

C4.3 Functional Analytic Methods for PDEs Lecture 10

Luc Nguyen luc.nguyen@maths

University of Oxford

MT 2021

- Morrey's inequality.
- Friedrichs' inequality.

- Friedrichs' inequality.
- Rellich-Kondrachov's compactness theorem.
- Poincaré's inequality.
- (Local behavior of Sobolev functions.)

Theorem (Friedrichs' inequality)

Assume that Ω is a bounded open set and $1 \le p < \infty$. Then, there exists $C_{p,\Omega}$ such that

$$\|u\|_{L^p(\Omega)} \leq C_{p,\Omega} \|\nabla u\|_{L^p(\Omega)}$$
 for all $u \in W_0^{1,p}(\Omega)$.

Theorem (Friedrichs-type inequality)

Assume that Ω is a bounded open set and $1 \le p < \infty$. Suppose that $1 \le q \le p^*$ if p < n, $1 \le q < \infty$ if p = n, and $1 \le q \le \infty$ if p > n. Then there exists $C_{n,p,q,\Omega}$ such that

$$\|u\|_{L^q(\Omega)} \leq C_{n,p,q,\Omega} \|
abla u\|_{L^p(\Omega)}$$
 for all $u \in W^{1,p}_0(\Omega).$

Proof

- Extend u by zero to \mathbb{R}^n .
- If *p* < *n*, we have by Gagliardo-Nirenberg-Sobolev's inequality, that

$$\|u\|_{L^{p^{*}}(\Omega)} = \|u\|_{L^{p^{*}}(\mathbb{R}^{n})} \leq C \|\nabla u\|_{L^{p}(\mathbb{R}^{n})} = C \|\nabla u\|_{L^{p}(\Omega)}$$

As Ω has finite measure, $\|u\|_{L^q(\Omega)} \leq C \|u\|_{L^{p^*}(\Omega)}$, and so we're done in this case.

Luc Nguyen (University of Oxford)

Proof

- Note that, as Ω has finite measure, W^{1,n}(Ω) → W^{1,p̂}(Ω) for any p̂ < p. The case p = n thus follows from the previous case.
- When p > n, we have by Morrey's inequality that

$$\|u\|_{L^{\infty}(\Omega)} = \|u\|_{L^{\infty}(\mathbb{R}^n)} \leq C \|u\|_{W^{1,p}(\mathbb{R}^n)} = C \|u\|_{W^{1,p}(\Omega)}.$$

By Friedrichs' inequality, we have $||u||_{W^{1,p}(\Omega)} \leq C ||\nabla u||_{L^{p}(\Omega)}$. Also, as Ω has finite measure, $||u||_{L^{q}(\Omega)} \leq C ||u||_{L^{\infty}(\Omega)}$. Putting these together we're also done in this case.

Theorem (Rellich-Kondrachov's compactness theorem)

Let Ω be a bounded Lipschitz domain and $1 \le p \le \infty$. Suppose $1 \le q < p^*$ when $p < n, 1 \le q < \infty$ when p = n, and $1 \le q \le \infty$ when p > n. Then the embedding $W^{1,p}(\Omega) \hookrightarrow L^q(\Omega)$ is compact, i.e. every bounded sequence in $W^{1,p}(\Omega)$ contains a subsequence which converges in $L^q(\Omega)$.

Critical embedding is not compact

Remark

For $1 \leq p < n$, the embedding $W^{1,p}(\Omega) \hookrightarrow L^{p^*}(\Omega)$ is not compact.

