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In the last lecture

@ Morrey's inequality.

@ Friedrichs’ inequality.
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This lecture

Friedrichs’ inequality.
Rellich-Kondrachov's compactness theorem.
Poincaré’s inequality.

(Local behavior of Sobolev functions.)
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Friedrichs' inequality

Theorem (Friedrichs' inequality)

Assume that € is a bounded open set and 1 < p < co. Then, there
exists C, o such that

IVl e(y for all u € WyP(Q).

ullr@) < Coa
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Friedrichs-type inequality

Theorem (Friedrichs-type inequality)

Assume that Q) is a bounded open set and 1 < p < co. Suppose that
1<qg<pifp<nl<g<ocoifp=nandl <qg<ooifp>n.
Then there exists C, 5 4.0 such that

ulla@) < Copa0

IV ul|oay for all u € WyP(Q).
Proof
e Extend u by zero to R”".

@ If p < n, we have by Gagliardo-Nirenberg-Sobolev's inequality,
that

HUHLP*(Q) = HUHLP*(R") < C||VU||LP(R") = C||VU||LP(Q)-

As 2 has finite measure, ||ul| o) < C|lul[s(q), and so we're
done in this case.
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Friedrichs-type inequality

Proof

@ Note that, as Q has finite measure, W1"(Q) — W1P(Q) for
any p < p. The case p = n thus follows from the previous case.

@ When p > n, we have by Morrey's inequality that

[ulli@) = Nlull i @ny < Cllullwre@ey = Cllullwe)-

By Friedrichs’ inequality, we have ||u|lwirq) < C||Vul|ir(q)-
Also, as Q has finite measure, ||u|o) < C|lul|L=(0)-
Putting these together we're also done in this case.

Luc Nguyen (University of Oxford) C4.3 — Lecture 10 MT 2021 6/33



Rellich-Kondrachov's theorem

Theorem (Rellich-Kondrachov's compactness theorem)

Let Q be a bounded Lipschitz domain and 1 < p < co. Suppose
1<g<p*whenp<n l1l1<g<oowhenp=n,andl <qg<oo
when p > n. Then the embedding WP(Q) — L9(Q) is compact, i.e.
every bounded sequence in WYP(Q) contains a subsequence which
converges in L9(2).
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Critical embedding is not compact

For 1 < p < n, the embedding W'P(Q2) < LP"(Q) is not compact.

Example by ‘concentration’

@ This example is by scaling. It is related to the argument in
Lecture 7 to inspect for which p and q the space W'P(R") is
embedded L9(R").

@ We may assume that the origin lies inside 2 and B, C 2. Take
an arbitrary non-zero function u € C°(R") with Supp(u) C B,,.
We define, for A > 0, ux(x) = u(Ax).

@ We knew that

”UAHLQ = Ain/qHUHLq and HVUAHLP = Alin/pHVU”Lp.
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Critical embedding is not compact

Example by ‘concentration’

@ Hence, if we let &y, = A\~"1+"/Py,, then

1axllee = A ulle,
x| o = llull i

IVax|[e = [[Vul e
In particular, as A\ — oo,

laxllwee < [lullwre and [[ax]| e+ = [[ul] - > 0.
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Critical embedding is not compact

Example by ‘concentration’

@ Now if the embedding W1P(Q2) — LP"(Q) was compact, then as
(Gy) is bounded in WP, we could select a sequence A\, — oo
such that (dy,) converges in LP"(Q) to some limit u, € LP (Q).

@ This would imply that
[ll e = Jim {[dx,[[ oo = [lufl o > O.
—00
@ On the other hand, Supp(iy) C By,/» and so iy — 0 a.e. in Q

as A — oo. This would give that u, = 0 a.e. which contradicts
the above.
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Critical embedding is not compact

For 1 < p < n, the embedding W1P(R") — LP"(R") is not compact.

Example by ‘translations’

o Take again an arbitrary non-zero function u € C°(R") and fix
some unit vector e. Let us(x) = u(x + se) = 7eou(x).

o Then |lusllwre = [[ullwre, [|usllie = [ull o Also
Supp(us) = {x — se : x € Supp(u)} and so us — 0 a.e. on R”
as s — 00,

@ By the same reasoning, there is no sequence s, — oo such that
u, is convergent in LP".
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Pre-compactness criterion in LP()

Let us now do some preparation for the proof of Rellich-Kondrachov's
theorem. Recall:

Theorem (Kolmogorov-Riesz-Fréchet's theorem)

Let 1 < p < oo and §2 be an open bounded subset of R". Suppose
that a sequence (f;) of LP(Q2) satisfies

@ (Boundedness) sup; ||fi| o) < o0,

@ ( Equi-continuity in LP ) For every € > 0, there exists § > 0 such
that |7, f; — fil|r() < € for all |y| < §, where f; is the extension
by zero of f; to all of R".

