C4.3 Functional Analytic Methods for PDEs Lecture 10

Luc Nguyen
luc.nguyen@maths

University of Oxford

MT 2021

In the last lecture

- Morrey's inequality.
- Friedrichs' inequality.

This lecture

- Friedrichs' inequality.
- Rellich-Kondrachov's compactness theorem.
- Poincaré's inequality.
- (Local behavior of Sobolev functions.)

Friedrichs' inequality

Theorem (Friedrichs' inequality)

Assume that Ω is a bounded open set and $1 \leq p<\infty$. Then, there exists $C_{p, \Omega}$ such that

$$
\|u\|_{L^{p}(\Omega)} \leq C_{p, \Omega}\|\nabla u\|_{L^{p}(\Omega)} \text { for all } u \in W_{0}^{1, p}(\Omega) .
$$

Friedrichs-type inequality

Theorem (Friedrichs-type inequality)

Assume that Ω is a bounded open set and $1 \leq p<\infty$. Suppose that $1 \leq q \leq p^{*}$ if $p<n, 1 \leq q<\infty$ if $p=n$, and $1 \leq q \leq \infty$ if $p>n$. Then there exists $C_{n, p, q, \Omega}$ such that

$$
\|u\|_{L^{q}(\Omega)} \leq C_{n, p, q, \Omega}\|\nabla u\|_{L^{p}(\Omega)} \text { for all } u \in W_{0}^{1, p}(\Omega) .
$$

Proof

- Extend u by zero to \mathbb{R}^{n}.
- If $p<n$, we have by Gagliardo-Nirenberg-Sobolev's inequality, that

$$
\|u\|_{L^{p^{*}}(\Omega)}=\|u\|_{L^{p^{*}}\left(\mathbb{R}^{n}\right)} \leq C\|\nabla u\|_{L^{p}\left(\mathbb{R}^{n}\right)}=C\|\nabla u\|_{L^{p}(\Omega)} .
$$

As Ω has finite measure, $\|u\|_{L^{q}(\Omega)} \leq C\|u\|_{L^{p^{*}}(\Omega)}$, and so we're done in this case.

Friedrichs-type inequality

Proof

- Note that, as Ω has finite measure, $W^{1, n}(\Omega) \hookrightarrow W^{1, \hat{p}}(\Omega)$ for any $\hat{p}<p$. The case $p=n$ thus follows from the previous case.
- When $p>n$, we have by Morrey's inequality that

$$
\|u\|_{L^{\infty}(\Omega)}=\|u\|_{L^{\infty}\left(\mathbb{R}^{n}\right)} \leq C\|u\|_{W^{1, p}\left(\mathbb{R}^{n}\right)}=C\|u\|_{W^{1, p}(\Omega)} .
$$

By Friedrichs' inequality, we have $\|u\|_{W^{1, p}(\Omega)} \leq C\|\nabla u\|_{L^{p}(\Omega)}$.
Also, as Ω has finite measure, $\|u\|_{L^{q}(\Omega)} \leq C\|u\|_{L^{\infty}(\Omega)}$.
Putting these together we're also done in this case.

Rellich-Kondrachov's theorem

Theorem (Rellich-Kondrachov's compactness theorem)

Let Ω be a bounded Lipschitz domain and $1 \leq p \leq \infty$. Suppose $1 \leq q<p^{*}$ when $p<n, 1 \leq q<\infty$ when $p=n$, and $1 \leq q \leq \infty$ when $p>n$. Then the embedding $W^{1, p}(\Omega) \hookrightarrow L^{q}(\Omega)$ is compact, i.e. every bounded sequence in $W^{1, p}(\Omega)$ contains a subsequence which converges in $L^{q}(\Omega)$.