Example by 'concentration'

- This example is by scaling. It is related to the argument in Lecture 7 to inspect for which p and q the space W^{1,p}(Rⁿ) is embedded L^q(Rⁿ).
- We may assume that the origin lies inside Ω and $B_{r_0} \subset \Omega$. Take an arbitrary non-zero function $u \in C_c^{\infty}(\mathbb{R}^n)$ with $Supp(u) \subset B_{r_0}$. We define, for $\lambda > 0$, $u_{\lambda}(x) = u(\lambda x)$.
- We knew that

$$\|u_{\lambda}\|_{L^{q}} = \lambda^{-n/q} \|u\|_{L^{q}}$$
 and $\|\nabla u_{\lambda}\|_{L^{p}} = \lambda^{1-n/p} \|\nabla u\|_{L^{p}}.$

Example by 'concentration'

• Hence, if we let $\hat{u}_{\lambda} = \lambda^{-1+n/p} u_{\lambda}$, then

$$\begin{split} \|\hat{u}_{\lambda}\|_{L^{p}} &= \lambda^{-1} \|u\|_{L^{p}}, \\ \|\hat{u}_{\lambda}\|_{L^{p^{*}}} &= \|u\|_{L^{p^{*}}}, \\ \|\nabla \hat{u}_{\lambda}\|_{L^{p}} &= \|\nabla u\|_{L^{p}}. \end{split}$$

In particular, as $\lambda \to \infty$,

 $\|\hat{u}_{\lambda}\|_{W^{1,p}} \leq \|u\|_{W^{1,p}} \text{ and } \|\hat{u}_{\lambda}\|_{L^{p^*}} = \|u\|_{L^{p^*}} > 0.$

Example by 'concentration'

- Now if the embedding W^{1,p}(Ω) → L^{p*}(Ω) was compact, then as (û_λ) is bounded in W^{1,p}, we could select a sequence λ_k → ∞ such that (û_{λ_k}) converges in L^{p*}(Ω) to some limit u_{*} ∈ L^{p*}(Ω).
- This would imply that

$$\|u_*\|_{L^{p^*}} = \lim_{k \to \infty} \|\hat{u}_{\lambda_k}\|_{L^{p^*}} = \|u\|_{L^{p^*}} > 0.$$

• On the other hand, $Supp(\hat{u}_{\lambda}) \subset B_{r_0/\lambda}$ and so $\hat{u}_{\lambda} \to 0$ a.e. in Ω as $\lambda \to \infty$. This would give that $u_* = 0$ a.e. which contradicts the above.

Remark

For $1 \leq p < n$, the embedding $W^{1,p}(\mathbb{R}^n) \hookrightarrow L^{p^*}(\mathbb{R}^n)$ is not compact.

Example by 'translations'

- Take again an arbitrary non-zero function u ∈ C[∞]_c(ℝⁿ) and fix some unit vector e. Let u_s(x) = u(x + se) = τ_{se}u(x).
- Then $||u_s||_{W^{1,p}} = ||u||_{W^{1,p}}$, $||u_s||_{L^{p^*}} = ||u||_{L^{p^*}}$. Also $Supp(u_s) = \{x - se : x \in Supp(u)\}$ and so $u_s \to 0$ a.e. on \mathbb{R}^n as $s \to \infty$.
- By the same reasoning, there is no sequence $s_k \to \infty$ such that u_{s_k} is convergent in L^{p^*} .

Pre-compactness criterion in $L^p(\Omega)$

Let us now do some preparation for the proof of Rellich-Kondrachov's theorem. Recall:

Theorem (Kolmogorov-Riesz-Fréchet's theorem)

Let $1 \leq p < \infty$ and Ω be an open bounded subset of \mathbb{R}^n . Suppose that a sequence (f_i) of $L^p(\Omega)$ satisfies

(Boundedness) $\sup_i \|f_i\|_{L^p(\Omega)} < \infty$,

(Equi-continuity in L^p) For every $\varepsilon > 0$, there exists $\delta > 0$ such that $\|\tau_y \tilde{f}_i - \tilde{f}_i\|_{L^p(\Omega)} < \varepsilon$ for all $|y| < \delta$, where \tilde{f}_i is the extension by zero of f_i to all of \mathbb{R}^n .

Then, there exists a subsequence (f_{i_i}) which converges in $L^p(\Omega)$.

In the case we are considering, boundedness follows from the embedding theorems. Let us now consider equi-continuity.

