contrary Signs to thofe that involve the Products of two oppofite Coefficients.

Maclaurin and linear equations

Chap. 12. A L G E B R A.
83
EXAMPLEI.
Supp. $\left\{\begin{array}{l}5 x+7 y=100 \\ 3^{x}+8 y=80\end{array}\right.$
then $y=\frac{5 \times 80-3 \times 100}{5 \times 8-3 \times 7}=\frac{100}{19}=5 \frac{5}{19}$
and $x=\frac{240}{19}=12 \frac{12}{19}$.
EXAMPLE II.
$\left\{\begin{array}{l}4 x+8 y=90\end{array}\right.$
$\left\{\begin{array}{l}3 x-2 y=160\end{array}\right.$
$y=\frac{4 \times 160-3 \times 90}{4 \times-2-3 \times 8}=\frac{640-270}{-8-24}=\frac{370}{-32}=-11 \frac{9}{16}$
THEOREM II.
887. Suppofe now that there are three und known Quantities and three Equations, them call the unknown Quantities x, y, and z.

Thus,

$$
\left\{\begin{array}{l}
a x+b y+c z=m \\
d x+c y+f z=n \\
g x+b y+k z=p
\end{array}\right.
$$

Then thall $x=\frac{a c k-a b n+d b m-d b+g b n-g c m}{a c k-a b f+d b c-d b k+g b-g c c}$.
Where the Numerator confifts of all the difrent Products that can be made of three oppofite Coefficients taken from the Orders in which \boldsymbol{z} is not found ; and the Denominator confifts of all the Products that can be made of the three opG 2 pofite

Colin Maclaurin, A treatise of
algebra, 1748, p. 83
Three equations in three unknowns solved using a 'determinant-like' quantity

Chap. i3. A L G E B R A. 85

If four Equations are given, involving four unknown Quantities, their Values may be found much after the fame Manner; by taking all the Products that can be made of four oppofite Coefficients, and always prefixing contrary Signs to thofe that involve the Products of two oppofite Coefficients.

Notational difficulties - we run out of letters!

Part 2: Determinants and Matrices

Determinants

Colin Maclaurin, A treatise of algebra, 1748, Ch. XII, pp. 81-85

Determinants

Leibniz, unpublished works, 1680s/1690s.

Colin Maclaurin, A treatise of algebra, 1748, Ch. XII, pp. 81-85

Leibniz and determinants

At least as early as June 1678, Leibniz devised a new notation for coefficients, writing

$$
\begin{aligned}
& 10+11 x+12 y=0 \\
& 20+21 x+22 y=0
\end{aligned}
$$

for what we would write as

$$
\begin{aligned}
& a_{10}+a_{11} x+a_{12} y=0, \\
& a_{20}+a_{21} x+a_{22} y=0
\end{aligned}
$$

Leibniz and determinants

At least as early as June 1678, Leibniz devised a new notation for coefficients, writing

$$
\begin{gathered}
10+11 x+12 y=0 \\
20+21 x+22 y=0
\end{gathered}
$$

for what we would write as

$$
\begin{aligned}
& a_{10}+a_{11} x+a_{12} y=0, \\
& a_{20}+a_{21} x+a_{22} y=0
\end{aligned}
$$

Leibniz used this notation to formulate general results on the solvability of systems of equations in terms of a determinant-like quantity (a sum of signed products of coefficients)

Leibniz and determinants

At least as early as June 1678, Leibniz devised a new notation for coefficients, writing

$$
\begin{aligned}
& 10+11 x+12 y=0 \\
& 20+21 x+22 y=0
\end{aligned}
$$

for what we would write as

$$
\begin{aligned}
& a_{10}+a_{11} x+a_{12} y=0, \\
& a_{20}+a_{21} x+a_{22} y=0
\end{aligned}
$$

Leibniz used this notation to formulate general results on the solvability of systems of equations in terms of a determinant-like quantity (a sum of signed products of coefficients) - but these were not published during his lifetime

Determinants

Leibniz, unpublished works, 1680s/1690s.

Colin Maclaurin, A treatise of algebra, 1748, Ch. XII, pp. 81-85

Determinants

Leibniz，unpublished works，1680s／1690s．
Seki Takakazu，Kai－fukudai－no－hō 解伏題之法， 1683
Colin Maclaurin，A treatise of algebra，1748，Ch．XII，pp．81－85

Seki and determinants

Seki Takakazu，Kai－fukudai－no－hō 解伏題之法（Method for Solving Concealed Problems）， 1683

Arranged coefficients of systems of equations in a grid，and gave schematics for construction of determinants（dotted lines indicate positive products，and solid lines negative）

Determinants

Leibniz，unpublished works，1680s／1690s．
Seki Takakazu，Kai－fukudai－no－hō 解伏題之法， 1683
Colin Maclaurin，A treatise of algebra，1748，Ch．XII，pp．81－85

Determinants

Leibniz，unpublished works，1680s／1690s．
Seki Takakazu，Kai－fukudai－no－hō 解伏題之法， 1683
Colin Maclaurin，A treatise of algebra，1748，Ch．XII，pp．81－85
Vandermonde，＇Mémoire sur l＇élimination＇，Mémoires de l＇Académie des sciences，1772：a recursive description of determinants of any size（but without a name and in an uncongenial notation－see Mathematics emerging，§17．1．3）

Vandermonde on elimination

```
DESSCIENCESO
517
ARTICLE L"
```

Des Equations du promier degrt.
Je fuppofe que lon reprefente par i, i, i,\&c. i, i, i, \&c. 3. 3. 3, \&cc. \&cc. autant de diffírentes quantités génćrales, dont fune quelconque foit ${ }_{\mathrm{a}}$, une autre quelconque foit b. \&cc. \& que le produit des deux foit defigne a Pordimaire pará . ${ }^{\frac{3}{6}}$.

Des deux nombres ordinaux $=\& \mathrm{a}$, le premier, par exemple, défignera de quelle équation efl pris le coafficient ${ }^{\text {n }}$, \& le fecond defignera le rang que tient ce coëficient dans Péquation, comme on le verra ci-après.

Je fuppofe encore le fyfteme fuivaat dabréviations, \& que Pon fatic
$\frac{\Delta \mid B}{\left.a\right|_{b}}={ }_{a, b}^{A B}-{ }_{b, a}^{A B}$
$\frac{a}{a\left|\frac{b}{b}\right| \frac{\gamma}{c}=a \cdot \frac{B}{b}\left|\frac{\gamma}{c}+i=\frac{A}{c}\right| \frac{\gamma}{a}+\text { a. } \frac{A}{a} \left\lvert\, \frac{\gamma}{b}\right.}$

$$
+\frac{b}{d}\left|\frac{1}{2}\right| \frac{d}{b}\left|\frac{1}{6}+e \frac{B}{2}\right| \frac{y}{b}\left|\frac{b}{6}\right| \frac{d}{d}
$$

α
denotes a single quantity, e.g., a coefficient in a linear equation

Vandermonde on elimination

```
DESSCIENCESS
ARTICLE 1."
```

517

Des Equations du promier degrt.
Je fuppofe que fon reprefente par i, i, i,\&c. i, i, i, i, \&c. 3. 3. 3 , \&c. \&cc, autant de diffírentes quantités générales, dont fune quelconque foit ${ }_{\mathrm{a}} \mathrm{a}$, une autre quelconque foit b. \&cc. \& que le produit des deux foit defigne a Pordimaire pará . b b.

Des deux nombres ordinaux $=\& a$, le premier, par exemple, défignera de quelle équation efl pris le coafficient ${ }^{\text {n }}$, \& le fecond defignera le rang que tient ce coëficient dans P'́quation, comme on le verra ci-après.

Je fuppofe encore le fyftème fuivant dabréviations, \& que lon falife

$\frac{a}{a\left|\frac{b}{b}\right| \frac{\gamma}{c}=a \cdot \frac{B}{b}\left|\frac{\gamma}{c}+i=\frac{A}{c}\right| \frac{\gamma}{a}+\text { a. } \frac{A}{a} \left\lvert\, \frac{\gamma}{b}\right.}$

$$
+\frac{b}{d}\left|\frac{y}{2}\right| \frac{d}{b}\left|\frac{1}{6}+e \frac{B}{2}\right| \frac{y}{b}\left|\frac{b}{6}\right| \frac{d}{d}
$$

α
denotes a single quantity, e.g., a a coefficient in a linear equation

Define: | α | β |
| :---: | :---: |
| a | b |\(=\begin{array}{ll}\alpha \& \beta

a \& b\end{array}-$$
\begin{array}{ll}\alpha & \beta \\
b & a\end{array}
$$\)

Vandermonde on elimination

```
\[
\text { ARTICLE } L^{\text {er }}
\]
```

517

Des Equations du promier degnt.
Je fuppofe que lóon reprefente par i, 1, 1, \&c. $2,2,2$, , kc. 3. 3. 3, \& cc. \&cc. autant de différentes quantités générales, dont fune qquelconque foit ${ }_{a}^{a}$, une autre quelconque foit b. \&cc. \& que le produit des deux foit defigné a lordimaire para, b.

Des deux nombres ordinaux $=\& \& \mathrm{a}$, le premier, par exemple, defignera de quelle équation eft pris le coilficient *, \& le fecond defignera le rang que tient ec coëfficient dans Péquation, comme on le verra ci-après.

Je fuppofe encore le fyftème fuivant d'abréviations, \& que l'on fafle
$\frac{a \mid \beta}{a \mid b}={ }_{a . b}^{a}-\frac{B}{b . a}$
$\frac{a}{a}\left|\frac{B}{b}\right| \frac{\gamma}{c}=\frac{a}{a} \cdot \frac{B}{b}\left|\frac{\gamma}{c}+\frac{a}{b} \cdot \frac{A}{c}\right| \frac{\gamma}{a}+a, \frac{B}{a} \left\lvert\, \frac{\gamma}{b}\right.$
$\left.\frac{a}{a}\left|\frac{B}{b}\right| \frac{\gamma}{c}\left|\frac{\partial}{d}={ }_{a}, \frac{A}{b}\right| \frac{\gamma}{c}\left|\frac{d}{d}-\frac{a}{b}, \frac{B}{c}\right| \frac{\gamma}{d}\left|\frac{s}{a}+a, \frac{A}{d}\right| \frac{r}{a}\left|\frac{p}{b}-\frac{a}{d}, \frac{B}{a}\right| \frac{\gamma}{b} \right\rvert\, \frac{\partial}{c}$

$\left.+\frac{a}{d} \cdot \frac{B}{e}\left|\frac{y}{2}\right| \frac{b}{b} \right\rvert\, \frac{1}{6}+$ e. $\left.\frac{A}{a}\left|\frac{y}{b}\right| \frac{\partial}{6} \right\rvert\, \frac{1}{d}$

α
denotes a single quantity, e.g., a a coefficient in a linear equation

Define: | α | β |
| :--- | :--- |
| a | b |\(=\begin{array}{ll}\alpha \& \beta

a \& b\end{array}-$$
\begin{array}{ll}\alpha & \beta \\
b & a\end{array}
$$\)

Anachronistically, this is the determinant of the matrix:

$$
\left(\begin{array}{ll}
\alpha & \alpha \\
a & b \\
\beta & \beta \\
a & b
\end{array}\right)
$$

Vandermonde on elimination


```
ARTICLE L"
```

 517
 Des Equations du promier degrt.
Je fuppofe que lon repréfente par i, i, i,\&c. $2,2,2,2, \& c$. 3. 3. 3 , \&c. \&cc, autant de diffírentes quantités génćrales, dont Pune quelconque foit ${ }_{\mathrm{a}} \mathrm{A}$, une autre quelconque foit b. \&cc. \& que le produit des deux foit defigné a Pordimaire par ${ }^{2}$. ${ }^{5}$ b.