Then, there exists a subsequence (f;,) which converges in LP(2).

In the case we are considering, boundedness follows from the
embedding theorems. Let us now consider equi-continuity.
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Continuity of translation operators in WP

Let 1 < p < co. For every v.e WLP(R™) and y € R", it holds that

Iy v = Viw@n) < yIIVV] ).

Proof

@ Using the density of C*(R") N W'P(R") in W1P(R™) for
p < oo, it suffices to consider v € C>*°(R") N WLP(R").
@ By the mean value theorem and Holder's inequality, we have

1 d 1
lv(y +x) — v(x)| < / |av(ty+x)]dt :/ lyiOiv(ty + x)| dt
0 0

! 1/p
<l [ 19vtey 01 ae}
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Continuity of translation operators in W1?

Proof
1
o [y +2) = vIP < 1P [ Vvl + )P o
0
@ Integrating over x gives
v =it = [ 1y +x) = vl e
Rn
1
§]y\p/ / |Vv(ty + x)|P dt dx
R Jo

1
— P / Vv(ty + x)|° dx dt
0 Rn
= PV

So we have ||7,v — v|[zr < |y|||VV]|Lprr) as wanted.
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Continuity of translation operators in WP

We remarked in Lecture 3 that the map h — T}, is not a continuous
map from R" into Z(LP(R"), LP(R")).

The above lemma implies that h — 7, is a continuous map from R"
into L (WHP(R"), LP(R™)).

Proof
o Let X = Z(WHP(R"), LP(R™)). The statement amounts to
7, — Id in X as y — 0. So we need to show that

0= lim |7, — Id]|x = lim sup lTyu — ul|Le.
y=0 Y0 e WLp®) ul yrp<l

@ By the lemma, we have |7 u — ul[e < |y|||Vuller < y|
whenever ||u||y1» < 1. So the point above is clear.
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Characterisation of WP using translation

operators

Assume that 1 < p < oo and v € LP(R"). Suppose that there exist
small r > 0 and large C such that

|7y v — v||ewey < Cly| for all |y| <r.

Then

S Wl’p(Rn) and “VV“[_P(RH) < C.

Sketch of proof
o Fix a direction e;. By hypothesis g; := %[Tte,v — v] is bounded in
LP for |t| < r. By the weak sequential compactness property in

LP, we have along a sequence t, — 0 that g, converges weakly
in LP to some w; € LP(R").
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Characterisation of WP using translation

operators

Sketch of proof
° g, = ﬁ[ﬁke’.v —v] = w; in LP.

@ The key point is the following identity

n

[Ttk(:‘iv - V]SO dx = _/ V[SD - T—tke,-SO] dx.

RN

@ Now divide both side by t; and sending kK — oo, we then get

/ wip dx = —/ vO;p dx for all p € CZ°(R").

This proves 0;v = w; € LP(R"). The conclusion follows.
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Rellich-Kondrachov's theorem

Theorem (Rellich-Kondrachov's compactness theorem)

Let € be a bounded Lipschitz domain and 1 < p < co. Suppose
1<g<p'whenp<nl<g<oowhenp=n, andl < q< o0
when p > n. Then the embedding WP(Q) — L9(Q) is compact, i.e.
every bounded sequence in WP(Q) contains a subsequence which
converges in L9(2).

We reiterate that, when p < n, the endpoint embedding
WhP(Q) < LP" () is not compact.

When p > n, we have W(Q) < C**75(Q), so the above is a
consequence of Ascoli-Arzela's theorem. (Check this!)

Luc Nguyen (University of Oxford) C4.3 — Lecture 10 MT 2021



Rellich-Kondrachov's theorem

Proof of the case g = p < n.

@ Suppose that (u,,) is bounded in W1P(Q). We need to
construct a subsequence (u,) which converges in LP().

@ As (uy) is bounded in LP(2), we would be done by
Kolmogorov-Riesz-Fréchet's theorem if (u,,) is equi-continuous
in LP sense.

