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Summary

Part 1
» Proofs of the Intermediate Value Theorem revisited

» Convergence and completeness

Part 2
» Dedekind and the continuum

Part 3
» Cantor and numbers and sets
» Where and when did sets emerge?
P> Early set theory
» Set theory as a language



Part 1: Completeness



The Intermediate Value Theorem (1)

Bolzano's criticisms (1817) of existing proofs:
The most common kind of proof depends on a truth bor-
rowed from geometry ... But it is clear that it is an in-
tolerable offense against correct method to derive truths
of pure (or general) mathematics (i.e., arithmetic, algebra,
analysis) from considerations which belong to a merely ap-
plied (or special) part, namely, geometry.
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a real quantity which the terms of the series, if it is con-
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Bolzano's criticisms (1817) of existing proofs:
The most common kind of proof depends on a truth bor-
rowed from geometry ... But it is clear that it is an in-
tolerable offense against correct method to derive truths
of pure (or general) mathematics (i.e., arithmetic, algebra,
analysis) from considerations which belong to a merely ap-
plied (or special) part, namely, geometry.

His own proof includes something close to a proof that Cauchy
sequences converge:
... the true value of X [the limit] therefore ... can be de-
termined as accurately as required ... There is, therefore,
a real quantity which the terms of the series, if it is con-
tinued far enough, approach as closely as desired.

But Bolzano assumed the existence of the limit.
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The Intermediate Value Theorem (2)

Cauchy’s 1st proof (Cours d’analyse, 1821, p.44) is geometric (though he
didn't provide a diagram):

The function f(x) being continuous between the limits x = xg,
x = X, the curve which has for equation y = f(x) passes first
through the point corresponding to the coordinates xo, f(xo),
second through the point corresponding to the coordinates
X, f(X), will be continuous between these two points: and,
since the constant ordinate b of the line which has for equation
y = b is to be found between the ordinates f(xp), f(X) of the
two points under consideration, the line will necessarily pass be-
tween these two points, which it cannot do without meeting the
curve mentioned above in the interval.

Cauchy’s 2nd proof in a different context (p.460): a numerical method
for finding roots of equations — tacitly assumes that bounded monotone
sequences of real numbers converge [see Lecture VII|.
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Emergence of rigour in Analysis:
» Bolzano, Rein analytischer Beweis ..., 1817,
» Cauchy, Cours d’analyse, 1821, etc.
By 1821, therefore, attempts to prove the intermediate
value theorem had brought three important propositions
into play:

1. Cauchy sequences are convergent (with an
unsuccessful proof by Bolzano in 1817; accepted
without proof by Cauchy in 1821).

2. A [non-empty]| set of numbers bounded below has a
greatest lower bound (proved by Bolzano in 1817 on

the basis of (1)).
3. A monotonic bounded sequence converges to a limit
(taken for granted by Cauchy in 1821).

(Mathematics emerging, §16.3.1.)
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The need for a deeper understanding (2)
What Bolzano and Cauchy missed: completeness

Completeness of the real number system R in modern teaching:

» non-empty bounded sets of real numbers have least upper
bounds

> monotonic bounded sequences converge
» Cauchy sequences converge

> ..

All equivalent
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Equivalence of formulations of completeness

Bolzano—Weierstrass Theorem: A bounded sequence of real
numbers has a convergent subsequence.

Implicit in Bolzano (1817); explicit in lectures by Karl Weierstrass
(1815-1897) in Berlin 1859/60, 1863/64: a step in proofs from
other definitions of completeness that Cauchy sequences converge.

Modern proofs often use the lemma that every infinite sequence of
real numbers has an infinite monotonic subsequence.

How to incorporate these ideas into analysis in a rigorous way?

All of the above relies upon an intuitive notion of real number —
so perhaps provide a formal definition of these? One that includes
the idea of completeness?



Part 2: Real Numbers



Richard Dedekind (1831-1916)

Stetigheit

umd *

itvationale Babhlen
le2ia4

Bichard Bedekind,
Goteghum Garotinum gu

Brofeior ber biberen Matbenmatit am i Bramnidwely

Braunfdmweig,
Drud und Berlag von Friedrid) Vieweg und Sohn.
1872
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Dedekind and the foundations of analysis

Teaching calculus in the Ziirich Polytechnic (1858), later (from
1862) teaching Fourier series in the Braunschweig Polytechnic,
found himself dissatisfied with:

» geometry as a foundation for analysis;

> tacit assumptions about convergence (that a monotonic
bounded sequence converges, for example).

Response eventually published in Stetigkeit und irrationale Zahlen
(1872) [translated as Continuity and irrational numbers by
Wooster Woodruff Beman, 1901]
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Dedekind and continuity (1)

Intuition suggests that numbers (an arithmetical concept) should
have the same completeness and continuity properties as a line (a
geometrical concept). But we must define these concepts for
numbers without appeal to geometrical intuition.

Geometrically, every point separates a line into two parts.

I find the essence of continuity in the converse, i.e., in
the following principle:

“If all points of the straight line fall into two classes
such that every point of the first class lies to the left of
every point of the second class, then there exists one and
only one point which produces this division of all points
into two classes, this severing of the straight line into two
portions.”



Dedekind and continuity (2)

But Dedekind couldn’t prove this property, so he had to take it as
an axiom:

The assumption of this property for the line is nothing but
an Axiom, through which alone we attribute continuity to
the line, through which we understand continuity in the
line.