Des deux nombres ordinaux $=\& \mathrm{a}$, le premier, par exemple, défignera de quelle équation efl pris le coafficient ${ }^{\text {a }}$, \& le fecond defignera le rang que tient ce coëfficient dans Péquation, comme on le verra ci-après.

Je fuppofe encore le fyftime fuivaat dabréviations, \& que lon falic
$\frac{\Delta \mid a}{a \mid b}={ }_{a . b}^{a}-\frac{A}{b, a}$
$\frac{a}{a\left|\frac{B}{b}\right| \frac{\gamma}{c}=a \cdot \frac{B}{b}\left|\frac{\gamma}{c}+a \cdot \frac{A}{c}\right| \frac{\gamma}{a}+\text { a. } \frac{A}{A} \left\lvert\, \frac{\gamma}{b}\right.}$

$\left.+\frac{a}{d} \frac{B}{6}\left|\frac{y}{2}\right| \frac{b}{b} \right\rvert\, \frac{1}{6}+$ e. $\left.\frac{A}{2}\left|\frac{y}{b}\right| \frac{f}{6} \right\rvert\, \frac{1}{d}$

α
denotes a single quantity, e.g., a a coefficient in a linear equation

Define: | α | β |
| :--- | :--- |
| a | b |\(=\begin{array}{ll}\alpha \& \beta

a \& b\end{array}-$$
\begin{array}{ll}\alpha & \beta \\
b & a\end{array}
$$\)

Anachronistically, this is the determinant of the matrix:

$$
\left(\begin{array}{ll}
\alpha & \alpha \\
a & b \\
\beta & \beta \\
a & b
\end{array}\right)
$$

Then continue recursively ...

Determinants

Leibniz，unpublished works，1680s／1690s．
Seki Takakazu，Kai－fukudai－no－hō 解伏題之法， 1683
Colin Maclaurin，A treatise of algebra，1748，Ch．XII，pp．81－85
Vandermonde，＇Mémoire sur l＇élimination＇，Mémoires de l＇Académie des sciences，1772：a recursive description of determinants of any size（but without a name and in an uncongenial notation－see Mathematics emerging，§17．1．3）

Determinants

Leibniz，unpublished works，1680s／1690s．
Seki Takakazu，Kai－fukudai－no－hō 解伏題之法， 1683
Colin Maclaurin，A treatise of algebra，1748，Ch．XII，pp．81－85
Vandermonde，＇Mémoire sur l＇élimination＇，Mémoires de l＇Académie des sciences，1772：a recursive description of determinants of any size（but without a name and in an uncongenial notation－see Mathematics emerging，§17．1．3）

Gauss in Disquisitiones arithmeticae（1801）gave the name ＇determinant＇to what is now called the＇discriminant＇$B^{2}-A C$ of the binary quadratic form $A x^{2}+2 B x y+C y^{2}$ ．

Cauchy on determinants

qui ne peuvent obtenir que deux valeúhs, bac. 13 les propriétés générales des formes du second degré, ceest-it-dire des prolynomes du second degré à deux ou à plusieurs variables, et it a désigné ces mèmes fonctions sous lo nom de déterminants. Je conserverai cette dénomination qui fournit un moyen lacile d'énonerer les résultats; jobserverai seulement qu'on dome aussi quelquelfis aus lonetions dont it s'agit le nom de résultantes à deux ou a plusieurs lettres. Ainsi les deux expressions snivantes, deeterminant ef risultante, devront ètre regardées comme synonymes.
devilimme partie.

> DE DETERMANAYTS.
premitere section.
Des déterminants en sुenervl et dex systèmes symétriquex.

S ${ }^{\text {er }}$. Soient $a_{1}, a_{2}, \ldots, a_{n}$ plusieurs quantités diflëreutes ell nombre egal à n. On a fait voir ci-dessus quer, en multipliant to produit de ces quantites ou

$$
a_{1} a_{1} \mu_{3} \ldots a_{n}
$$

par le produit de leurs differences respectives, ou par

$$
\left(a_{2}-a_{1}\right)\left(a_{3} \cdots a_{1}\right) \ldots\left(a_{n}-a_{1}\right)\left(a_{3}-a_{3}\right) \ldots\left(a_{n}, a_{2}\right) \ldots\left(a_{n}-a_{n-1}\right) .
$$

un obtenait pour résultat la fonction symétrique alternér

$$
\mathrm{s}_{\left(=a_{1} a_{1}^{t} a_{\mathrm{a}}^{\mathrm{3}} \ldots a_{w}^{n}\right)}
$$

qui, par conséquent, se trourr toujours ègale at produil $a_{1} a_{2} a_{3} \ldots a_{n}\left(a_{2}-a_{1}\right)\left(a_{2}-a_{1}\right) \ldots\left(a_{n}-a_{1}\right)\left(a_{2}-a_{2}\right) \ldots\left(a_{n}-a_{2} \cdot \ldots\left(a_{n}-a_{n-1}\right)\right.$.

Supposons maintenant que l'on développer er dernier produit et que. dans chaque terme du développernen, on remplace l'exposant d-

Ofurros if c. - s. It. 4. 1.

Cauchy, 'Mémoire sur les fonctions qui ne peuvent obtenir que deux valeurs égales et de signes contraires par suite des transpositions opérées entre les variables qu'elles renferment', Journal de l'École polytechnique, 1815

Referred to Laplace, Vandermonde, Gauss, and others

Introduced the term determinant for the function of n^{2} quantities (a sum of n ! signed products) that we now know by that name.
(See Mathematics emerging, §17.1.4.)

History of the theory of determinants

> Determinants were studied extensively in the 19th century.

Sir Thomas Muir, The theory of determinants in the historical order of development (1890-1906)

- Part I: Determinants in general: Leibnitz (1693) to Cayley (1841);
- Part II: Special determinants up to 1841

Second edition in 4 volumes, 1906-1923; supplement, 1930.

‘Eigenvalue’ problems

Euler (1748): change of coordinates to reduce equation of a quadric surface $\alpha z^{2}+\beta y z+\gamma x z+\delta y^{2}$ $+\epsilon x y+\zeta x^{2}+\eta z+\theta y+\iota x+\chi=0$ to its simplest form $A p^{2}+B q^{2}+C r^{2}+K=0$ (see: Mathematics emerging, §17.2.1.)

‘Eigenvalue' problems

Euler (1748): change of coordinates to reduce equation of a quadric surface $\alpha z^{2}+\beta y z+\gamma x z+\delta y^{2}$ $+\epsilon x y+\zeta x^{2}+\eta z+\theta y+\iota x+\chi=0$ to its simplest form $A p^{2}+B q^{2}+C r^{2}+K=0$ (see: Mathematics emerging, §17.2.1.)

Laplace (1787): symmetry of coefficients in a set of linear differential equations leads to real 'eigenvalues' (see: Mathematics emerging, §17.2.2.)

'Eigenvalue’ problems

Euler (1748): change of coordinates to reduce equation of a quadric surface $\alpha z^{2}+\beta y z+\gamma x z+\delta y^{2}$ $+\epsilon x y+\zeta x^{2}+\eta z+\theta y+\iota x+\chi=0$ to its simplest form $A p^{2}+B q^{2}+C r^{2}+K=0$ (see: Mathematics emerging, §17.2.1.)

Laplace (1787): symmetry of coefficients in a set of linear differential equations leads to real 'eigenvalues' (see: Mathematics emerging, §17.2.2.)

Cauchy (1829): a symmetric matrix is diagonalisable by a real orthogonal change of variables (see: Mathematics emerging, §17.2.3.)

Matrices and their determinants

Gauss, Disquisitiones arithmeticae (1801): transformation of quadratic forms $a x^{2}+2 b x y+c y^{2}$ by change of variables

$$
x=\alpha x^{\prime}+\beta y^{\prime}, \quad y=\gamma x^{\prime}+\delta y^{\prime}
$$

Matrices and their determinants

Gauss, Disquisitiones arithmeticae (1801): transformation of quadratic forms $a x^{2}+2 b x y+c y^{2}$ by change of variables

$$
x=\alpha x^{\prime}+\beta y^{\prime}, \quad y=\gamma x^{\prime}+\delta y^{\prime}
$$

followed by

$$
x^{\prime}=\alpha^{\prime} x^{\prime \prime}+\beta^{\prime} y^{\prime \prime}, \quad y^{\prime}=\gamma^{\prime} x^{\prime \prime}+\delta^{\prime} y^{\prime \prime}
$$

Matrices and their determinants

Gauss, Disquisitiones arithmeticae (1801): transformation of quadratic forms $a x^{2}+2 b x y+c y^{2}$ by change of variables

$$
x=\alpha x^{\prime}+\beta y^{\prime}, \quad y=\gamma x^{\prime}+\delta y^{\prime}
$$

followed by

$$
x^{\prime}=\alpha^{\prime} x^{\prime \prime}+\beta^{\prime} y^{\prime \prime}, \quad y^{\prime}=\gamma^{\prime} x^{\prime \prime}+\delta^{\prime} y^{\prime \prime}
$$

comes to the same as
$x=\left(\alpha \alpha^{\prime}+\beta \gamma^{\prime}\right) x^{\prime \prime}+\left(\alpha \beta^{\prime}+\beta \delta^{\prime}\right) y^{\prime \prime}, \quad y=\left(\gamma \alpha^{\prime}+\delta \gamma^{\prime}\right) x^{\prime \prime}+\left(\gamma \beta^{\prime}+\delta \delta^{\prime}\right) y^{\prime \prime}$

Matrices and their determinants

Gauss, Disquisitiones arithmeticae (1801): transformation of quadratic forms $a x^{2}+2 b x y+c y^{2}$ by change of variables

$$
x=\alpha x^{\prime}+\beta y^{\prime}, \quad y=\gamma x^{\prime}+\delta y^{\prime}
$$

followed by

$$
x^{\prime}=\alpha^{\prime} x^{\prime \prime}+\beta^{\prime} y^{\prime \prime}, \quad y^{\prime}=\gamma^{\prime} x^{\prime \prime}+\delta^{\prime} y^{\prime \prime}
$$

comes to the same as
$x=\left(\alpha \alpha^{\prime}+\beta \gamma^{\prime}\right) x^{\prime \prime}+\left(\alpha \beta^{\prime}+\beta \delta^{\prime}\right) y^{\prime \prime}, \quad y=\left(\gamma \alpha^{\prime}+\delta \gamma^{\prime}\right) x^{\prime \prime}+\left(\gamma \beta^{\prime}+\delta \delta^{\prime}\right) y^{\prime \prime}$
Moreover, the 'determinants' (our sense) multiply.
NB. All Gauss' coefficients were integers
(See Mathematics emerging, §17.3.1.)

Early origins of matrices

The OED (3rd ed., March 2001) lists sense 2a of 'matrix' as A place or medium in which something is originated, produced, or developed ...

Early origins of matrices

The OED (3rd ed., March 2001) lists sense 2a of 'matrix' as A place or medium in which something is originated, produced, or developed ...

Thus, in 1850, J. J. Sylvester applied the word to the 'thing' from which determinants originate:

For this purpose we must commence, not with a square, but with an oblong arrangement of terms consisting, suppose, of m lines and n columns. This will not in itself represent a determinant, but is, as it were, a Matrix out of which we may form various systems of determinants by fixing upon a number p, and selecting at will p lines and p columns, the squares corresponding of pth order.

Early origins of matrices

The OED (3rd ed., March 2001) lists sense 2a of 'matrix' as A place or medium in which something is originated, produced, or developed...