@ To make use of the continuity property of translation operators
in WLP(R™), we let E : WHP(Q) — WP(R") be a bounded
linear extension operator. Then the family (Eu,,) is bounded in
LP(R™) and is equi-continuous in LP(R") sense. But as R" is
unbounded, we cannot apply Kolmogorov-Riesz-Fréchet's
theorem to this family.
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Rellich-Kondrachov's theorem

Proof of the case g = p < n.
@ We proceed as follows: Take a large ball Bg containing 2 and
select a cut-off function ¢ € C2°(Bg) such that ( =1 in Q. Let

Vm = CEu,,.
Clearly v, = up, a.e. in Q, Supp(v,) C Bg and (v,,) is bounded
in WLP(R").
@ We aim to apply Kolmogorov-Riesz-Fréchet's theorem to
(vilBz)-

* It is clear that (vm|g,) is bounded in LP(Bg).
x Also, by the continuity of translation operators in WP, we have

|7y Vm = Vil o@ny < Y [[|DVinl[ oy < [yl Vinllwrpn)-

Therefore, for every € > 0, there exists § > 0 such that
|7y Vi — Vil 1p(Bg) < € for all m and all |y| <4, i.e. (vm|gg) is
equi-continuous in LP sense. We're done.
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Rellich-Kondrachov's theorem

Proof of the general case for p < n.

@ Supposethat 1 < g< p*if p<n, 1< g< if p=n. Bythe
embedding theorems, we know that there exists § > g such that
WLP(Q) — LI(Q).

@ Suppose that (u,,) is bounded in W1P(Q). We need to
construct a subsequence (u,;) which converges in L9(2).

@ We knew from the previous case that there is a subsequence
(tm;) which converges in LP(2) to some u € LP(R2). Passing to
a subsequence if necessary, we may also assume that (upm,)
converges to u a.e. in €.

@ To conclude, we show that u € L9(Q2) and (u,) converges in
L9(Q) to wu.

e If g < p, the above follows from Holder's inequality. We assume
henceforth that g > p.
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Rellich-Kondrachov's theorem

Proof of the general case for p < n.
@ We now show that u € L9(f). In fact, we show that u € L(Q).

* By the embedding W1P(Q) < L3(Q), we have that up, is
bounded in L9(Q).
* By Fatou's lemma, we have

/ lul9dx < Iiminf/ |umj|adx < 0.
Q J=o0 JQ

Hence u € L9(Q).
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Rellich-Kondrachov's theorem

Proof of the general case for p < n.
e Finally, we show that vy, — uin L9().

o We observe that up, — u converges to 0 in LP(£2) and is
bounded in L9(Q) with p < g < §.
o Now we write, for § € (0,1) to be fixed

Jimy = s = | T, = ul? e = [ Jum, = 0], — 0] o
Q Q

and apply Holder's inequality with some pair of conjugate
exponents r and r’ to be fixed:

1/r , 1/r
[ tm, — ul|{q < {/ |Um; — u| 9" dx} {/ |Um, — u9Q=0)r dx} .
Q Q
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Rellich-Kondrachov's theorem

Proof of the general case for p < n.
o ...we are showing that u, — uin L9(Q).

o Um, —u—0in LP(Q) and upy; — u is bounded in L9(Q) with
p<qg<qg.

o [lum; — ullia < [[um; — ulfaorlltm; = ull} o),

o Now, if we can chose § € (0,1) and r > 1 such that gfr = p
and g(1 — 6)r' = §, then the first factor on the right hand side
goes to zero and the second factor remains bounded, and so
Um; — b in L9(Q) as wanted.

o To solve for # and r, we first eliminate r to obtain

1 1 P
l=—-+—-—=60-+(1-0
r+r’ q +( )

Q \Q>

As 2 g <1 < , we can certainly select 6 € (0, 1) satisfying the
above The exponent ris given by r = %. This concludes the
proof.
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Poincaré’s inequality

Theorem (Poincaré’s inequality)

Suppose that 1 < p < oo and 2 is a bounded Lipschitz domain.
There exists a constant C, , o > 0 such that

HU — UQ”Lp(Q) < Cn7p79 |VU”LP(Q) for all u € Wl’p(Q),

where iq Is the average of u in Q:

_ 1/
g = — u(x) dx.
2= o] Jo )

When p = oo, the theorem is a consequence of the fact that
W (Q) = C%(Q). (Check this!)
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Poincaré’s inequality

Proof for p < oc.