Critical embedding is not compact

Remark

For $1 \leq p<n$, the embedding $W^{1, p}(\Omega) \hookrightarrow L^{p^{*}}(\Omega)$ is not compact.
Example by 'concentration'

- This example is by scaling. It is related to the argument in Lecture 7 to inspect for which p and q the space $W^{1, p}\left(\mathbb{R}^{n}\right)$ is embedded $L^{q}\left(\mathbb{R}^{n}\right)$.
- We may assume that the origin lies inside Ω and $B_{r_{0}} \subset \Omega$. Take an arbitrary non-zero function $u \in C_{c}^{\infty}\left(\mathbb{R}^{n}\right)$ with $\operatorname{Supp}(u) \subset B_{r_{0}}$. We define, for $\lambda>0, u_{\lambda}(x)=u(\lambda x)$.
- We knew that

$$
\left\|u_{\lambda}\right\|_{L^{q}}=\lambda^{-n / q}\|u\|_{L^{q}} \text { and }\left\|\nabla u_{\lambda}\right\|_{L^{p}}=\lambda^{1-n / p}\|\nabla u\|_{L^{p}} .
$$

Critical embedding is not compact

Example by 'concentration'

- Hence, if we let $\hat{u}_{\lambda}=\lambda^{-1+n / p} u_{\lambda}$, then

$$
\begin{aligned}
\left\|\hat{u}_{\lambda}\right\|_{L^{p}} & =\lambda^{-1}\|u\|_{L^{p}}, \\
\left\|\hat{u}_{\lambda}\right\|_{L^{p^{*}}} & =\|u\|_{L^{p^{*}}} \\
\left\|\nabla \hat{u}_{\lambda}\right\|_{L^{p}} & =\|\nabla u\|_{L^{p}} .
\end{aligned}
$$

In particular, as $\lambda \rightarrow \infty$,

$$
\left\|\hat{u}_{\lambda}\right\|_{W^{1, p}} \leq\|u\|_{W^{1, p}} \text { and }\left\|\hat{u}_{\lambda}\right\|_{L^{p^{*}}}=\|u\|_{L^{p^{*}}}>0
$$

Critical embedding is not compact

Example by 'concentration'

- Now if the embedding $W^{1, p}(\Omega) \hookrightarrow L^{p^{*}}(\Omega)$ was compact, then as (\hat{u}_{λ}) is bounded in $W^{1, p}$, we could select a sequence $\lambda_{k} \rightarrow \infty$ such that $\left(\hat{u}_{\lambda_{k}}\right)$ converges in $L^{p^{*}}(\Omega)$ to some limit $u_{*} \in L^{p^{*}}(\Omega)$.
- This would imply that

$$
\left\|u_{*}\right\|_{L^{p^{*}}}=\lim _{k \rightarrow \infty}\left\|\hat{u}_{\lambda_{k}}\right\|_{L^{p^{*}}}=\|u\|_{L^{p^{*}}}>0
$$

- On the other hand, $\operatorname{Supp}\left(\hat{u}_{\lambda}\right) \subset B_{r_{0} / \lambda}$ and so $\hat{u}_{\lambda} \rightarrow 0$ a.e. in Ω as $\lambda \rightarrow \infty$. This would give that $u_{*}=0$ a.e. which contradicts the above.

Critical embedding is not compact

Remark

For $1 \leq p<n$, the embedding $W^{1, p}\left(\mathbb{R}^{n}\right) \hookrightarrow L^{p^{*}}\left(\mathbb{R}^{n}\right)$ is not compact.
Example by 'translations'

- Take again an arbitrary non-zero function $u \in C_{c}^{\infty}\left(\mathbb{R}^{n}\right)$ and fix some unit vector e. Let $u_{s}(x)=u(x+s e)=\tau_{s e} u(x)$.
- Then $\left\|u_{s}\right\|_{W^{1, p}}=\|u\|_{W^{1, p},}\left\|u_{s}\right\|_{L^{p^{*}}}=\|u\|_{L^{p^{*}}}$. Also $\operatorname{Supp}\left(u_{s}\right)=\{x-$ se $: x \in \operatorname{Supp}(u)\}$ and so $u_{s} \rightarrow 0$ a.e. on \mathbb{R}^{n} as $s \rightarrow \infty$.
- By the same reasoning, there is no sequence $s_{k} \rightarrow \infty$ such that $u_{s_{k}}$ is convergent in $L^{p^{*}}$.