Thus, in 1850, J. J. Sylvester applied the word to the 'thing' from which determinants originate:

For this purpose we must commence, not with a square, but with an oblong arrangement of terms consisting, suppose, of m lines and n columns. This will not in itself represent a determinant, but is, as it were, a Matrix out of which we may form various systems of determinants by fixing upon a number p, and selecting at will p lines and p columns, the squares corresponding of pth order.
But he did not operate with matrices

The definition of matrices

[17]

II. A Memoir on the Theory of Matrices. By Arthur Cayler, Esq., E.R.S.

Received December 10, 1857,-Read Jannary 14, 1858.

The term matrix might be used in a more general sense, but in the present memoir I consider only square and rectangular matrices, and the term matrix used without qualification is to be understood as meaning a square matrix; in this restricted sense, a set of quantities arranged in the form of a square, e.g.

$$
\left(\begin{array}{l}
a, b, c \\
a^{\prime}, b^{\prime}, d \\
a^{\prime \prime}, b^{\prime \prime}, d^{\prime \prime}
\end{array}\right\}
$$

is naid to be a matrix. The notion of such a matrix arises naturally from an abbreviated notation for a set of linear equations, viz. the equations

$$
\begin{aligned}
& \mathrm{X}=a x+b y+c z \\
& \mathbf{Y}=a^{\prime} x+b^{\prime} y+c^{\prime} z, \\
& \mathbf{Z}=a^{\prime \prime} x+b^{\prime \prime} y+d^{\prime \prime} z,
\end{aligned}
$$

may be more simply represented by

$$
(\mathbf{X}, \mathbf{Y}, \mathbf{Z})=\left(\begin{array}{l}
a, b, c \quad(x, y, z),, \\
a^{\prime}, b^{\prime}, d^{\prime} \\
a^{\prime \prime}, b^{\prime \prime}, d^{\prime \prime}
\end{array} \quad\right.
$$

and the consideration of such a system of equations leads to most of the fundamental notions in the theory of matrices. It will be seen that matrices (attending only to those of the same order) comport themselves as single quantities; they may be added, multiplied or compounded together, \&c.: the law of the addition of matrices is precisely similar to that for the addition of ordinary algebraical quantities; as regards their multiplication (or composition), there is the peculiarity that matrices are not in general convertible; it is nevertheless possible to form the powers (positive or negative, integral or fractional) of a matrix, and thence to arrive at the notion of a rational and integral function, or generally of any algebraical function, of a matrix. I obtain the remarkable theorem that any matrix whatever satisfies an algebraical equation of its own order, the coefficient of the highest power being unity, and those of the other powers functions of the terms of the matrix, the last coefficient being in fact the determinant; the rule for the formation of this equation may be stated in the following condensed form, which will be intelligible after a perusal of the memoir, viz. the determimDCCCLVIII.

> Arthur Cayley, 'A memoir on the theory of matrices', Phil. Trans. Roy. Soc., 1858:

The definition of matrices

[17]

II. A Memoir on the Theory of Matrices. By Arthur Cayleby, Esq., E.R.S.

Received December 10, 1857,-Read Jannary 14, 1858.

The term matrix might be used in a more general sense, but in the present memoir I consider only square and rectangular matrices, and the term matrix used without qualification is to be understood as meaning a square matrix; in this restricted sense, a set of quantities arranged in the form of a square, e.g.

is naid to be a matrix. The notion of such a matrix arises naturally from an abbreviated notation for a set of linear equations, viz, the equations

$$
\begin{aligned}
& \mathrm{X}=a x+b y+c z \\
& \mathbf{Y}=a^{\prime} x+b^{\prime} y+d^{\prime} z \\
& \mathbf{Z}=a^{\prime \prime} x+b^{\prime \prime} y+d^{\prime \prime} z
\end{aligned}
$$

may be more simply represented by

$$
(\mathbf{X}, \mathbf{Y}, \mathbf{Z})=\left(\begin{array}{l}
a, b, d \quad(x, y, z),, \\
a^{\prime}, b^{\prime}, d^{\prime} \\
a^{\prime \prime}, b^{\prime \prime}, d^{\prime \prime}
\end{array}\right.
$$

and the consideration of such a system of equations leads to most of the fundamental notions in the theory of matrices. It will be seen that matrices (attending only to those of the same order) comport themselves as single quantities; they may be added, multiplied or compounded together, \&c.: the law of the addition of matrices is precisely similar to that for the addition of ordinary algebraical quantities; as regards their multiplication (or composition), there is the peculiarity that matrices are not in general convertible; it is nevertheless possible to form the powers (positive or negative, integral or fractional) of a matrix, and thence to arrive at the notion of a rational and integral function, or generally of any algebraical function, of a matrix. I obtain the remarkable theorem that any matrix whatever satisfies an algebraical equation of its own order, the coefficient of the highest power being unity, and those of the other powers functions of the terms of the matrix, the last coefficient being in fact the determinant; the rule for the formation of this equation may be stated in the following condensed form, which will be intelligible after a perusal of the memoir, viz. the determimpecolvili.

Arthur Cayley, 'A memoir on the theory of matrices', Phil. Trans. Roy. Soc., 1858:

- defined matrices and their properties

The definition of matrices

[17]

II. A Memoir on the Theory of Matrices. By Arthur Cayleby, Esq., E.R.S.

Received December 10, 1857,-Read Jannary 14, 1858.

The term matrix might be used in a more general sense, but in the present memoir I consider only square and rectangular matrices, and the term matrix used without qualification is to be understood as meaning a square matrix; in this restricted sense, a set of quantities arranged in the form of a square, e.g.

is naid to be a matrix. The notion of such a matrix arises naturally from an abbreviated notation for a set of linear equations, viz. the equations

$$
\begin{aligned}
& \mathrm{X}=a x+b y+c z \\
& \mathbf{Y}=a^{\prime} x+b^{\prime} y+c^{\prime} z \\
& \mathbf{Z}=a^{\prime \prime} x+b^{\prime \prime} y+d^{\prime \prime} z
\end{aligned}
$$

may be more simply represented by

$$
(\mathbf{X}, \mathbf{Y}, \mathbf{Z})=\left(\begin{array}{l}
a, b, c \quad(x, y, z), \\
a^{\prime}, b, b^{\prime} \\
a^{\prime \prime}, b^{\prime \prime}, d^{\prime \prime}
\end{array} \mathbf{c}^{\prime}\right.
$$

and the consideration of such a system of equations leads to most of the fundamental notions in the theory of matrices. It will be seen that matrices (attending only to those of the same order) comport themselves as single quantities; they may be added, multiplied or compounded together, \&c.: the law of the addition of matrices is precisely similar to that for the addition of ordinary algebraical quantities; as regards their multiplication (or composition), there is the peculiarity that matrices are not in general convertible; it is nevertheless possible to form the powers (positive or negative, integral or fractional) of a matrix, and thence to arrive at the notion of a rational and integral function, or generally of any algebraical function, of a matrix. I obtain the remarkable theorem that any matrix whatever satisfies an algebraical equation of its own order, the coefficient of the highest power being unity, and those of the other powers functions of the terms of the matrix, the last coefficient being in fact the determinant; the rule for the formation of this equation may be stated in the following condensed form, which will be intelligible after a perusal of the memoir, viz. the determimpccolvili.

Arthur Cayley, 'A memoir on the theory of matrices', Phil. Trans. Roy. Soc., 1858:

- defined matrices and their properties
- recognised connection to linear equations

The definition of matrices

[17]

II. A Memoir on the Theory of Matrices. By Arthur Cayleby, Esq., E.R.S.

Received December 10, 1857,-Read Jannary 14, 1858.

The term matrix might be used in a more general sense, but in the present memoir I consider only square and rectangular matrices, and the term matrix used without qualification is to be understood as meaning a square matrix; in this restricted sense, a set of quantities arranged in the form of a square, e.g.

is naid to be a matrix. .The notion of such a matrix arises naturally from an abbreviated notation for a set of linear equations, viz. the equations

$$
\begin{aligned}
& \mathrm{X}=a x+b y+c z \\
& \mathbf{Y}=a^{\prime} x+b^{\prime} y+d^{\prime} z \\
& \mathbf{Z}=a^{\prime \prime} x+b^{\prime \prime} y+d^{\prime \prime} z
\end{aligned}
$$

may be more simply represented by

$$
(\mathbf{X}, \mathbf{Y}, \mathbf{Z})=\left(\begin{array}{l}
a, b, c \quad(x, y, z), \\
a^{\prime}, b, b^{\prime} \\
a^{\prime \prime}, b^{\prime \prime}, d^{\prime \prime}
\end{array} \mathbf{c}^{\prime}\right.
$$

and the consideration of such a system of equations leads to most of the fundamental notions in the theory of matrices. It will be seen that matrices (attending only to those of the same order) comport themselves as single quantities; they may be added, multiplied or compounded together, \&c.: the law of the addition of matrices is precisely similar to that for the addition of ordinary algebraical quantities; as regards their multiplication (or composition), there is the peculiarity that matrices are not in general convertible; it is nevertheless possible to form the powers (positive or negative integral or fractional) of a matrix, and thence to arrive at the notion of a rational and integral function, or generally of any algebraical function, of a matrix. I obtain the remarkable theorem that any matrix whatever satisfies an algebraical equation of its own order, the coefficient of the highest power being unity, and those of the other powers functions of the terms of the matrix, the last coefficient being in fact the determinant; the rule for the formation of this cquation may be stated in the following condensed form, which will be intelligible after a perusal of the memoir, viz. the determimDecolvili.

Arthur Cayley, 'A memoir on the theory of matrices', Phil. Trans. Roy. Soc., 1858:

- defined matrices and their properties
- recognised connection to linear equations
- stated the Cayley-Hamilton Theorem

The definition of matrices

[17]

II. A Memoir on the Theory of Matrices. By Arthur Cayler, Esq., E.R.S.

Received December 10, 1857,-Read Jamnary 14, 1858.

The term matrix might be used in a more general sense, but in the present memoir I consider only square and rectangular matrices, and the term matrix used without qualification is to be understood as meaning a square matrix; in this restricted sense, a set of quantities arranged in the form of a square, e.g.
(a, b, c)
$a^{\prime}, b^{\prime}, d^{\prime}$
is naid to be a matrix. The notion of such a matrix arises naturally from an abbreviated notation for a set of linear equations, viz. the equations

$$
\begin{aligned}
& \mathrm{X}=a x+b y+c z \\
& \mathrm{Y}=a^{\prime} x+b^{\prime} y+d^{\prime} z, \\
& \mathrm{Z}=a^{\prime \prime} x+b^{\prime \prime} y+d^{\prime \prime} z,
\end{aligned}
$$

may be more simply represented by

$$
(\mathbf{X}, \mathbf{Y}, \mathbf{Z})=(a, b, c \quad(x, y, z) .
$$

$a^{\prime}, b^{\prime}, d^{\prime \prime}$
and the consideration of such a system of equations leads to most of the fundamental notions in the theory of matrices. It will be seen that matrices (attending only to those of the same order) comport themselves as single quantities; they may be added. multiplied or compounded together, \&c.: the law of the addition of matrices is precisely similar to that for the addition of ordinary algebraical quantities; as regards their multiplication (or composition), there is the peculiarity that matrices are not in general convertible; it is nevertheless possible to form the powers (positive or negative integral or fractional) of a matrix, and thence to arrive at the notion of a rational and integral function, or generally of any algebraical function, of a matrix. I obtain the remarkable theorem that any matrix whatever satisfies an algebraical equation of its own order, the coefficient of the highest power being unity, and those of the other powers functions of the terms of the matrix, the last coofficient being in fact the determinant; the rule for the formation of this cquation may be stated in the following condensed form, which will be intelligible after a perusal of the memoir, viz. the determimbecolvil.