@ We argue by contradiction. Suppose the conclusion is not true.
Then there exists a sequence (u,,) C W1P(Q) such that

[t = Tl e > M|V tim]| 1o,

where i, is the average of u,, in Q.

e Replacing u,, by u,, — i,,, we may assume that u,, has zero
average, so that ||um||r > m||Vum||L».

@ Replacing u,, by mum, we may assume that ||uy|» = 1.

@ The above implies that ||Vuy|» < L and so (up,) is bounded in
WhP(Q).

@ By Rellich-Kondrachov's compactness theorem, we can find a
subsequence (u,,) which converges in LP(2), say to u.
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Poincaré’s inequality

Proof for p < oc.
@ By the strong convergence of u, to u, we have that

ullee = Tim fum,[lee = 1,
j—oo

/udx:_lim/umjdx:o.
Q J7eeJa

@ On the other hand, as ||[Vup| > < L, we have for every
p € C(Q) that

/ udip dx = lim / umj&-go dx = — lim / aiumjgo dx = 0.

Hence u is weakly differentiable and Vu = 0 in Q. In Sheet 2,
we show that this implies u is constant.

@ As u has zero average, we must then have v = 0 in Q, which
contradicts the assertion that ||ul|.» = 1.

and
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Local differentiability of Sobolev functions

Suppose Q is a domain in R" and n < p < co. Assume that

ue WHP(Q) N C(Q). Then u is differentiable a.e. in Q and its
derivatives equal its weak derivatives a.e. in Q.

Proof

@ We will only consider the case p < co. The case p =00 is a
consequence.

@ By Lebesgue’s differentiation theorem, there is a set Z C 2 of
measure zero such that

1
lim — \Vu(y) — Vu(x)|Pdy =0 forall x e Q\ Z.

n
r—0 r Br(X)

We aim to show that v is differentiable at those x € Q\ Z.
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Local differentiability of Sobolev functions

Proof

e Fix some x € Q\ Z and consider the function

v(y) = u(y) — u(x) = Vu(x) - (y — x) for y € Q.
Then v € WHP(Q) N C(Q), v(x) =0 and
Vv(y) = Vu(y) — Vu(x).

@ By Morrey's inequality, we have for every ball B,(x) € Q and
y € 0B,(x) that

1—n
P

VD) = )~ V)] < [ o5 0 X~ ]
< Cri e ||Vv||Lp(B,(X))

n

1/
= Crl_P{ / |Vu(y) — Vu(x)|P dx} ’.
B/ (x)
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Local differentiability of Sobolev functions

Proof
@ So we have
* lim 1 |Vu(y) — Vu(x)|Pdy =0, and
)

r—0 r” B,(x

n 1
* |v(y)] < Cfl"{/ [Vu(y) — Vu(x)|P dy} P whenever
B:(x)
ly —x|=r.
Putting the two together, we see that
1 1

ylingW(y)—U(X)—VU(X)'()’—X)| = y"g}( H|V(Y)| =0.

This means that v is differentiable at x and its classical gradient
at x is the same at its weak gradient at x.
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LP differentiability of Sobolev functions

Suppose Q2 is a domain in R" and 1 < p < n. Assume that
u € WYP(Q). Then for almost all x € Q it holds that

li L
m

{/B,(x) lu(y) — u(x) — Vu(x) - (y —x)|? dy}l/p —0.

Discussion of proof

@ As in the case p > n, we start by picking a set Z C Q of
measure zero such that

Iimi \Vu(y) — Vu(x)|Pdy =0 forall x e Q\ Z.

n
r—0 r Br(X)
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LP differentiability of Sobolev functions

Discussion of proof

@ We consider again the function

v(y) = u(y) — u(x) — Vu(x) - (y — x) for y € Q,

so that v € WP(Q) and Vv(y) = Vu(y) — Vu(x). Note that
however the meaning of v(x) = 0 is rather obscure since v does
not have enough regularity.

@ If we have the Poincaré-type inequality

[VIle(B.(x)) < CrlIV V] Lo, (x)s (*)

then, by recalling that r_”||Vv||‘L’p(B,(X)) —0asr—0, wecan
obtain the conclusion as in the case p > n considered previously.

However, (*) is general not valid for arbitrary functions
v e Whe,
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LP differentiability of Sobolev functions

Discussion of proof

@ The proof is actually much more involved and goes through
approximation of u by smooth functions.

@ It should be clear that the conclusion hold when u € C1(Q) as

u(y) — u(x) = Vu(x) - (y = x) = o]y — x|) as y — x.
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