Pre-compactness criterion in $L^{p}(\Omega)$

Let us now do some preparation for the proof of Rellich-Kondrachov's theorem. Recall:

Theorem (Kolmogorov-Riesz-Fréchet's theorem)

Let $1 \leq p<\infty$ and Ω be an open bounded subset of \mathbb{R}^{n}. Suppose that a sequence $\left(f_{i}\right)$ of $L^{p}(\Omega)$ satisfies
(1) (Boundedness) sup $i\left\|f_{i}\right\|_{L^{p}(\Omega)}<\infty$,
(2) (Equi-continuity in L^{p}) For every $\varepsilon>0$, there exists $\delta>0$ such that $\left\|\tau_{y} \tilde{f}_{i}-\tilde{f}_{i}\right\|_{L^{p}(\Omega)}<\varepsilon$ for all $|y|<\delta$, where \tilde{f}_{i} is the extension by zero of f_{i} to all of \mathbb{R}^{n}.
Then, there exists a subsequence $\left(f_{i_{j}}\right)$ which converges in $L^{p}(\Omega)$.
In the case we are considering, boundedness follows from the embedding theorems. Let us now consider equi-continuity.

Continuity of translation operators in $W^{1, p}$

Lemma

Let $1 \leq p<\infty$. For every $v \in W^{1, p}\left(\mathbb{R}^{n}\right)$ and $y \in \mathbb{R}^{n}$, it holds that

$$
\left\|\tau_{y} v-v\right\|_{L^{p}\left(\mathbb{R}^{n}\right)} \leq|y|\|\nabla v\|_{L^{p}\left(\mathbb{R}^{n}\right)} .
$$

Proof

- Using the density of $C^{\infty}\left(\mathbb{R}^{n}\right) \cap W^{1, p}\left(\mathbb{R}^{n}\right)$ in $W^{1, p}\left(\mathbb{R}^{n}\right)$ for $p<\infty$, it suffices to consider $v \in C^{\infty}\left(\mathbb{R}^{n}\right) \cap W^{1, p}\left(\mathbb{R}^{n}\right)$.
- By the mean value theorem and Hölder's inequality, we have

$$
\begin{aligned}
|v(y+x)-v(x)| & \leq \int_{0}^{1}\left|\frac{d}{d t} v(t y+x)\right| d t=\int_{0}^{1}\left|y_{i} \partial_{i} v(t y+x)\right| d t \\
& \leq|y|\left\{\int_{0}^{1}|\nabla v(t y+x)|^{p} d t\right\}^{1 / p} .
\end{aligned}
$$

Continuity of translation operators in $W^{1, p}$

Proof

- $|v(y+x)-v(x)|^{p} \leq|y|^{p} \int_{0}^{1}|\nabla v(t y+x)|^{p} d t$.
- Integrating over x gives

$$
\begin{aligned}
\left\|\tau_{y} v-v\right\|_{L^{p}}^{p} & =\int_{\mathbb{R}^{n}}|v(y+x)-v(x)|^{p} d x \\
& \leq|y|^{p} \int_{\mathbb{R}^{n}} \int_{0}^{1}|\nabla v(t y+x)|^{p} d t d x \\
& =|y|^{p} \int_{0}^{1} \int_{\mathbb{R}^{n}}|\nabla v(t y+x)|^{p} d x d t \\
& =|y|^{p}\|\nabla v\|_{L^{p}\left(\mathbb{R}^{n}\right)}^{p}
\end{aligned}
$$

So we have $\left\|\tau_{y} v-v\right\|_{L^{p}} \leq|y|\|\nabla v\|_{L^{p}\left(\mathbb{R}^{n}\right)}$ as wanted.

Continuity of translation operators in $W^{1, p}$

Remark

We remarked in Lecture 3 that the map $h \mapsto \tau_{h}$ is not a continuous map from \mathbb{R}^{n} into $\mathscr{L}\left(L^{p}\left(\mathbb{R}^{n}\right), L^{p}\left(\mathbb{R}^{n}\right)\right)$.
The above lemma implies that $h \mapsto \tau_{h}$ is a continuous map from \mathbb{R}^{n} into $\mathscr{L}\left(W^{1, p}\left(\mathbb{R}^{n}\right), L^{p}\left(\mathbb{R}^{n}\right)\right)$.