Arthur Cayley, 'A memoir on the theory of matrices', Phil. Trans. Roy. Soc., 1858:

- defined matrices and their properties
- recognised connection to linear equations
- stated the Cayley-Hamilton Theorem
- investigated the matrices that commute with a given one

The definition of matrices

II. A Memoir on the Theory of Matrices. By Arthur Cayley, Esq., E.R.S.

Received December 10, 1857,-Read Jannary 14, 1858.

The term matrix might be used in a more general sense, but in the present memoir I consider only square and rectangular matrices, and the term matrix used without qualification is to be understood as meaning a square matrix; in this restricted sense, a set of quantities arranged in the form of a square, e.g.
(a, b, c)
$a^{\prime}, b^{\prime}, d^{\prime \prime}$
is naid to be a matrix. The notion of such a matrix arises naturally from an abbreviated notation for a set of linear equations, viz. the equations

$$
\begin{aligned}
& \mathrm{X}=a x+b y+c z, \\
& \mathbf{Y}=a^{\prime} x+b^{\prime} y+d^{\prime} z, \\
& \mathbf{Z}=a^{\prime \prime} x+b^{\prime \prime} y+d^{\prime \prime} z,
\end{aligned}
$$

may be more simply represented by

$(\mathbf{X}, \mathbf{Y}, \mathbf{Z})=(a, b, o \quad(x, y, z)$

and the consideration of such a system of equations leads to most of the fundamental notions in the theory of matrices. It will be seen that matrices (attending only to those of the same order) comport themselves as single quantities; they may be added, multiplied or compounded together, \&c.: the law of the addition of matrices is pre cisely similar to that for the addition of ordinary algebraical quantities; as regards their multiplication (or composition), there is the peculiarity that matrices are not in general convertible; it is nevertheless possible to form the powers (positive or negative, integral or fractional) of a matrix, and thence to arrive at the notion of a rational and integral function, or generally of any algebraical function, of a matrix. I obtain the remarkable theorem that any matrix whatever satisfies an algebraical equation of its own order, the coefficient of the highest power being unity, and those of the other powers functions of the terms of the matrix, the last coefficient being in fact the determinant; the rule for the formation of this equation may be stated in the following condensed form, which will be intelligible after a perusal of the memoir, viz. the determimdccolvili.

Arthur Cayley, 'A memoir on the theory of matrices', Phil. Trans. Roy. Soc., 1858:

- defined matrices and their properties
- recognised connection to linear equations
- stated the Cayley-Hamilton Theorem
- investigated the matrices that commute with a given one
"It will be seen that matrices (attending only to those of the same order) comport themselves as single quantities..."
(See Mathematics emerging,
§17.3.2.)

Determinants persist

```
Mresented to the Radclighe Nilrary,
    ELEMENTARY TREATISE
    ON
```

DETERMINANTS
with their application to
simultaneous linear equations and algebraical geometry.
ar
CHARLES L. DODGSON, M.A.

"I am aware that the word 'Matrix' is already in use to express the very meaning for which I use the word 'Block'; but surely the former word means rather the mould, or form, into which algebraical quantities may be introduced, than an actual assemblage of such quantities ..."

Determinants persist


```
ELEMENTARY TREATISE
ON
```

DETERMINANTS
with their application to
simultaneous linear equations and algebraical geometry.

CHARLES L. DODGSON, M.A.

Yondon: MACMILLAN AND CO.
1867.
"I am aware that the word 'Matrix' is already in use to express the very meaning for which I use the word 'Block'; but surely the former word means rather the mould, or form, into which algebraical quantities may be introduced, than an actual assemblage of such quantities ..."

Criticised notation ' $a_{i j}$ ':
"it seems a fatal objection to this system that most of the space is occupied by a number of a's, which are wholly superfluous, while the only important part of the notation is reduced to minute subscripts, alike difficult to the writer and the reader."

Determinants persist


```
ELEMENTARY TREATISE
ON
```

DETERMINANTS
with their application to
simultaneous linear equations and algebraical geometry.

Charles l. dodgson, m.a.

Yandon: MACMILLAN AND CO.
1867.
"I am aware that the word 'Matrix' is already in use to express the very meaning for which I use the word 'Block'; but surely the former word means rather the mould, or form, into which algebraical quantities may be introduced, than an actual assemblage of such quantities ..."

Criticised notation ' $a_{i j}$ ':
"it seems a fatal objection to this system that most of the space is occupied by a number of a's, which are wholly superfluous, while the only important part of the notation is reduced to minute subscripts, alike difficult to the writer and the reader."

Proposed $i \backslash j$ instead

Matrices elsewhere

Matrix algebra appears in
Hamilton's Lectures on
Quaternions (1853) as 'linear and
vector functions' (including his version of the Cayley-Hamilton
Theorem, stated and proved in terms of quaternions)

Matrices elsewhere

Matrix algebra appears in Hamilton's Lectures on
Quaternions (1853) as 'linear and vector functions' (including his version of the Cayley-Hamilton Theorem, stated and proved in terms of quaternions)

Matrices were also devised by Laguerre in his paper 'Sur le calcul des systèmes linéaires' (J. École polytechnique, 1867)

SUR
LE CALCUL DES SYSTĖMES LINÉAIRES, EXTRAIT D'UNE LETTRE ADRESSEEE A M. HERMITE.

Extrait du Journal de l'Ecole Polytechnique, LXII* Cahier.
I.

J'appelle, suivant I'usage habituel, système linéaire le tableau des coefficients d'un système de n équations linéaires à n inconnucs. Un tel système sera dit système linéaire d'ordre n et, sauf une exception dont je parlerai plus loin, je le représenterai toujours par une seule lettre majuscule, réservant les lettres minuscules pour désigner spécialement les éléments du système linéaire.

Ainsi, par exemple, le système linéaire

$$
\begin{array}{ll}
a & \beta \\
\gamma & \delta
\end{array}
$$

sera représenté par la seule lettre majuscule A. Dans tout ce qui suit, je considérerai ces lettres majuscules représentant les systèmes linéaires comme de véritables quantités, soumises à tputes les opérations algébriques. Le sens des diverses opérations sera fixé ainsi qu'il suit.
Addition et soustraction. - Soient deux systèmes de même ordre \mathbf{A} et \mathbf{B}; concevons que l'on forme un troisième système en faisant la somme algébrique des éléments correspondants dans chacun des deux premiers systèmes. Le système résultant sera dit la somme des systêmes \mathbf{A} et \mathbf{B}, et si on le désigne par \mathbf{C}, on exprimera le mode de relation qui le rattache aux systèmes A et B par l'équation $\mathrm{C}=\mathrm{A}+\mathrm{B}$. Si, par exemple, on a

$$
A=\begin{array}{ll}
a & b \\
c & d^{\prime}
\end{array} \quad B=\begin{array}{ll}
\alpha & \beta \\
\gamma & \delta
\end{array},
$$

Jordan and linear substitutions

.

TRAITE

DES SUBSTITUTIONS

Camille Jordan, Traité des substitutions, 1870:

Jordan and linear substitutions

Camille Jordan, Traité des substitutions, 1870:

- studied matrices over integers modulo n as part of an extensive study of linear substitutions (in connection with Galois theory); developed 'canonical forms' to study conjugacy classes in these groups

Jordan and linear substitutions

Camille Jordan, Traité des substitutions, 1870:

- studied matrices over integers modulo n as part of an extensive study of linear substitutions (in connection with Galois theory); developed 'canonical forms' to study conjugacy classes in these groups
- developed his ideas to 'Jordan canonical form' for complex matrices in his studies 1872-4 of linear differential equations

German contributions

2
Frobenius, tiber lineare Substitutionen und bilineare Formen.
fuhrt. Diese Erwägungen leiteten mich darauf, statt der Transformation der bilinearen Formen die Zusammensetzung der linearen Substitutionen zu behandeln.

> 8. 1. Multiplication.

1. Sind \boldsymbol{A} und \boldsymbol{B} zwei bilineare Formen der Variabeln $x_{1}, \ldots x_{n}$; $y_{1}, \ldots y_{n}$, so ist auch

$$
P=\Sigma_{1}^{n} \frac{\partial A}{\partial y_{k}} \frac{\partial B}{\partial x_{x}}
$$

eine bilineare Form derselben Variabeln. Dieselbe nenne ich ans den Formen \boldsymbol{A} und \boldsymbol{B} (in dieser Reihenfolge) susammengesetst*). Es werden im Folgenden nur solche Operationen mit bilinearen Formen vorgenommen, bei welchen sie bilineare Formen bleiben**). Ich werde z. B. eine Form mit einer Constanten (von $x_{1}, y_{1} ; \ldots x_{n}, y_{n}$ unabhăngigen Grösse) multipliciren, zwei Formen addiren, eine Form, deren Coefficienten von einem Parameter abhängen, nach demselben differentiiren. Ich werde aber nicht zwei Formen mit einander multipliciren, Aus diesem Grunde kann kein Missverständniss entstehen, wenn ich die ans A und B zusammengesetzte Form P mit

$$
\boldsymbol{A} \boldsymbol{B}=\boldsymbol{\Sigma} \frac{\partial \boldsymbol{A}}{\partial y_{\pi}} \frac{\partial B}{\partial x_{k}}
$$

bezeichne, und sie das Product der Formen A und B, diese die Factoren von P nenne. Für diese Bildung gilt
a) das distributive Gesetz:

$$
\begin{gathered}
A(B+C)=A B+A C, \quad(A+B) C=A C+B C \\
(A+B)(C+D)=A C+B C+A D+B D
\end{gathered}
$$

[^0]> Georg Frobenius, in 1878, working with bilinear forms, produced more canonical forms, and gave a satisfactory proof of the Cayley-Hamilton Theorem

(See Mathematics emerging, §17.3.3.)

German contributions

2
Frobeniws, tiber lineare Substitutionen und bilineare Formen.
fuhrt. Diese Erwägungen leiteten mich darauf, statt der Transformation der bilinearen Formen die Zusammensetzung der linearen Substitutionen zu behandeln.

> 8. 1. Multiplication.

1. Sind \boldsymbol{A} und \boldsymbol{B} zwei bilineare Formen der Variabeln $\boldsymbol{x}_{1}, \ldots \boldsymbol{x}_{n}$; $y_{1}, \ldots y_{n}$, so ist auch

$$
P=\Sigma_{1}^{n} \frac{\partial A}{\partial y_{k}} \frac{\partial B}{\partial x_{x}}
$$

eine bilineare Form derselben Variabeln. Dieselbe nenne ich ans den Formen \boldsymbol{A} und \boldsymbol{B} (in dieser Reihenfolge) susammengesetst*). Es werden im Folgenden nur solche Operationen mit bilinearen Formen vorgenommen, bei welchen sie bilineare Formen bleiben**). Ich werde z. B. eine Form mit einer Constanten (von $x_{1}, y_{1} ; \ldots x_{n}, y_{n}$ unabhăngigen Grösse) multipliciren, zwei Formen addiren, eine Form, deren Coefficienten von einem Parameter abhängen, nach demselben differentiiren. Ich werde aber nicht zwei Formen mit einander multipliciren, Aus diesem Grunde kann kein Missverständniss entstehen, wenn ich die ans A und B zusammengesetzte Form \boldsymbol{P} mit

$$
\boldsymbol{A} \boldsymbol{B}=\boldsymbol{\Sigma} \frac{\partial \boldsymbol{A}}{\partial y_{\pi}} \frac{\partial B}{\partial x_{k}}
$$

bezeichne, und sie das Product der Formen \boldsymbol{A} und \boldsymbol{B}, diese die Factoren von P nenne. Für diese Bildung gilt
a) das distributive Gesetz:

$$
\begin{gathered}
A(B+C)=A B+A C, \quad(A+B) C=A C+B C \\
(A+B)(C+D)=A C+B C+A D+B D
\end{gathered}
$$

[^1]Georg Frobenius, in 1878, working with bilinear forms, produced more canonical forms, and gave a satisfactory proof of the Cayley-Hamilton Theorem
(See Mathematics emerging, §17.3.3.)