Continuity of translation operators in $W^{1,p}$

Lemma

Let $1 \le p < \infty$. For every $v \in W^{1,p}(\mathbb{R}^n)$ and $y \in \mathbb{R}^n$, it holds that

$$|\tau_{\mathbf{y}}\mathbf{v}-\mathbf{v}||_{L^{p}(\mathbb{R}^{n})}\leq |\mathbf{y}|||\nabla\mathbf{v}||_{L^{p}(\mathbb{R}^{n})}.$$

Proof

- Using the density of $C^{\infty}(\mathbb{R}^n) \cap W^{1,p}(\mathbb{R}^n)$ in $W^{1,p}(\mathbb{R}^n)$ for $p < \infty$, it suffices to consider $v \in C^{\infty}(\mathbb{R}^n) \cap W^{1,p}(\mathbb{R}^n)$.
- By the mean value theorem and Hölder's inequality, we have

$$\begin{aligned} |v(y+x)-v(x)| &\leq \int_0^1 \left|\frac{d}{dt}v(ty+x)\right| dt = \int_0^1 |y_i\partial_i v(ty+x)| dt \\ &\leq |y| \Big\{\int_0^1 |\nabla v(ty+x)|^p dt\Big\}^{1/p}. \end{aligned}$$

Continuity of translation operators in $W^{1,p}$

Proof

•
$$|v(y+x)-v(x)|^{p} \leq |y|^{p} \int_{0}^{1} |\nabla v(ty+x)|^{p} dt.$$

• Integrating over x gives

$$\begin{split} \|\tau_{y}v - v\|_{L^{p}}^{p} &= \int_{\mathbb{R}^{n}} |v(y + x) - v(x)|^{p} dx \\ &\leq |y|^{p} \int_{\mathbb{R}^{n}} \int_{0}^{1} |\nabla v(ty + x)|^{p} dt dx \\ &= |y|^{p} \int_{0}^{1} \int_{\mathbb{R}^{n}} |\nabla v(ty + x)|^{p} dx dt \\ &= |y|^{p} \|\nabla v\|_{L^{p}(\mathbb{R}^{n})}^{p}. \end{split}$$

So we have $\|\tau_y v - v\|_{L^p} \leq |y| \|\nabla v\|_{L^p(\mathbb{R}^n)}$ as wanted.

Continuity of translation operators in $W^{1,p}$

Remark

We remarked in Lecture 3 that the map $h \mapsto \tau_h$ is <u>not</u> a continuous map from \mathbb{R}^n into $\mathscr{L}(L^p(\mathbb{R}^n), L^p(\mathbb{R}^n))$. The above lemma implies that $h \mapsto \tau_h$ is a continuous map from \mathbb{R}^n into $\mathscr{L}(W^{1,p}(\mathbb{R}^n), L^p(\mathbb{R}^n))$.

Proof

• Let $X = \mathscr{L}(W^{1,p}(\mathbb{R}^n), L^p(\mathbb{R}^n))$. The statement amounts to $\tau_y \to Id$ in X as $y \to 0$. So we need to show that

$$0 = \lim_{y \to 0} \|\tau_y - Id\|_X = \lim_{y \to 0} \sup_{u \in W^{1,p}(\mathbb{R}^n) : \|u\|_{W^{1,p}} \le 1} \|\tau_y u - u\|_{L^p}.$$

• By the lemma, we have $\|\tau_y u - u\|_{L^p} \le |y| \|\nabla u\|_{L^p} \le |y|$ whenever $\|u\|_{W^{1,p}} \le 1$. So the point above is clear.

Characterisation of $W^{1,p}$ using translation operators

Theorem

Assume that $1 and <math>v \in L^{p}(\mathbb{R}^{n})$. Suppose that there exist small r > 0 and large C such that

$$\| au_y \mathbf{v} - \mathbf{v}\|_{L^p(\mathbb{R}^n)} \leq C|y|$$
 for all $|y| \leq r$.

Then

$$v \in W^{1,p}(\mathbb{R}^n)$$
 and $\|\nabla v\|_{L^p(\mathbb{R}^n)} \leq C$.