Proof

- Let $X=\mathscr{L}\left(W^{1, p}\left(\mathbb{R}^{n}\right), L^{p}\left(\mathbb{R}^{n}\right)\right)$. The statement amounts to $\tau_{y} \rightarrow I d$ in X as $y \rightarrow 0$. So we need to show that

$$
0=\lim _{y \rightarrow 0}\left\|\tau_{y}-l d\right\|_{x}=\lim _{y \rightarrow 0} \sup _{u \in W^{1, p}\left(\mathbb{R}^{n}\right):\|u\|_{W^{1, p}} \leq 1}\left\|\tau_{y} u-u\right\|_{L^{p}}
$$

- By the lemma, we have $\left\|\tau_{y} u-u\right\|_{L^{p}} \leq|y|\|\nabla u\|_{L^{p}} \leq|y|$ whenever $\|u\|_{W^{1, p}} \leq 1$. So the point above is clear.

Characterisation of $W^{1, p}$ using translation operators

Theorem

Assume that $1<p<\infty$ and $v \in L^{p}\left(\mathbb{R}^{n}\right)$. Suppose that there exist small $r>0$ and large C such that

$$
\left\|\tau_{y} v-v\right\|_{L^{p}\left(\mathbb{R}^{n}\right)} \leq C|y| \text { for all }|y| \leq r
$$

Then

$$
v \in W^{1, p}\left(\mathbb{R}^{n}\right) \text { and }\|\nabla v\|_{L^{p}\left(\mathbb{R}^{n}\right)} \leq C .
$$

Sketch of proof

- Fix a direction e_{i}. By hypothesis $q_{t}:=\frac{1}{t}\left[\tau_{t e_{i}} v-v\right]$ is bounded in L^{p} for $|t| \leq r$. By the weak sequential compactness property in L^{p}, we have along a sequence $t_{k} \rightarrow 0$ that $q_{t_{k}}$ converges weakly in L^{p} to some $w_{i} \in L^{p}\left(\mathbb{R}^{n}\right)$.

Characterisation of $W^{1, p}$ using translation operators

Sketch of proof

- $q_{t_{k}}=\frac{1}{\left|t_{k}\right|}\left[\tau_{t_{k} e_{i}} v-v\right] \rightharpoonup w_{i}$ in L^{p}.
- The key point is the following identity

$$
\int_{\mathbb{R}^{n}}\left[\tau_{t_{k} e_{i}} v-v\right] \varphi d x=-\int_{\mathbb{R}^{n}} v\left[\varphi-\tau_{-t_{k} e_{i}} \varphi\right] d x
$$

- Now divide both side by t_{k} and sending $k \rightarrow \infty$, we then get

$$
\int_{\mathbb{R}^{n}} w_{i} \varphi d x=-\int_{\mathbb{R}^{n}} v \partial_{i} \varphi d x \text { for all } \varphi \in C_{c}^{\infty}\left(\mathbb{R}^{n}\right)
$$

This proves $\partial_{i} v=w_{i} \in L^{p}\left(\mathbb{R}^{n}\right)$. The conclusion follows.

Rellich-Kondrachov's theorem

Theorem (Rellich-Kondrachov's compactness theorem)

Let Ω be a bounded Lipschitz domain and $1 \leq p \leq \infty$. Suppose $1 \leq q<p^{*}$ when $p<n, 1 \leq q<\infty$ when $p=n$, and $1 \leq q \leq \infty$ when $p>n$. Then the embedding $W^{1, p}(\Omega) \hookrightarrow L^{q}(\Omega)$ is compact, i.e. every bounded sequence in $W^{1, p}(\Omega)$ contains a subsequence which converges in $L^{q}(\Omega)$.

We reiterate that, when $p<n$, the endpoint embedding $W^{1, p}(\Omega) \hookrightarrow L^{p^{*}}(\Omega)$ is not compact.
When $p>n$, we have $W^{1, p}(\Omega) \hookrightarrow C^{0,1-\frac{n}{p}}(\Omega)$, so the above is a consequence of Ascoli-Arzelà's theorem. (Check this!)