Other mathematicians in Germany (e.g., Kronecker, Hurwitz) contributed similarly

German contributions

2
Frobeniws, tiber lineare Substitutionen und bilineare Formen.
fuhrt. Diese Erwägungen leiteten mich darauf, statt der Transformation der bilinearen Formen die Zusammensetzung der linearen Substitutionen zu behandeln.

8.1. Multiplication

1. Sind \boldsymbol{A} und \boldsymbol{B} zwei bilineare Formen der Variabeln $x_{1}, \ldots x_{n}$; $y_{1}, \ldots y_{n}$, so ist anch

$$
P=\Sigma_{1}^{n} \frac{\partial A}{\partial y_{k}} \frac{\partial B}{\partial x_{x}}
$$

eine bilineare Form derselben Variabeln. Dieselbe nenne ich ans den Formen \boldsymbol{A} und \boldsymbol{B} (in dieser Reihenfolge) susammengesetst*). Es werden im Folgenden nur solche Operationen mit bilinearen Formen vorgenommen, bei welchen sie bilineare Formen bleiben**). Ich werde z. B. eine Form mit einer Constanten (von $x_{1}, y_{1} ; \ldots x_{n}, y_{n}$ unabhăngigen Grösse) multipliciren, zwei Formen addiren, eine Form, deren Coefficienten von einem Parameter abhängen, nach demselben differentiiren. Ich werde aber nicht zwei Formen mit einander multipliciren. Aus diesem Grunde kann kein Missverstandniss entstehen, wenn ich die ans \boldsymbol{A} und \boldsymbol{B} zusammengesetzte Form P mit

$$
\boldsymbol{A B}=\boldsymbol{\Sigma} \frac{\partial \boldsymbol{A}}{\partial y_{\star}} \frac{\partial B}{\partial x_{k}}
$$

bezeichne, und sie das Product der Formen \boldsymbol{A} und \boldsymbol{B}, diese die Factoren von P nenne. Für diese Bildung gilt
a) das distributive Gesetz:

$$
\begin{gathered}
A(B+C)=A B+A C, \quad(A+B) C=A C+B C \\
(A+B)(C+D)=A C+B C+A D+B D
\end{gathered}
$$

[^2]Georg Frobenius, in 1878, working with bilinear forms, produced more canonical forms, and gave a satisfactory proof of the Cayley-Hamilton Theorem
(See Mathematics emerging, §17.3.3.)

Other mathematicians in Germany (e.g., Kronecker, Hurwitz) contributed similarly

A recommended secondary source: Thomas Hawkins, 'Another look at Cayley and the theory of matrices', Archives internationales d'histoire des sciences 26 (1977), 82-112

Part 3: Vectors and Vector Spaces

Vectors

Vectors

Newton (1687): parallelogram of forces

Vectors

Newton (1687): parallelogram of forces

Argand (1806): complex numbers as directed quantities in the plane

Vectors

14 .. APPLICATIONS DU CALCUL infinitésimal.
ments directs de rotation autour de ces demi-axes auront lieu de droite à gauche, et les mouvements rétrogrades de gauche à droite.
Nous appliquerons les mémes dénominations aux deux espéces de mouvements que peut prendre un rayon vecteur mobile en tournant autour d'un point de manière à parcourir successivement les trois faces d'un angle solide quelconque; et quand le mouvement de rotation du rayon vecteur sur chaque face aura lieu de droite à gauche autour de l'arête située hors de cette face, ce mouvement sera nommé direct ou retrograde, suivant que les mouvements de rotation des plans coordonnés, tournant de droite à gauche autour des demi-axes $\overline{\mathrm{OX}}$, $\overline{\mathrm{OY}}, \overline{\mathrm{OZ}}$, seront eux-mêmes directs ou rétrogrades.
Une droite $\overline{\mathrm{AB}}$, menée d'un point \mathbf{A} supposé fixe à un point \mathbf{B} supposé mobile, sera généralement désignée sous le nom de rayon vecteur. Nommons \mathbf{R} ce rayon vecteur,

$$
x_{0}, \dot{y}_{0}, \quad z_{0}
$$

les coordonnées du point A;
x, y, z
celles du point B; et
a, b, \quad c
les angles formés par la direction $\overline{\mathrm{AB}}$ avec les demi-axes des coordon'nées positives:

$$
\underbrace{\pi-a, \pi-b, \pi-c}
$$

seront les angles formés par le mème rayon vecteur avec les demi-axes des coordonnées négatives. De plus, la projection orthogonale du rayon vecteur sur l'axe des x sera égale, d'après un théorème connu de Trigonométrie, au produit de ce rayon vecteur par le cosinus de l'angle aigu qu'il forme avec l'axe des x prolongé dans un certain sens. Cette projection se trouvera donc représentée : si l'angle a est aigu, par le produit

$\mathrm{R} \cos a$,

et si l'angle a est obtus, par le produit

$$
\mathbf{R} \cos (\pi-a)=-\mathbf{R} \cos a,
$$

Word applied mostly to radius vectors

Vectors

14 .. APPLICATIONS DU CALCUL INFINITÉSIMAL.
ments directs de rotation autour de ces demi-axes auront lieu de droite à gauche, et les mouvements rétrogrades de gauche ì droite.
Nous appliquerons les mémes dénominations aux deux espéces de mouvements que peut prendre un rayon vecteur mobile en tournant autour d'un point de maniëre à parcourir successivement les trois faces d'un angle solide quelconque; et quand le mouvement de rotation du rayon vecteur sur chaque face aura lieu de droite à gauche autour de l'arête située hors de cette face, ce mouvement sera nommé direct ou rettrograde, suivant que les mouvements de rotation des plans coordonnés, tournant de droite à gauche autour des demi-axes $\overline{\mathrm{OX}}$, $\overline{O X}, \overline{O Z}$, seront eux-mêmes directs ou rétrogrades.
Une droite $\overline{\mathrm{AB}}$, menée d'un point \mathbf{A} supposé fixe à un point \mathbf{B} supposé mobile, sera généralement désignée sous le nom de rayon vecteur. Nommons R ce rayon vecteur,

$$
x_{0}, \dot{y}_{0}, \quad z_{0}
$$

les coordonnées du point A;
$x, y,=$
celles du point B; et
a, b, \quad c
les angles formés par la direction $\overline{\mathrm{AB}}$ avec les demi-axes des coordon'nées positives;

$$
\pi-a, \pi-b, \pi-c
$$

seront les angles formés par le mème rayon vecteur avec les demi-axes des coordonnées négatives. De plus, la projection orthogonale du rayon vecteur sur l'axe des x sera égale, d'après un théorème connu de Trigonométrie, au produit de ce rayon vecteur par le cosinus de l'angle aigu qu'il forme avec l'axe des x prolongé dans un certain sens. Cette projection se trouvera donc représentée : si l'angle a est aigu, par le produit

$\mathbf{R} \cos a$,

et si l'angle a est obtus, par le produit

$$
\mathbf{R} \cos (\pi-a)=-\mathbf{R} \cos a,
$$

Word applied mostly to radius vectors

e.g., as rayon vecteur in Laplace's Mécanique Céleste (1799-1825)

Vectors

14 . APPLICATIONS dU CALCUL infinitésimal.
ments directs de rotation autour de ces demi-axes auront lieu de droite à gauche, et les mouvements rétrogrades de gauche ì droite.
Nous appliquerons les mémes dénominations aux deux espéces de mouvements que peut prendre un rayon vecteur mobile en tournant autour d'un point de maniëre à parcourir successivement les trois faces d'un angle solide quelconque; et quand le mouvement de rotation du rayon vecteur sur chaque face aura lieu de droite à gauche autour de l'arête située hors de cette face, ce mouvement sera nommé direct ou retrograde, suivant que les mouvements de rotation des plans coordonnés, tournant de droite à gauche autour des demi-axes $\overline{\mathrm{OX}}$, $\overline{O Y}, \overline{\mathrm{OZ}}$, seront eux-mêmes directs ou rétrogrades.
Une droite $\overline{\mathrm{AB}}$, menée d'un point \mathbf{A} supposé fixe à un point \mathbf{B} supposé mobile, sera généralement désignée sous le nom de rayon vecteur. Nommons R ce rayon vecteur,

$$
x_{0}, \dot{y}_{0}, \quad z_{0}
$$

les coordonnées du point A;
x, y, z
celles du point B; et
a, b, c
les angles formés par la direction $\overline{\mathrm{AB}}$ avec les demi-axes des coordon'nées positives:

$$
\pi-a, \pi-b, \pi-c
$$

seront les angles formés par le mème rayon vecteur avec les demi-axes des coordonnées négatives. De plus, la projection orthogonale du rayon vecteur sur l'axe des x sera égale, d'après un théorème connu de Trigonométrie, au produit de ce rayon vecteur par le cosinus de l'angle aigu qu'il forme avec l'axe des x prolongé dans un certain sens. Cette projection se trouvera donc représentée : si l'angle a est aigu, par le produit

$\mathrm{R} \cos a$,

et si l'angle a est obtus, par le produit

$$
\mathbf{R} \cos (\pi-a)=-\mathbf{R} \cos a,
$$

Word applied mostly to radius vectors

e.g., as rayon vecteur in Laplace's Mécanique Céleste (1799-1825)

Also in Cauchy's Leçons sur les Applications du Calcul Infinitésimal à la Géométrie (1826), p. 14:

A line $\overline{\mathrm{AB}}$, taken from a point A , supposed to be fixed, to a moving point B, will in general be referred to as a radius vector.

Hamilton and vectors

Sir William Rowan Hamilton drew a distinction between a 'vector' and a 'radius vector':

Hamilton and vectors

Sir William Rowan Hamilton drew a distinction between a 'vector' and a 'radius vector':

Between 1843-1866, developed quaternions - 4-dimensional quantities $a+b i+c j+d k$, where $i^{2}=j^{2}=k^{2}=i j k=-1$, designed for use in mechanics (and geometry of 3 dimensions)

Hamilton and vectors

Sir William Rowan Hamilton drew a distinction between a 'vector' and a 'radius vector':

Between 1843-1866, developed quaternions - 4-dimensional quantities $a+b i+c j+d k$, where $i^{2}=j^{2}=k^{2}=i j k=-1$, designed for use in mechanics (and geometry of 3 dimensions)
" A VEctor is thus . . . a sort of natural triplet (suggested by Geometry): and accordingly we shall find that QUATERNIONS offer an easy mode of symbolically representing every vector by a TRINOMIAL FORM ($i x+j y+k z$); which form brings the conception and expression of such a vector into the closest possible connexions with Cartesian and rectangular co-ordinates."

Hamilton and vectors

Sir William Rowan Hamilton drew a distinction between a 'vector' and a 'radius vector':

Between 1843-1866, developed quaternions - 4-dimensional quantities $a+b i+c j+d k$, where $i^{2}=j^{2}=k^{2}=i j k=-1$, designed for use in mechanics (and geometry of 3 dimensions)
" A VEctor is thus . . . a sort of natural triplet (suggested by Geometry): and accordingly we shall find that QUATERNIONS offer an easy mode of symbolically representing every vector by a TRINOMIAL FORM ($i x+j y+k z$); which form brings the conception and expression of such a vector into the closest possible connexions with Cartesian and rectangular co-ordinates."

So a quaternion is a scalar + a vector

Vector spaces appear

$\rightarrow 3>-00-8 t+$

Vollstandig und in strenger Form

bearbeitet

von

Hermann Grassmann,

Professor am Gymnasium xa Stettin.
\qquad

BERLIN, 1862.

VERLAG VON TH. CHR. FR. ENSLIN. (ADOLPH ENSLIN.)