Sketch of proof

• Fix a direction e_i . By hypothesis $q_t := \frac{1}{t}[\tau_{te_i}v - v]$ is bounded in L^p for $|t| \le r$. By the weak sequential compactness property in L^p , we have along a sequence $t_k \to 0$ that q_{t_k} converges weakly in L^p to some $w_i \in L^p(\mathbb{R}^n)$.

Characterisation of $W^{1,p}$ using translation operators

Sketch of proof

•
$$q_{t_k} = \frac{1}{|t_k|} [\tau_{t_k e_i} v - v] \rightharpoonup w_i$$
 in L^p .

• The key point is the following identity

$$\int_{\mathbb{R}^n} [\tau_{t_k e_i} v - v] \varphi \, dx = - \int_{\mathbb{R}^n} v [\varphi - \tau_{-t_k e_i} \varphi] \, dx.$$

• Now divide both side by t_k and sending $k \to \infty$, we then get

$$\int_{\mathbb{R}^n} w_i \varphi \, dx = - \int_{\mathbb{R}^n} v \partial_i \varphi \, dx \text{ for all } \varphi \in C^\infty_c(\mathbb{R}^n).$$

This proves $\partial_i v = w_i \in L^p(\mathbb{R}^n)$. The conclusion follows.

Theorem (Rellich-Kondrachov's compactness theorem)

Let Ω be a bounded Lipschitz domain and $1 \leq p \leq \infty$. Suppose $1 \leq q < p^*$ when $p < n, 1 \leq q < \infty$ when p = n, and $1 \leq q \leq \infty$ when p > n. Then the embedding $W^{1,p}(\Omega) \hookrightarrow L^q(\Omega)$ is compact, i.e. every bounded sequence in $W^{1,p}(\Omega)$ contains a subsequence which converges in $L^q(\Omega)$.

We reiterate that, when p < n, the endpoint embedding $W^{1,p}(\Omega) \hookrightarrow L^{p^*}(\Omega)$ is not compact. When p > n, we have $W^{1,p}(\Omega) \hookrightarrow C^{0,1-\frac{n}{p}}(\Omega)$, so the above is a consequence of Ascoli-Arzelà's theorem. (Check this!) Proof of the case $q = p \leq n$.

- Suppose that (u_m) is bounded in W^{1,p}(Ω). We need to construct a subsequence (u_{mi}) which converges in L^p(Ω).
- As (u_m) is bounded in L^p(Ω), we would be done by Kolmogorov-Riesz-Fréchet's theorem if (u_m) is equi-continuous in L^p sense.
- To make use of the continuity property of translation operators in W^{1,p}(ℝⁿ), we let E : W^{1,p}(Ω) → W^{1,p}(ℝⁿ) be a bounded linear extension operator. Then the family (Eu_m) is bounded in L^p(ℝⁿ) and is equi-continuous in L^p(ℝⁿ) sense. But as ℝⁿ is unbounded, we cannot apply Kolmogorov-Riesz-Fréchet's theorem to this family.

Rellich-Kondrachov's theorem

Proof of the case $q = p \leq n$.

 We proceed as follows: Take a large ball B_R containing Ω and select a cut-off function ζ ∈ C[∞]_c(B_R) such that ζ ≡ 1 in Ω. Let

$$v_m = \zeta E u_m.$$

Clearly $v_m = u_m$ a.e. in Ω , $Supp(v_m) \subset B_R$ and (v_m) is bounded in $W^{1,p}(\mathbb{R}^n)$.

- We aim to apply Kolmogorov-Riesz-Fréchet's theorem to (v_m|_{B_R}).
 - * It is clear that $(v_m|_{B_R})$ is bounded in $L^p(B_R)$.
 - \star Also, by the continuity of translation operators in $W^{1,p}$, we have

$$\|\tau_{y}v_{m}-v_{m}\|_{L^{p}(\mathbb{R}^{n})}\leq |y|\|Dv_{m}\|_{L^{p}(\mathbb{R}^{n})}\leq |y|\|v_{m}\|_{W^{1,p}(\mathbb{R}^{n})}.$$

Therefore, for every $\varepsilon > 0$, there exists $\delta > 0$ such that $\|\tau_y v_m - v_m\|_{L^p(B_R)} \le \varepsilon$ for all m and all $|y| < \delta$, i.e. $(v_m|_{B_R})$ is equi-continuous in L^p sense. We're done.