Rellich-Kondrachov's theorem

Proof of the case $q=p \leq n$.

- Suppose that $\left(u_{m}\right)$ is bounded in $W^{1, p}(\Omega)$. We need to construct a subsequence $\left(u_{m_{j}}\right)$ which converges in $L^{p}(\Omega)$.
- As $\left(u_{m}\right)$ is bounded in $L^{p}(\Omega)$, we would be done by Kolmogorov-Riesz-Fréchet's theorem if $\left(u_{m}\right)$ is equi-continuous in L^{p} sense.
- To make use of the continuity property of translation operators in $W^{1, p}\left(\mathbb{R}^{n}\right)$, we let $E: W^{1, p}(\Omega) \rightarrow W^{1, p}\left(\mathbb{R}^{n}\right)$ be a bounded linear extension operator. Then the family $\left(E u_{m}\right)$ is bounded in $L^{p}\left(\mathbb{R}^{n}\right)$ and is equi-continuous in $L^{p}\left(\mathbb{R}^{n}\right)$ sense. But as \mathbb{R}^{n} is unbounded, we cannot apply Kolmogorov-Riesz-Fréchet's theorem to this family.

Rellich-Kondrachov's theorem

Proof of the case $q=p \leq n$.

- We proceed as follows: Take a large ball B_{R} containing $\bar{\Omega}$ and select a cut-off function $\zeta \in C_{c}^{\infty}\left(B_{R}\right)$ such that $\zeta \equiv 1$ in Ω. Let

$$
v_{m}=\zeta E u_{m}
$$

Clearly $v_{m}=u_{m}$ a.e. in $\Omega, \operatorname{Supp}\left(v_{m}\right) \subset B_{R}$ and $\left(v_{m}\right)$ is bounded in $W^{1, p}\left(\mathbb{R}^{n}\right)$.

- We aim to apply Kolmogorov-Riesz-Fréchet's theorem to $\left(v_{m} \mid B_{R}\right)$.
\star It is clear that $\left(\left.v_{m}\right|_{B_{R}}\right)$ is bounded in $L^{P}\left(B_{R}\right)$.
\star Also, by the continuity of translation operators in $W^{1, p}$, we have

$$
\left\|\tau_{y} v_{m}-v_{m}\right\|_{L^{p}\left(\mathbb{R}^{n}\right)} \leq|y|\left\|D v_{m}\right\|_{L^{p}\left(\mathbb{R}^{n}\right)} \leq|y|\left\|v_{m}\right\|_{W^{1, p}\left(\mathbb{R}^{n}\right)}
$$

Therefore, for every $\varepsilon>0$, there exists $\delta>0$ such that $\left\|\tau_{y} v_{m}-v_{m}\right\|_{L^{p}\left(B_{R}\right)} \leq \varepsilon$ for all m and all $|y|<\delta$, i.e. $\left(\left.v_{m}\right|_{B_{R}}\right)$ is equi-continuous in L^{p} sense. We're done.

Rellich-Kondrachov's theorem

Proof of the general case for $p \leq n$.

- Suppose that $1 \leq q<p^{*}$ if $p<n, 1 \leq q<\infty$ if $p=n$. By the embedding theorems, we know that there exists $\hat{q}>q$ such that $W^{1, p}(\Omega) \hookrightarrow L^{\hat{q}}(\Omega)$.
- Suppose that $\left(u_{m}\right)$ is bounded in $W^{1, p}(\Omega)$. We need to construct a subsequence ($u_{m_{j}}$) which converges in $L^{q}(\Omega)$.
- We knew from the previous case that there is a subsequence $\left(u_{m_{j}}\right)$ which converges in $L^{p}(\Omega)$ to some $u \in L^{p}(\Omega)$. Passing to a subsequence if necessary, we may also assume that ($u_{m_{j}}$) converges to u a.e. in Ω.
- To conclude, we show that $u \in L^{q}(\Omega)$ and $\left(u_{m_{j}}\right)$ converges in $L^{q}(\Omega)$ to u.
- If $q \leq p$, the above follows from Hölder's inequality. We assume henceforth that $q>p$.