Grassmann's 'doctrine of extension'

Die Wissenschaft
der

extensiven Grosse

dile Ausdehnungslehre, eine nene mathemalische Disciplin
dargestellt und durch Anwendungen erläutert

Hermann Grassmann

Lebrer an der Friedrich - Wilhelms - Schule au steutin.

Erster Theil,
die lineale Ausdehnuagolehre enthaltend.

Die Ausdehnungslehre [Doctrine of extension] (1862) is a heavily reworked version of an earlier (1844) work:

The Science of Extensive Quantities, or the Doctrine of Extension, a New Mathematical Discipline, Presented and Explained through Examples

Grassmann's 'doctrine of extension'

Die Wissenschaft
der

extensiven Grosse

odes
dile Ausilehnungslehre, eine nene mathematische Disciplin
dargestellt und durch Anwendungen erlăutert

Hermann Grassmann

Lebrer an der Friedrich - Wilhelms - 8chule au steutin.

Erster Theil,
die Ineale Ausdehnungalehre enthaltend.

Die Ausdehnungslehre [Doctrine of extension] (1862) is a heavily reworked version of an earlier (1844) work:

The Science of Extensive Quantities, or the Doctrine of Extension, a New Mathematical Discipline, Presented and Explained through Examples

Introduced idea of objects generated by motion - a single element generates an object of order 1 , an object of order 1 generates an object of order 2, etc.

Grassmann's 'doctrine of extension'

Die Wissenschaft
der

extensiven Grosse

odes
die Ausdehnungslehre, eine nene mathematische Disciplin
dargestellt und durch Anwendungen erlăutert

Hermann Grassmann

Lebrer an der Priedrich - Wilhelms - Schule zu steutin.

Erster Theil,
die Hinenle Ausdehnuagolelire enthaltend.

Leipxig, 1844.
Verlagron 0tto Wigand.

Die Ausdehnungslehre [Doctrine of extension] (1862) is a heavily reworked version of an earlier (1844) work:

The Science of Extensive Quantities, or the Doctrine of Extension, a New Mathematical Discipline, Presented and Explained through Examples

Introduced idea of objects generated by motion - a single element generates an object of order 1, an object of order 1 generates an object of order 2, etc.

Objects of the same order can be added together or scaled by real numbers

Grassmann's 'doctrine of extension'

Die Wissenschaft
der

extensiven Grosse

odes

die Ausdehnungslehre, eine nene mathemalische Disciplin
dargestellt und durch Anwendungen erlăutert

Hermann Grassmann

Lebrer an der Friedrich - Wilbelms -8chule zut stetin.

Erster Theil,
die Hinenle Ausdehnuagolelire enthaltend.

Leipzig, 1844.
Verlag von 0tto Wigand.

Die Ausdehnungslehre [Doctrine of extension] (1862) is a heavily reworked version of an earlier (1844) work:

The Science of Extensive Quantities, or the Doctrine of Extension, a New Mathematical Discipline, Presented and Explained through Examples

Introduced idea of objects generated by motion - a single element generates an object of order 1, an object of order 1 generates an object of order 2, etc.

Objects of the same order can be added together or scaled by real numbers

Little impact at the time

Grassmann's 'extensive quantities'

4
3) $\mathrm{a}+\mathrm{b}-\mathrm{b}=\sum \overline{\mathrm{c}}+\sum \overline{\beta \mathrm{e}}-\sum \beta \overline{\mathrm{e}}$

$$
\begin{align*}
& =\sum(\bar{\alpha}+\beta) \mathrm{e}-\sum \overline{\beta e} \tag{6}\\
& =\sum(\alpha+\beta-\beta) \mathrm{e}
\end{align*}
$$

$$
=\sum \alpha \mathrm{e}=\mathrm{a}
$$

4) $\mathrm{a}-\mathrm{b}+\mathrm{b}=\sum_{\sum} \overline{\mathrm{ce}}-\sum \overline{\beta \mathrm{e}}+\sum \overline{\beta \mathrm{e}}$

$$
\begin{equation*}
=\sum(\alpha-\beta) \mathrm{e}+\sum \beta \mathrm{e} \tag{7}
\end{equation*}
$$

$$
\begin{equation*}
=\sum(\alpha-\beta+\beta) \mathrm{e} \tag{6}
\end{equation*}
$$

$$
=\sum \alpha \mathrm{e}=\mathrm{a}
$$

9. Für extensive Grössen gelten die sämmtlichen Gesetze algebraischer Addition und Subtraktion.

Beweis. Denn diese Gesetze können, wie bekannt, aus den 4 Fundamentalformeln in No. 8 abgeleitet werden.
10. Erklärung. Eine extensive Grösse mit einer Zahl multipliciren heisst ihre sämmtlichen Ableitungszahlen mit dieser Zahl multipliciren, d. h.
$\sum \alpha \mathrm{e} \cdot \beta=\beta \cdot \sum \alpha \mathrm{e}=\sum(\alpha \beta) \cdot \mathrm{e}$
11. Erklärung. Eine extensive Grösse durch eine Zahl, die nicht gleich null ist, dividiren, heisst ihre sämmtlichen Ableitungszahlen durch diese Zahl dividiren, d. h.

$$
\sum \overline{\mathrm{e}}: \beta=\sum \frac{a}{\beta} \mathrm{e}
$$

12. Für die Multiplikation und Division extensiver Grössen (a, b) durch Zahlen (β, γ) gelten die Fundamentalformeln:
1) $\mathrm{a} \beta=\beta \mathrm{a}$,
2) a $\beta \gamma=\mathrm{a}(\beta \gamma)$,
3) $(\mathrm{a}+\mathrm{b}) \gamma=\mathrm{a} \gamma+\mathrm{b} \gamma$,
4) a $(\beta+\gamma)=a \beta+a \gamma$,
5) $a \cdot 1=a$,
6) $\mathrm{a} \beta=0$ dann und nur dann, wenn entweder $\mathrm{a}=0$, oder $\beta=0$,
7) a : $\beta=\mathrm{a} \frac{1}{\beta}$, wenn $\beta<0$ ist *).

Beweis. Es sei $\mathrm{a}=\sum \overline{\alpha e}, \mathrm{~b}=\sum \overline{\beta \mathrm{e}}$, wo die Summe sich auf das System der Einheiten $e_{1} \ldots e_{n}$ bezieht, so ist
${ }^{\text {T }}$) Das Zeichen \geqslant zusammengesetzt aus $>$ und \angle soll ungleich bedeuten.

The 1862 text contains a theory of extensive quantities

$$
a_{1} e_{1}+a_{2} e_{2}+\cdots,
$$

where the e_{i} are 'units' and the a_{i} are real numbers,

Grassmann's 'extensive quantities'

4
3) $\mathrm{a}+\mathrm{b}-\mathrm{b}=\sum \overline{\mathrm{a}}+\sum \overline{\beta \mathrm{e}}-\sum \bar{\beta} \overline{\mathrm{e}}$

$$
\begin{align*}
& =\sum(\bar{\alpha}+\beta) \mathrm{e}-\sum \overline{\beta e} \tag{6}\\
& =\sum_{\Sigma}(\alpha+\beta-\beta) \mathrm{e}
\end{align*}
$$

$$
\begin{equation*}
=\sum \alpha e=a \tag{7}
\end{equation*}
$$

4) $\mathrm{a}-\mathrm{b}+\mathrm{b}=\sum_{\Sigma} \overline{\mathrm{e}}-\sum \overline{\beta \mathrm{e}}+\sum \overline{\beta \mathrm{e}}$

$$
\begin{equation*}
=\sum(\bar{\alpha}-\beta) \mathrm{e}+\sum \overline{\beta \mathrm{e}} \tag{7}
\end{equation*}
$$

$$
\begin{equation*}
=\sum(\alpha-\beta+\beta) \overline{\mathrm{e}} \tag{6}
\end{equation*}
$$

$$
=\sum a \mathrm{e}=\mathrm{a}
$$

9. Für extensive Grössen gelten die sămmtlichen Gesetze algebraischer Addition und Subtraktion.

Beweis. Denn diese Gesetze können, wie bekannt, aus den 4 Fundamentalformeln in No. 8 abgeleitet werden.
10. Erklärung. Eine extensive Grösse mit einer Zahl multipliciren heisst ihre sämmtlichen Ableitungszahlen mit dieser Zahl multipliciren, d. h.
$\sum \overline{\mathrm{e}} \cdot \beta=\beta \cdot \overline{\alpha \mathrm{e}}=\sum(\overline{\alpha \beta) \cdot e}$
11. Erklärung. Eine extensive Grösse durch eine Zahl, die nicht gleich null ist, dividiren, heisst ihre sämmtlichen Ableitungszahlen durch diese Zahl dividiren, d. h.

$$
\sum \overline{\mathrm{e}}: \beta=\sum \frac{a}{\beta} \mathrm{e}
$$

12. Für die Multiplikation und Division extensiver Grössen (a, b) durch Zahlen (β, γ) gelten die Fundamentalformeln:
1) $\mathrm{a} \beta=\beta \mathrm{a}$,
2) $\mathrm{a} \beta \gamma=\mathrm{a}(\beta \gamma)$,
3) $(\mathrm{a}+\mathrm{b}) \gamma=\mathrm{a} \gamma+\mathrm{b} \gamma$,
4) a $(\beta+\gamma)=a \beta+a \gamma$,
5) $a \cdot 1=a$,
6) $\mathrm{a} \beta=0$ dann und nur dann, wenn entweder $\mathrm{a}=0$, oder $\beta=0$,
7) a : $\beta=\mathrm{a} \frac{1}{\beta}$, wenn $\beta \geq 0$ ist ").

Beweis. Es sei $\mathrm{a}=\sum \overline{\alpha \mathrm{e}}, \mathrm{b}=\sum \overline{\beta e}$, wo die Summe sich auf das System der Einheiten $e_{1} \ldots e_{\mathrm{n}}$ bezieht, so ist
$\left.{ }^{*}\right)$ Das Zeichen \sum zusammengesetzt aus $>$ und \angle soll ungleich bedeuten.

The 1862 text contains a theory of extensive quantities

$$
a_{1} e_{1}+a_{2} e_{2}+\cdots,
$$

where the e_{i} are 'units' and the a_{i} are real numbers, including

- rules for the arithmetic of such quantities

Grassmann's ‘extensive quantities'

4
(9
3) $\mathrm{a}+\mathrm{b}-\mathrm{b}=\sum \overline{\mathrm{a}}+\sum \overline{\beta \mathrm{e}}-\sum \beta \overline{\mathrm{e}}$

$$
\begin{align*}
& =\sum(\bar{\alpha}+\beta) \mathrm{e}-\sum \overline{\beta \mathrm{e}} \tag{6}\\
& =\sum_{\Sigma}(\alpha+\beta-\beta) \mathrm{e}
\end{align*}
$$

$$
\begin{equation*}
=\sum \alpha e=a \tag{7}
\end{equation*}
$$

4) $\mathrm{a}-\mathrm{b}+\mathrm{b}=\sum_{\Sigma} \overline{\mathrm{e}}-\sum \overline{\beta \mathrm{e}}+\sum \overline{\beta \mathrm{e}}$

$$
\begin{equation*}
=\sum \overline{(\alpha-\beta) \mathrm{e}}+\sum \overline{\beta \mathrm{c}} \tag{7}
\end{equation*}
$$

$$
\begin{equation*}
=\sum_{\Sigma}(\alpha-\beta+\beta) \bar{e} \tag{6}
\end{equation*}
$$

$$
=\sum a \mathrm{e}=\mathrm{a}
$$

9. Für extensive Grössen gelten die sämmtlichen Gesetze algebraischer Addition und Subtraktion.

Beweis. Denn diese Gesetze können, wie bekannt, aus den 4 Fundamentalformeln in No. 8 abgeleitet werden.
10. Erklärung. Eine extensive Grösse mit einer Zahl multipliciren heisst ihre sămmtlichen Ableitungszahlen mit dieser Zahl multipliciren, d. h.
$\sum \overline{\mathrm{e}} \cdot \beta=\beta \cdot \overline{\alpha \mathrm{e}}=\sum(\alpha \beta) \cdot \mathrm{e}$
11. Erklärung.| Eine extensive Grösse durch eine Zahl, die nicht gleich null ist, dividiren, heisst ihre sämmtlichen Ableitungszahlen durch diese Zahl dividiren, d. h.

$$
\sum \overline{a \mathrm{e}}: \beta=\sum \frac{a}{\beta} \mathrm{e}
$$

12. Für die Multiplikation und Division extensiver Grössen (a, b) durch Zahlen (β, γ) gelten die Fundamentalformeln:
1) $\mathrm{a} \beta=\beta \mathrm{a}$,
2) a $\beta \gamma=\mathrm{a}(\beta \gamma)$,
3) $(\mathrm{a}+\mathrm{b}) \gamma=\mathrm{a} \gamma+\mathrm{b} \gamma$,
4) a $(\beta+\gamma)=a \beta+a \gamma$,
5) $a \cdot 1=a$,
6) $\mathrm{a} \beta=0$ dann und nur dann, wenn entweder $a=0$, oder $\beta=0$,
7) a : $\beta=\mathrm{a} \frac{1}{\beta}$, wenn $\beta<0$ ist *).