Rellich-Kondrachov's theorem

Proof of the general case for $p \leq n$.

- Suppose that $1 \leq q < p^*$ if p < n, $1 \leq q < \infty$ if p = n. By the embedding theorems, we know that there exists $\hat{q} > q$ such that $W^{1,p}(\Omega) \hookrightarrow L^{\hat{q}}(\Omega)$.
- Suppose that (u_m) is bounded in W^{1,p}(Ω). We need to construct a subsequence (u_{m_i}) which converges in L^q(Ω).
- We knew from the previous case that there is a subsequence (u_{m_j}) which converges in L^p(Ω) to some u ∈ L^p(Ω). Passing to a subsequence if necessary, we may also assume that (u_{m_j}) converges to u a.e. in Ω.
- To conclude, we show that $u \in L^q(\Omega)$ and (u_{m_j}) converges in $L^q(\Omega)$ to u.
- If q ≤ p, the above follows from Hölder's inequality. We assume henceforth that q > p.

Proof of the general case for $p \leq n$.

- We now show that $u \in L^q(\Omega)$. In fact, we show that $u \in L^{\hat{q}}(\Omega)$.
 - * By the embedding $W^{1,p}(\Omega) \hookrightarrow L^{\hat{q}}(\Omega)$, we have that u_m is bounded in $L^{\hat{q}}(\Omega)$.
 - ★ By Fatou's lemma, we have

$$\int_{\Omega} |u|^{\hat{q}} dx \leq \liminf_{j \to \infty} \int_{\Omega} |u_{m_j}|^{\hat{q}} dx < \infty.$$

Hence $u \in L^{\hat{q}}(\Omega)$.

Rellich-Kondrachov's theorem

Proof of the general case for $p \leq n$.

- Finally, we show that $u_{m_i} \to u$ in $L^q(\Omega)$.
 - We observe that u_{mj} − u converges to 0 in L^p(Ω) and is bounded in L^{q̂}(Ω) with p < q < q̂.
 - Now we write, for $heta\in(0,1)$ to be fixed

$$||u_{m_j} - u||_{L^q}^q = \int_{\Omega} |u_{m_j} - u|^q \, dx = \int_{\Omega} |u_{m_j} - u|^{q\theta} |u_{m_j} - u|^{q(1-\theta)} \, dx$$

and apply Hölder's inequality with some pair of conjugate exponents r and r' to be fixed:

$$\|u_{m_j} - u\|_{L^q}^q \le \Big\{\int_{\Omega} |u_{m_j} - u|^{q\theta r} dx\Big\}^{1/r} \Big\{\int_{\Omega} |u_{m_j} - u|^{q(1-\theta)r'} dx\Big\}^{1/r'}$$

Rellich-Kondrachov's theorem

Proof of the general case for $p \leq n$.

- ...we are showing that $u_{m_i} \to u$ in $L^q(\Omega)$.
 - $u_{m_j} u \rightarrow 0$ in $L^p(\Omega)$ and $u_{m_j} u$ is bounded in $L^{\hat{q}}(\Omega)$ with $p < q < \hat{q}$.
 - $||u_{m_j} u||_{L^q} \le ||u_{m_j} u||^{\theta}_{L^{q(r)}} ||u_{m_j} u||^{1-\theta}_{L^{q(1-\theta)r'}}.$
 - Now, if we can chose $\theta \in (0,1)$ and r > 1 such that $q\theta r = p$ and $q(1-\theta)r' = \hat{q}$, then the first factor on the right hand side goes to zero and the second factor remains bounded, and so $u_{m_j} \to u$ in $L^q(\Omega)$ as wanted.
 - To solve for θ and r, we first eliminate r to obtain

$$1 = \frac{1}{r} + \frac{1}{r'} = \theta \frac{p}{q} + (1 - \theta) \frac{\hat{q}}{q}.$$

As $\frac{p}{q} < 1 < \frac{\hat{q}}{q}$, we can certainly select $\theta \in (0, 1)$ satisfying the above. The exponent r is given by $r = \frac{q}{p\theta}$. This concludes the proof.