Rellich-Kondrachov's theorem

Proof of the general case for $p \leq n$.

- We now show that $u \in L^{q}(\Omega)$. In fact, we show that $u \in L^{\hat{q}}(\Omega)$.
\star By the embedding $W^{1, p}(\Omega) \hookrightarrow L^{\hat{q}}(\Omega)$, we have that u_{m} is bounded in $L^{\hat{q}}(\Omega)$.
* By Fatou's lemma, we have

$$
\int_{\Omega}|u|^{\hat{q}} d x \leq \liminf _{j \rightarrow \infty} \int_{\Omega}\left|u_{m_{j}}\right|^{\hat{q}} d x<\infty
$$

Hence $u \in L^{\hat{q}}(\Omega)$.

Rellich-Kondrachov's theorem

Proof of the general case for $p \leq n$.

- Finally, we show that $u_{m_{j}} \rightarrow u$ in $L^{q}(\Omega)$.
- We observe that $u_{m_{j}}-u$ converges to 0 in $L^{p}(\Omega)$ and is bounded in $L^{\hat{q}}(\Omega)$ with $p<q<\hat{q}$.
- Now we write, for $\theta \in(0,1)$ to be fixed

$$
\left\|u_{m_{j}}-u\right\|_{L^{q}}^{q}=\int_{\Omega}\left|u_{m_{j}}-u\right|^{q} d x=\int_{\Omega}\left|u_{m_{j}}-u\right|^{q \theta}\left|u_{m_{j}}-u\right|^{q(1-\theta)} d x
$$

and apply Hölder's inequality with some pair of conjugate exponents r and r^{\prime} to be fixed:

$$
\left\|u_{m_{j}}-u\right\|_{L^{q}}^{q} \leq\left\{\int_{\Omega}\left|u_{m_{j}}-u\right|^{q \theta r} d x\right\}^{1 / r}\left\{\int_{\Omega}\left|u_{m_{j}}-u\right|^{q(1-\theta) r^{\prime}} d x\right\}^{1 / r^{\prime}}
$$

Rellich-Kondrachov's theorem

Proof of the general case for $p \leq n$.

- ...we are showing that $u_{m_{j}} \rightarrow u$ in $L^{q}(\Omega)$.
- $u_{m_{j}}-u \rightarrow 0$ in $L^{p}(\Omega)$ and $u_{m_{j}}-u$ is bounded in $L^{\hat{q}}(\Omega)$ with $p<q<\hat{q}$.
- $\left\|u_{m_{j}}-u\right\|_{L^{q}} \leq\left\|u_{m_{j}}-u\right\|_{L^{q \theta r}}^{\theta}\left\|u_{m_{j}}-u\right\|_{L^{q(1-\theta) r^{\prime}}}^{1-\theta}$.
- Now, if we can chose $\theta \in(0,1)$ and $r>1$ such that $q \theta r=p$ and $q(1-\theta) r^{\prime}=\hat{q}$, then the first factor on the right hand side goes to zero and the second factor remains bounded, and so $u_{m_{j}} \rightarrow u$ in $L^{q}(\Omega)$ as wanted.
- To solve for θ and r, we first eliminate r to obtain

$$
1=\frac{1}{r}+\frac{1}{r^{\prime}}=\theta \frac{p}{q}+(1-\theta) \frac{\hat{q}}{q}
$$

As $\frac{p}{q}<1<\frac{\hat{q}}{q}$, we can certainly select $\theta \in(0,1)$ satisfying the above. The exponent r is given by $r=\frac{q}{p \theta}$. This concludes the proof.