Beweis. Es sei $\mathrm{a}=\sum \overline{\alpha e}, \mathrm{~b}=\sum \overline{\beta \mathrm{e}}$, wo die Summe sich auf das System der Einheiten $e_{1} \ldots e_{\mathrm{n}}$ bezieht, so ist
$\left.{ }^{*}\right)$ Das Zeichen \sum zusammengesetzt aus $>$ und \angle soll ungleich bedeuten.

The 1862 text contains a theory of extensive quantities

$$
a_{1} e_{1}+a_{2} e_{2}+\cdots,
$$

where the e_{i} are 'units' and the a_{i} are real numbers, including

- rules for the arithmetic of such quantities
- a notion of linear independence

Grassmann's ‘extensive quantities'

4
(9
3) $\mathrm{a}+\mathrm{b}-\mathrm{b}=\sum \overline{\mathrm{a}}+\sum \overline{\beta \mathrm{e}}-\sum \beta \overline{\mathrm{e}}$

$$
\begin{align*}
& =\sum(\bar{\alpha}+\beta) \mathrm{e}-\sum \overline{\beta \mathrm{e}} \tag{6}\\
& =\sum_{\Sigma}(\alpha+\beta-\beta) \mathrm{e}
\end{align*}
$$

$=\sum \alpha \mathrm{e}=\mathrm{a}$
4) $\mathrm{a}-\mathrm{b}+\mathrm{b}=\sum_{\sum} \overline{\mathrm{e}}-\sum \overline{\beta \mathrm{e}}+\sum \overline{\beta \mathrm{e}}$
$=\sum_{\sum(\alpha-\beta) \mathrm{e}}+\sum \overline{\beta e}$
$=\sum(\overline{\alpha-\beta}+\beta) \mathrm{e}$
$=\sum \bar{\alpha}=a$
9. Für extensive Grössen gelten die sämmtlichen Gesetze algebraischer Addition und Subtraktion.

Beweis. Denn diese Gesetze können, wie bekannt, aus den 4 Fundamentalformeln in No. 8 abgeleitet werden.
10. Erklärung. Eine extensive Grösse mit einer Zahl multipliciren heisst ihre sämmtlichen Ableitungszahlen mit dieser Zahl multipliciren, d. h.
$\sum \overline{\mathrm{e}} \cdot \beta=\beta \cdot \overline{\alpha \mathrm{e}}=\sum(\alpha \beta) \cdot \mathrm{e}$
11. Erklärung. Eine extensive Grösse durch eine Zahl, die nicht gleich null ist, dividiren, heisst ihre sämmtlichen Ableitungzzahlen durch diese Zahl dividiren, d. h.

$$
\sum \bar{a}: \beta=\sum \frac{a}{\beta} \mathrm{e}
$$

12. Für die Multiplikation und Division extensiver Grössen (a, b) durch Zahlen (β, γ) gelten die Fundamentalformeln:
1) $\mathrm{a} \beta=\beta \mathrm{a}$,
2) a $\beta \gamma=\mathrm{a}(\beta \gamma)$,
3) $(\mathrm{a}+\mathrm{b}) \gamma=\mathrm{a} \gamma+\mathrm{b} \gamma$,
4) a $(\beta+\gamma)=a \beta+a \gamma$,
5) $a \cdot 1=a$,
6) $\mathrm{a} \beta=0$ dann und nur dann, wenn entweder $\mathrm{a}=0$, oder $\beta=0$,
7) a : $\beta=\mathrm{a} \frac{1}{\beta}$, wenn $\beta<0$ ist *).

Beweis. Es sei $\mathrm{a}=\sum \overline{\alpha e}, \mathrm{~b}=\sum \overline{\beta e}$, wo die Summe sich auf das System der Einheiten $e_{1} \ldots e_{\mathrm{n}}$ bezieht, so ist
${ }^{\text {² }}$) Das Zeichen \sum zusammengesetzt aus $>$ und \angle soll ungleich bedeuten.

The 1862 text contains a theory of extensive quantities

$$
a_{1} e_{1}+a_{2} e_{2}+\cdots,
$$

where the e_{i} are 'units' and the a_{i} are real numbers, including

- rules for the arithmetic of such quantities
- a notion of linear independence
- dimension

Grassmann's ‘extensive quantities'

4
3) $\mathrm{a}+\mathrm{b}-\mathrm{b}=\sum \overline{\alpha \mathrm{c}}+\sum \overline{\beta \mathrm{e}}-\sum \beta \overline{\mathrm{e}}$

$$
\begin{align*}
& =\sum(\bar{\alpha}+\beta) \mathrm{e}-\sum \overline{\beta \mathrm{e}} \tag{6}\\
& =\sum \frac{(\alpha+\beta-\beta) \mathrm{e}}{(\alpha+\beta}
\end{align*}
$$

$=\sum \alpha \mathrm{e}=\mathrm{a}$
4) $\mathrm{a}-\mathrm{b}+\mathrm{b}=\sum \overline{\mathrm{a}}-\sum \overline{\beta \mathrm{e}}+\sum \overline{\beta \mathrm{e}}$
$=\sum_{\sum}(\alpha-\beta) \mathrm{e}+\sum \beta \mathrm{e}$
$=\sum(\bar{a}-\beta+\beta) \overline{\mathrm{e}}$
$=\sum \alpha \mathrm{e}=\mathrm{a}$
9. Für extensive Grössen gelten die sämmtlichen Gesetze algebraischer Addition und Subtraktion.

Beweis. Denn diese Gesetze können, wie bekannt, aus den 4 Fundamentalformeln in No. 8 abgeleitet werden.
10. Erklärung. Eine extensive Grösse mit einer Zahl multipliciren heisst ihre sämmtlichen Ableitungszahlen mit dieser Zahl multipliciren, d. h.
$\sum \alpha \mathrm{e} \cdot \beta=\beta \cdot \sum \alpha \mathrm{e}=\sum(\alpha \beta) \cdot \mathrm{e}$
11. Erklärung. Eine extensive Grösse durch eine Zahl, die nicht gleich null ist, dividiren, heisst ihre sämmtlichen Ableitungszahlen durch diese Zahl dividiren, d. h.

$$
\sum \overline{\mathrm{e}}: \beta=\sum \frac{a}{\beta} \mathrm{e}
$$

12. Für die Multiplikation und Division extensiver Grössen (a, b) durch Zahlen (β, γ) gelten die Fundamentalformeln:
1) $\mathrm{a} \beta=\beta \mathrm{a}$,
2) $\mathrm{a} \beta \gamma=\mathrm{a}(\beta \gamma)$,
3) $(\mathrm{a}+\mathrm{b}) \gamma=\mathrm{a} \gamma+\mathrm{b} \gamma$,
4) a $(\beta+\gamma)=a \beta+a \gamma$,
5) $a \cdot 1=a$,
6) $\mathrm{a} \beta=0$ dann und nur dann, wenn entweder $a=0$, oder $\beta=0$,
7) a : $\beta=\mathrm{a} \frac{1}{\beta}$, wenn $\beta<0$ ist *).

Beweis. Es sei $\mathrm{a}=\sum \overline{\alpha e}, \mathrm{~b}=\sum \overline{\beta e}$, wo die Summe sich auf das System der Einheiten $\mathbf{e}_{1} \ldots e_{\mathrm{n}}$ bezieht, so ist
$\left.{ }^{*}\right)$ Das Zeichen \geqslant zusammengesetzt aus $>$ und \angle soll ungleich bedeuten.

The 1862 text contains a theory of extensive quantities

$$
a_{1} e_{1}+a_{2} e_{2}+\cdots,
$$

where the e_{i} are 'units' and the a_{i} are real numbers, including

- rules for the arithmetic of such quantities
- a notion of linear independence
- dimension

Grassmann's 'extensive quantities'

4
(${ }^{3}$
3) $\mathrm{a}+\mathrm{b}-\mathrm{b}=\sum \overline{\mathrm{a}}+\sum \overline{\beta \mathrm{e}}-\sum \beta \overline{\mathrm{e}}$

$$
\begin{align*}
& =\sum(\bar{\alpha}+\beta) \mathrm{e}-\sum \overline{\beta e} \tag{6}\\
& =\sum(\alpha+\beta-\beta) \mathrm{e}
\end{align*}
$$

$=\sum \alpha e=a$
4) $\mathrm{a}-\mathrm{b}+\mathrm{b}=\sum_{\sum} \overline{\mathrm{e}}-\sum \overline{\beta \mathrm{e}}+\sum \overline{\beta \mathrm{e}}$
$=\sum^{\sum}(\bar{\alpha}-\beta) \mathrm{e}+\sum \overline{\beta e}$
$=\sum(\overline{\alpha-\beta}+\beta) \mathrm{e}$
$=\sum a \mathrm{e}=\mathrm{a}$
9. Für extensive Grössen gelten die sämmtlichen Gesetze algebraischer Addition und Subtraktion.

Beweis. Denn diese Gesetze können, wie bekannt, aus den 4 Fundamentalformeln in No. 8 abgeleitet werden.
10. Erklärung. Eine extensive Grösse mit einer Zahl multipliciren heisst ihre sămmtlichen Ableitungszahlen mit dieser Zahl multipliciren, d. h.
$\sum \overline{\mathrm{e}} \cdot \beta=\beta \cdot \overline{\alpha \mathrm{e}}=\sum(\alpha \beta) \cdot \mathrm{e}$
11. Erklärung. Eine extensive Grösse durch eine Zahl, die nicht gleich null ist, dividiren, heisst ihre sämmtlichen Ableitungszahlen durch diese Zahl dividiren, d. h.

$$
\sum \overline{a \mathrm{e}}: \beta=\sum \frac{a}{\beta} \mathrm{e}
$$

12. Für die Multiplikation und Division extensiver Grössen (a, b) durch Zahlen (β, γ) gelten die Fundamentalformeln:
1) $\mathrm{a} \beta=\beta \mathrm{a}$,
2) $\mathrm{a} \beta \gamma=\mathrm{a}(\beta \gamma)$,
3) $(a+b) \gamma=a \gamma+b \gamma$,
4) a $(\beta+\gamma)=a \beta+a \gamma$,
5) $a \cdot 1=a$,
6) $\mathrm{a} \beta=0$ dann und nur dann, wenn entweder $\mathrm{a}=0$, oder $\beta=0$,
7) a : $\beta=\mathrm{a} \frac{1}{\beta}$, wenn $\beta \geq 0$ ist ").