Theorem (Poincaré's inequality)

Suppose that $1 \le p \le \infty$ and Ω is a bounded Lipschitz domain. There exists a constant $C_{n,p,\Omega} > 0$ such that

 $\|u-\bar{u}_{\Omega}\|_{L^{p}(\Omega)} \leq C_{n,p,\Omega} \|\nabla u\|_{L^{p}(\Omega)}$ for all $u \in W^{1,p}(\Omega)$,

where \bar{u}_{Ω} is the average of u in Ω :

$$\bar{u}_{\Omega}:=\frac{1}{|\Omega|}\int_{\Omega}u(x)\,dx.$$

When $p = \infty$, the theorem is a consequence of the fact that $W^{1,\infty}(\Omega) = C^{0,1}(\Omega)$. (Check this!)

Poincaré's inequality

Proof for $p < \infty$.

• We argue by contradiction. Suppose the conclusion is not true. Then there exists a sequence $(u_m) \subset W^{1,p}(\Omega)$ such that

$$\|u_m-\bar{u}_m\|_{L^p}>m\|\nabla u_m\|_{L^p},$$

where \bar{u}_m is the average of u_m in Ω .

- Replacing u_m by $u_m \bar{u}_m$, we may assume that u_m has zero average, so that $||u_m||_{L^p} > m||\nabla u_m||_{L^p}$.
- Replacing u_m by $\frac{1}{\|u_m\|_{L^p}}u_m$, we may assume that $\|u_m\|_{L^p} = 1$.
- The above implies that $\|\nabla u_m\|_{L^p} \leq \frac{1}{m}$ and so (u_m) is bounded in $W^{1,p}(\Omega)$.
- By Rellich-Kondrachov's compactness theorem, we can find a subsequence (u_{m_j}) which converges in L^p(Ω), say to u.

Poincaré's inequality

Proof for $p < \infty$.

• By the strong convergence of u_{m_i} to u, we have that

$$||u||_{L^p} = \lim_{j\to\infty} ||u_{m_j}||_{L^p} = 1,$$

and

$$\int_{\Omega} u \, dx = \lim_{j \to \infty} \int_{\Omega} u_{m_j} \, dx = 0.$$

• On the other hand, as $\|\nabla u_m\|_{L^p} < \frac{1}{m}$, we have for every $\varphi \in C_c^{\infty}(\Omega)$ that

$$\int_{\Omega} u \partial_i \varphi \, dx = \lim_{j \to \infty} \int_{\Omega} u_{m_j} \partial_i \varphi \, dx = -\lim_{j \to \infty} \int_{\Omega} \partial_i u_{m_j} \varphi \, dx = 0.$$

Hence *u* is weakly differentiable and $\nabla u = 0$ in Ω . In Sheet 2, we show that this implies *u* is constant.

As u has zero average, we must then have u = 0 in Ω, which contradicts the assertion that ||u||_{L^p} = 1.

Local differentiability of Sobolev functions

Theorem

Suppose Ω is a domain in \mathbb{R}^n and $n . Assume that <math>u \in W^{1,p}(\Omega) \cap C(\Omega)$. Then u is differentiable a.e. in Ω and its derivatives equal its weak derivatives a.e. in Ω .

Proof

- We will only consider the case $p < \infty$. The case $p = \infty$ is a consequence.
- By Lebesgue's differentiation theorem, there is a set $Z\subset \Omega$ of measure zero such that

$$\lim_{r\to 0}\frac{1}{r^n}\int_{B_r(x)}|\nabla u(y)-\nabla u(x)|^p\,dy=0\text{ for all }x\in\Omega\setminus Z.$$

We aim to show that u is differentiable at those $x \in \Omega \setminus Z$.