Poincaré's inequality

Theorem (Poincaré's inequality)

Suppose that $1 \leq p \leq \infty$ and Ω is a bounded Lipschitz domain. There exists a constant $C_{n, p, \Omega}>0$ such that

$$
\left\|u-\bar{u}_{\Omega}\right\|_{L^{p}(\Omega)} \leq C_{n, p, \Omega}\|\nabla u\|_{L^{p}(\Omega)} \text { for all } u \in W^{1, p}(\Omega)
$$

where \bar{u}_{Ω} is the average of u in Ω :

$$
\bar{u}_{\Omega}:=\frac{1}{|\Omega|} \int_{\Omega} u(x) d x
$$

When $p=\infty$, the theorem is a consequence of the fact that $W^{1, \infty}(\Omega)=C^{0,1}(\Omega)$. (Check this!)

Poincaré's inequality

Proof for $p<\infty$.

- We argue by contradiction. Suppose the conclusion is not true. Then there exists a sequence $\left(u_{m}\right) \subset W^{1, p}(\Omega)$ such that

$$
\left\|u_{m}-\bar{u}_{m}\right\|_{L^{p}}>m\left\|\nabla u_{m}\right\|_{L^{p}}
$$

where \bar{u}_{m} is the average of u_{m} in Ω.

- Replacing u_{m} by $u_{m}-\bar{u}_{m}$, we may assume that u_{m} has zero average, so that $\left\|u_{m}\right\|_{L^{p}}>m\left\|\nabla u_{m}\right\|_{L^{p}}$.
- Replacing u_{m} by $\frac{1}{\left\|u_{m}\right\|_{L^{p}}} u_{m}$, we may assume that $\left\|u_{m}\right\|_{L^{p}}=1$.
- The above implies that $\left\|\nabla u_{m}\right\|_{L^{p}} \leq \frac{1}{m}$ and so $\left(u_{m}\right)$ is bounded in $W^{1, p}(\Omega)$.
- By Rellich-Kondrachov's compactness theorem, we can find a subsequence $\left(u_{m_{j}}\right)$ which converges in $L^{p}(\Omega)$, say to u.

Poincaré's inequality

Proof for $p<\infty$.

- By the strong convergence of $u_{m_{j}}$ to u, we have that

$$
\|u\|_{L^{p}}=\lim _{j \rightarrow \infty}\left\|u_{m_{j}}\right\|_{L^{p}}=1
$$

and

$$
\int_{\Omega} u d x=\lim _{j \rightarrow \infty} \int_{\Omega} u_{m_{j}} d x=0
$$

- On the other hand, as $\left\|\nabla u_{m}\right\|_{L^{p}}<\frac{1}{m}$, we have for every $\varphi \in C_{c}^{\infty}(\Omega)$ that

$$
\int_{\Omega} u \partial_{i} \varphi d x=\lim _{j \rightarrow \infty} \int_{\Omega} u_{m_{j}} \partial_{i} \varphi d x=-\lim _{j \rightarrow \infty} \int_{\Omega} \partial_{i} u_{m_{j}} \varphi d x=0
$$

Hence u is weakly differentiable and $\nabla u=0$ in Ω. In Sheet 2, we show that this implies u is constant.

- As u has zero average, we must then have $u=0$ in Ω, which contradicts the assertion that $\|u\|_{L^{p}}=1$.

Local differentiability of Sobolev functions

Theorem

Suppose Ω is a domain in \mathbb{R}^{n} and $n<p \leq \infty$. Assume that $u \in W^{1, p}(\Omega) \cap C(\Omega)$. Then u is differentiable a.e. in Ω and its derivatives equal its weak derivatives a.e. in Ω.

Proof

- We will only consider the case $p<\infty$. The case $p=\infty$ is a consequence.
- By Lebesgue's differentiation theorem, there is a set $Z \subset \Omega$ of measure zero such that

$$
\lim _{r \rightarrow 0} \frac{1}{r^{n}} \int_{B_{r}(x)}|\nabla u(y)-\nabla u(x)|^{p} d y=0 \text { for all } x \in \Omega \backslash Z
$$

We aim to show that u is differentiable at those $x \in \Omega \backslash Z$.

Local differentiability of Sobolev functions

Proof

- Fix some $x \in \Omega \backslash Z$ and consider the function

$$
v(y)=u(y)-u(x)-\nabla u(x) \cdot(y-x) \text { for } y \in \Omega .
$$

Then $v \in W^{1, p}(\Omega) \cap C(\Omega), v(x)=0$ and
$\nabla v(y)=\nabla u(y)-\nabla u(x)$.