Beweis. Es sei $a=\sum \overline{a e}, b=\sum \overline{\beta e}$, wo die Summe sich auf das System der Einheiten $e_{1} \ldots e_{\mathrm{n}}$ bezieht, so ist
${ }^{\text {² }}$) Das Zeichen \sum zusammengesetzt aus $>$ und \angle soll ungleich bedenten.

The 1862 text contains a theory of extensive quantities

$$
a_{1} e_{1}+a_{2} e_{2}+\cdots,
$$

where the e_{i} are 'units' and the a_{i} are real numbers, including

- rules for the arithmetic of such quantities
- a notion of linear independence
- dimension
- ...

But still had little impact
(See Mathematics emerging, §17.4.1.)

Vector spaces defined

On the way towards developing a 'geometric calculus', Guiseppe Peano axiomatised Grassmann's collections of extensive quantities as linear systems (sistemi lineari), and moved to a fully abstract setting

Vector spaces defined

On the way towards developing a 'geometric calculus', Guiseppe Peano axiomatised Grassmann's collections of extensive quantities as linear systems (sistemi lineari), and moved to a fully abstract setting

Clarified connection between dimension and linear independence

Vector spaces defined

On the way towards developing a 'geometric calculus', Guiseppe Peano axiomatised Grassmann's collections of extensive quantities as linear systems (sistemi lineari), and moved to a fully abstract setting

Clarified connection between dimension and linear independence - noted existence of linear systems with infinite dimension

Vector spaces defined

On the way towards developing a 'geometric calculus', Guiseppe Peano axiomatised Grassmann's collections of extensive quantities as linear systems (sistemi lineari), and moved to a fully abstract setting

Clarified connection between dimension and linear independence - noted existence of linear systems with infinite dimension

Also no immediate impact!

Vector spaces develop

Algebraische Theorie der Körper.
Von Herrn Ernst Steinizz in Berlin.

In dem vorliegenden Aufsatz ist der Begriff „Körper" in derselben abstrakten und allgemeinen Weise gefaßt wie in H. Webers Untersuchungen über die allgemeinen Grundlagen der Galois schen Gleichungstheorie*), nämlich als ein System von Elementen mit zwei Operationen: Addition und Multiplikation, welche dem assoziativen und kommutativen Gesetz unterworfen, durch das distributive Gesetz verbunden sind und unbeschrānkte und eindeutige Umkehrungen zulassen**). Während aber bei Weber das Ziel eine allgemeine, von der Zahlenbedeutung der Elemente unabhängige Behandlung der Galoisschen Theorie ist, steht für uns der Körperbegriff selbst im Mittelpunkt des Interesses. Eine Ubersicht über alle möglichen Körpertypen zu gewinnen und ihre Beziehungen untereinander in ihren Grundzügen festzustellen, kann als Programm dieser Arbeit gelten***). Da hierbei die der Arithmetik im engeren Sinn angehörigen Unterscheidungen zwischen ganzen und gebrochenen Größen nicht weiter zu verfolgen waren, wurde der Titel Algebraische Theorie der Körper gewählt.

Durch die hier gekennzeichnete Tendenz ist auch der Weg, den wir einzuschlagen haben, vorgezeichnet. Wir werden von der Bildung der einfachsten Körper ausgehen und sodann die Methoden betrachten, durch

[^3]> Dedekind (1879): fields and 'modules' needed for algebraic number theory in famous appendices to his third edition of Dirichlet, Vorlesungen über Zahlentheorie [Lectures on number theory]; published also separately in France, 1876-77

Vector spaces develop

Algebraische Theorie der Körper.
Von Herrn Ernst Steinitz in Berlin.

In dem vorliegenden Aufsatz ist der Begriff „Körper" in derselben abstrakten und allgemeinen Weise gefaßt wie in H. Webers Untersuchungen über die allgemeinen Grundlagen der Galois schen Gleichungstheorie*), nämlich als ein System von Elementen mit zwei Operationen: Addition und Multiplikation, welche dem assoziativen und kommutativen Gesetz unterworfen, durch das distributive Gesetz verbunden sind und unbeschrānkte und eindeutige Umkehrungen zulassen**). Wāhrend aber bei Weber das Ziel eine allgemeine, von der Zahlenbedeutung der Elemente unabhängige Behandlung der Galoisschen Theorie ist, steht für uns der Körperbegriff selbst im Mittelpunkt des Interesses. Eine Ubersicht über alle möglichen Körpertypen zu gewinnen und ihre Beziehungen untereinander in ihren Grundzügen festzustellen, kann als Programm dieser Arbeit gelten***). Da hierbei die der Arithmetik im engeren Sinn angehörigen Unterscheidungen zwischen ganzen und gebrochenen Größen nicht weiter zu verfolgen waren, wurde der Titel Algebraische Theorie der Körper gewählt.

Durch die hier gekennzeichnete Tendenz ist auch der Weg, den wir einzuschlagen haben, vorgezeichnet. Wir werden von der Bildung der einfachsten Körper ausgehen und sodann die Methoden betrachten, durch

[^4]Dedekind (1879): fields and 'modules' needed for algebraic number theory in famous appendices to his third edition of Dirichlet, Vorlesungen über Zahlentheorie [Lectures on number theory]; published also separately in France, 1876-77

> Ernst Steinitz (1910), 'Algebraische Theorie der Körper' ['Algebraic theory of fields'] - contains a beautifully crystallised theory of linear dependence and independence, bases, dimension, etc., in the form it is now taught

Vector spaces develop

FINITE DIMENSIONAL

 VECTOR SPACESBY
PAUL R. HALMOS

PRINCETON
PRINCETON UNIVERSITY PRESS
LONDON HUMPHREY MLLURD
GXFORD UNIVERSITY PRESS
1948
B. L. van der Waerden (1930-31), Moderne Algebra, incorporating material from lectures by Emil Artin and Emmy Noether (1926-1928)

Vector spaces develop

FINITE DIMENSIONAL

VECTOR SPACES

BY
PAUL R. HALMOS

PRINCETON
PRINCETON UNIVERSITY PRESS
LONDON HUMPHREY MLLURD
OXFORD UNIVERSITY PRESS
1948
B. L. van der Waerden (1930-31), Moderne Algebra, incorporating material from lectures by Emil Artin and Emmy Noether (1926-1928)

Paul Halmos (1942),
Finite-dimensional vector spaces made the subject accessible to 1st and 2nd year undergraduates

[^0]: *) Burchardt, Neue Eigenschaft der Gleichung, mit deren Helfe man die saeculären Stōrungen der Planeten bestimmt. Dieses Journal Bd. 30, S. 38.
 Bd. 50, Sayley, Remarques sur la notation des fonctions algébriques. Dieses Journal Bd. 50, S. 282.

 Hesse, Neue Eigenschaften der linearen Substitutionen, welche gegebene homogene Functionen des zweiten Grades in andere transformiren, die nur die Quadrate der Variabeln enthalten. Dieses Journal Bd. 57, S. 175.

 Christoffel, Theorie der bilinearen Formen. Dieses Journal Bd. 68, S. 253.
 Rosanes, Ueber die Transformation einer quadratischen Form in sich selbst. Dieses Journal Bd. 80, S. 52
 **) Unter dem Bilde einer bilinearen Form fasse ich ein System von n^{\prime} Grössen zusammen, die naeh n Zeilen und n Colonnen geordnet sind. Eine Gleichung zwischen wwei bilinearen Formen repräsentirt daher einen Complex von n^{2} Gleichungen. Ich Syatem der n^{*} Grössen $a_{\text {a }}$. System der \boldsymbol{n}^{*} Grössen $a_{u \beta}$, unter der Gleichung $A=B$ das System der \boldsymbol{n}° Gleichungen
 $a_{a \beta}=b_{o \beta}$ verstehen.

[^1]: *) Burchardt, Neue Eigenschaft der Gleichung, mit deren Helfe man die saeculären Stōrungen der Planeten bestimmt. Dieses Journal Bd. 30, S. 38.
 Bd. 50, Sayley, Remarques sur la notation des fonctions algébriques. Dieses Journal Bd. 50, S. 282.

 Hesse, Neue Eigenschaften der linearen Substitutionen, welche gegebene homogene Functionen des zweiten Grades in andere transformiren, die nur die Quadrate der Variabeln enthalten. Dieses Journal Bd. 57, S. 175.

 Christoffel, Theorie der bilinearen Formen. Dieses Journal Bd. 68, S. 253.
 Rosanes, Ueber die Transformation einer quadratischen Form in sich selbst. Dieses Journal Bd. 80, S. 52
 **) Unter dem Bilde einer bilinearen Form fasse ich ein System von n^{\prime} Grössen zusammen, die naeh n Zeilen und n Colonnen geordnet sind. Eine Gleichung zwischen wwei bilinearen Formen repräsentirt daher einen Complex von n^{2} Gleichungen. Ich Syatem der n^{*} Grüsen a^{2}, System der n^{*} Grössen $a_{u \beta}$, unter der Gleichung $A=B$ das System der n^{\prime} Gleichungen $a_{a \beta}=b_{a \beta}$ verstehen.

[^2]: *) Burchardt, Neue Eigenschaft der Gleichung, mit deren Helfe man die saeculären Stōrungen der Planeten bestimmt. Dieses Journal Bd. 30, S. 38.

 Cayley, Remarques sur la notation des fonctions algébriques. Dieses Journal Bd. 50, S. 282.

 Hesse, Neue Eigenschaften der linearen Substitutionen, welche gegebene homogene Functionen des zweiten Grades in andere transformiren, die nur die Quadrate der Variabeln enthalten. Dieses Journal Bd. 57, S. 175.

 Christoffel, Theorie der bilinearen Formen. Dieses Journal Bd. 68, S. 253.
 Rosanes, Ueber die Transformation einer quadratischen Form in sich selbst Dieses Journal Bd. 80, \$. 52
 **) Unter dem Bilde einer bilinearen Form fasse ich ein System von n^{\prime} Grössen zusammen, die nach n Zeilen und n Colonnen geordnet sind. Eine Gleichung zwischen wwei bilinearen Formen repräsentirt daher einen Complex von n^{2} Gleichungen. Ich System der n° Grössen a^{2} Buter der Gleichung $A=B$ das System der n^{9} Gleichungen ystem der \boldsymbol{n}^{2} Grasen $a_{\alpha \beta}$, unter der Gleichung $A=B$ das System der n^{2} Gleichungen $a_{a \beta}=b_{a \beta}$ verstehen.

[^3]: *) Math. Ann. 43. S. 521. - **) Nur die Division durch Null ist auszuschlieBen
 ***) Zu diesen allgemeinen Untersuchungen wurde ich besonders durch Hensels Theorie der algebraischen Zahlen (Leipzig, 1908) angeregt, in welcher der Körper der p-adischen Zahlen den Ausgangspunkt bildet, ein Körper, der weder den Funktionennoch den Zahlkörpern im gewōhnlichen Sinne des Wortes beizuzählen ist.

 Jouraal für Mathematik. Bd. 187. Heft 3.

[^4]: *) Math. Ann. 43. S. 521. - *) Nur die Division durch Null ist anszuschlieBen.
 ${ }^{* *}$) Zu diesen allgemeinen Untersuchungen wurde ich besonders durch Hensels Theorie der algebraischen Zahlen (Leipzig, 1908) angeregt, in welcher der Körper der p-adischen Zahlen den Ausgangspunkt bildet, ein Körper, der weder den Funktionennoch den Zahlkörpern im gewōhnlichen Sinne des Wortes beizuzählen ist.

 Jouraal für Mathematik. Bd. 187. Heft 3.