Local differentiability of Sobolev functions

Proof

• Fix some $x \in \Omega \setminus Z$ and consider the function

$$v(y) = u(y) - u(x) - \nabla u(x) \cdot (y - x)$$
 for $y \in \Omega$.

Then $v \in W^{1,p}(\Omega) \cap C(\Omega)$, v(x) = 0 and $\nabla v(y) = \nabla u(y) - \nabla u(x)$.

• By Morrey's inequality, we have for every ball $B_r(x) \in \Omega$ and $y \in \partial B_r(x)$ that

$$\begin{split} |v(y)| &= |v(y) - v(x)| \le [v]_{C^{0,1-\frac{n}{p}}(B_r(x))} |x - y|^{1-\frac{n}{p}} \\ &\le Cr^{1-\frac{n}{p}} \|\nabla v\|_{L^p(B_r(x))} \\ &= Cr^{1-\frac{n}{p}} \Big\{ \int_{B_r(x)} |\nabla u(y) - \nabla u(x)|^p \, dx \Big\}^{1/p}. \end{split}$$

Local differentiability of Sobolev functions

Proof

• So we have
*
$$\lim_{r \to 0} \frac{1}{r^n} \int_{B_r(x)} |\nabla u(y) - \nabla u(x)|^p \, dy = 0$$
, and
* $|v(y)| \leq Cr^{1-\frac{n}{p}} \Big\{ \int_{B_r(x)} |\nabla u(y) - \nabla u(x)|^p \, dy \Big\}^{1/p}$ whenever
 $|y - x| = r.$

Putting the two together, we see that

$$\lim_{y \to x} \frac{1}{|y-x|} |u(y) - u(x) - \nabla u(x) \cdot (y-x)| = \lim_{y \to x} \frac{1}{|y-x|} |v(y)| = 0.$$

This means that u is differentiable at x and its classical gradient at x is the same at its weak gradient at x.

L^p differentiability of Sobolev functions

Theorem

Suppose Ω is a domain in \mathbb{R}^n and $1 \leq p < n$. Assume that $u \in W^{1,p}(\Omega)$. Then for almost all $x \in \Omega$ it holds that

$$\lim_{r\to 0}\frac{1}{r^{1+\frac{n}{p}}}\Big\{\int_{B_r(x)}|u(y)-u(x)-\nabla u(x)\cdot (y-x)|^p\,dy\Big\}^{1/p}=0.$$

Discussion of proof

 As in the case p > n, we start by picking a set Z ⊂ Ω of measure zero such that

$$\lim_{r\to 0}\frac{1}{r^n}\int_{B_r(x)}|\nabla u(y)-\nabla u(x)|^p\,dy=0\text{ for all }x\in\Omega\setminus Z.$$

L^p differentiability of Sobolev functions

Discussion of proof

• We consider again the function

$$v(y) = u(y) - u(x) - \nabla u(x) \cdot (y - x)$$
 for $y \in \Omega$,

so that $v \in W^{1,p}(\Omega)$ and $\nabla v(y) = \nabla u(y) - \nabla u(x)$. Note that however the meaning of v(x) = 0 is rather obscure since v does not have enough regularity.

• If we have the Poincaré-type inequality

$$\|v\|_{L^{p}(B_{r}(x))} \leq Cr \|\nabla v\|_{L^{p}(B_{r}(x))}, \qquad (*)$$

then, by recalling that $r^{-n} \|\nabla v\|_{L^p(B_r(x))}^p \to 0$ as $r \to 0$, we can obtain the conclusion as in the case p > n considered previously. However, (*) is general not valid for arbitrary functions $v \in W^{1,p}$. Discussion of proof

- The proof is actually much more involved and goes through approximation of *u* by smooth functions.
- It should be clear that the conclusion hold when $u \in C^1(\Omega)$ as

$$u(y) - u(x) - \nabla u(x) \cdot (y - x) = o(|y - x|)$$
 as $y \to x$.