- By Morrey's inequality, we have for every ball $B_{r}(x) \in \Omega$ and $y \in \partial B_{r}(x)$ that

$$
\begin{aligned}
|v(y)| & =|v(y)-v(x)| \leq[v]_{C^{0,1-\frac{n}{p}}\left(B_{r}(x)\right)}|x-y|^{1-\frac{n}{p}} \\
& \leq C r^{1-\frac{n}{p}}\|\nabla v\|_{L^{p}\left(B_{r}(x)\right)} \\
& =C r^{1-\frac{n}{p}}\left\{\int_{B_{r}(x)}|\nabla u(y)-\nabla u(x)|^{p} d x\right\}^{1 / p} .
\end{aligned}
$$

Local differentiability of Sobolev functions

Proof

- So we have

$$
\begin{aligned}
& \star \lim _{r \rightarrow 0} \frac{1}{r^{n}} \int_{B_{r}(x)}|\nabla u(y)-\nabla u(x)|^{p} d y=0, \text { and } \\
& \star \\
& \star|v(y)| \leq C r^{1-\frac{n}{p}}\left\{\int_{B_{r}(x)}|\nabla u(y)-\nabla u(x)|^{p} d y\right\}^{1 / p} \text { whenever } \\
& \quad|y-x|=r .
\end{aligned}
$$

Putting the two together, we see that

$$
\lim _{y \rightarrow x} \frac{1}{|y-x|}|u(y)-u(x)-\nabla u(x) \cdot(y-x)|=\lim _{y \rightarrow x} \frac{1}{|y-x|}|v(y)|=0
$$

This means that u is differentiable at x and its classical gradient at x is the same at its weak gradient at x.

L^{p} differentiability of Sobolev functions

Theorem

Suppose Ω is a domain in \mathbb{R}^{n} and $1 \leq p<n$. Assume that $u \in W^{1, p}(\Omega)$. Then for almost all $x \in \Omega$ it holds that

$$
\lim _{r \rightarrow 0} \frac{1}{r^{1+\frac{\pi}{p}}}\left\{\int_{B_{r}(x)}|u(y)-u(x)-\nabla u(x) \cdot(y-x)|^{p} d y\right\}^{1 / p}=0 .
$$

Discussion of proof

- As in the case $p>n$, we start by picking a set $Z \subset \Omega$ of measure zero such that

$$
\lim _{r \rightarrow 0} \frac{1}{r^{n}} \int_{B_{r}(x)}|\nabla u(y)-\nabla u(x)|^{p} d y=0 \text { for all } x \in \Omega \backslash Z
$$

L^{p} differentiability of Sobolev functions

Discussion of proof

- We consider again the function

$$
v(y)=u(y)-u(x)-\nabla u(x) \cdot(y-x) \text { for } y \in \Omega
$$

so that $v \in W^{1, p}(\Omega)$ and $\nabla v(y)=\nabla u(y)-\nabla u(x)$. Note that however the meaning of $v(x)=0$ is rather obscure since v does not have enough regularity.

- If we have the Poincaré-type inequality

$$
\begin{equation*}
\|v\|_{L^{p}\left(B_{r}(x)\right)} \leq C r\|\nabla v\|_{L^{p}\left(B_{r}(x)\right)} \tag{*}
\end{equation*}
$$

then, by recalling that $r^{-n}\|\nabla v\|_{L^{p}\left(B_{r}(x)\right)}^{p} \rightarrow 0$ as $r \rightarrow 0$, we can obtain the conclusion as in the case $p>n$ considered previously. However, $\left(^{*}\right)$ is general not valid for arbitrary functions
$v \in W^{1, p}$.

L^{p} differentiability of Sobolev functions

Discussion of proof

- The proof is actually much more involved and goes through approximation of u by smooth functions.
- It should be clear that the conclusion hold when $u \in C^{1}(\Omega)$ as

$$
u(y)-u(x)-\nabla u(x) \cdot(y-x)=o(|y-x|) \text { as } y \rightarrow x
$$