(See Mathematics emerging, §16.3.2.)
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Dedekind and continuity (3)

Next adapt this idea to the arithmetical context:

P every number x separates all other numbers into two classes
— those greater than x, and those less than x;

> conversely, every such separation of numbers defines a
number.

Hence Dedekind cuts (or sections, from the original German
Schnitt).



Dedekind cuts (1)

» Start from the system of rational numbers R (assumed known)



Dedekind cuts (1)

» Start from the system of rational numbers R (assumed known)

» Separate R into two classes A; and Aj such that
» for any aj in Aj, a1 < a, for every a, in A
» for any ap in Ay, ay > a; for every a; in A;



Dedekind cuts (1)

» Start from the system of rational numbers R (assumed known)

» Separate R into two classes A; and Aj such that
» for any aj in Aj, a1 < a, for every a, in A
» for any ap in Ay, ay > a; for every a; in A;

» The cut denoted by (A1, Az) defines a number



Dedekind cuts (1)

» Start from the system of rational numbers R (assumed known)

» Separate R into two classes A; and Aj such that
» for any aj in Aj, a1 < a, for every a, in A
» for any ap in Ay, ay > a; for every a; in A;

» The cut denoted by (A1, Az) defines a number

» Important observation: (Aj, A2) need not be rational



Dedekind cuts (1)

» Start from the system of rational numbers R (assumed known)

» Separate R into two classes A; and Aj such that
» for any aj in Aj, a1 < a, for every a, in A
» for any ap in Ay, ay > a; for every a; in A;

» The cut denoted by (A1, Az) defines a number

» Important observation: (Aj, A2) need not be rational

Whenever, then, we have to do with a cut produced by no
rational number, we create a new irrational number, which
we regard as completely defined by this cut ...



Dedekind cuts (2)

% Dedekind showed how to add two

Bligen. I < e, foift ¢ < mithin gefidet o der Gloffe

Ay b folgliy aud der Glafe %, an, wnd ba pugled B < ¢ cuts, and how to use them in
ift, fo gebort aud) B derfelben Glafie %, an, weil jede Jabl in A,

gedfer ift alé jede Babl ¢ in %, Jft aber B > @, foift ¢ > a; imiti P 1
mithin gehirt ¢ der GhﬁtA,‘unbfoIgﬁd) aud ber Glaffe %, an, ||m|t|ng arguments bUt dld
unb da yugleidy B > ¢ ift, fo gefirt audy B derfelben Claffe %, an, H H

weil jede Bafl in %, Heiner ift als jede Bafl ¢ in %. Mithin little else with them.

gefitt jebe von « verjiedene Bahl B der Glafie %, ober der Glaffe
% an, je nadbem f < «,ober B > a ift; folglidy ift « felbft
enttoeber die grofite Babl in Ay oder die Heinfte Jahl in Ay, . §.
« ift cine und offendar bie eingige 3abl, burd) weldye die Serlegung
von ® in ble Glaffen %, %, Bervorgebradt witd. Was u be-
weifen war.

§. 6.

Rednungen mit rveellen Jahlen.

Um irgend eine Redynung mit jwei veellen Jahlen «, # auf
die Rednungen mit vationalen Babfen juriidyufibren, tommt €3
mue barauf, aus den Sdnitten (A, 4,) und (By, B,), weldpe
burd) bie Saflen « und B im Spfteme R Hervorgebradht werden,
ben_Sdnitt (C,, C;) yu definiren, weldher dem Redmungsrejultate
7 entfpredyen foll. I bejdhrante mid) Hier auf die Durdyfitfrung
bes einfacyften Beifpieles, ber Addition.

St ¢ tegend eine rationale 3abY, fo nefme man fie in bie Glaffe
C, auf, wenn ¢ cine 3§l a; in A, und eine Zal By in B, von
ber st giebt, daf ihre Summe a, + by = ¢ wird; alle anderen
tationalen Bablen ¢ nehme man in dbie Glaffe C; auf. Diefe Gin-
theilung aller rationalen Salen in bie beiben Glafien C;, Cj bildet
offenbar einen Sditt, weil jebe Bahl ¢, in C; Hener ift als jede
Babl ¢, in C;. Sind nun beide Jahlen @, B tational, o it jede
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St ¢ tegend eine rationale 3abY, fo nefme man fie in bie Glaffe h ence
€, auf, wenn ¢8 eine a5l ay in A, und eine Zahl by in B, von
ber Urt giebt, baf ihre Summe a, + b, = c wird; alle andeten . .
waonlen Sufen ¢ ehme mn in i Gl €y . Die Gie » setting the foundations of
theilung aller rationalen Baflen in bie beiven Glafjen C,, Cy bilbet B .
offnar cinn i ol jx bl in ) G it o e analysis onto a sound logical
Babl ¢, in C;. Sind nun beide Jahlen «, B tational, fo ift jede

basis.




Circulation of Dedekind's ideas

Stetigkeit und irrationale Zahlen reprinted many times, often in
conjunction with the later essay Was sind und was sollen die
Zahlen? (1888) [see below].



Circulation of Dedekind's ideas

Stetigkeit und irrationale Zahlen reprinted many times, often in
conjunction with the later essay Was sind und was sollen die
Zahlen? (1888) [see below].

Translated into English as Essays on the theory of numbers by
Wooster Woodruff Beman (1901).



Circulation of Dedekind's ideas

Stetigkeit und irrationale Zahlen reprinted many times, often in
conjunction with the later essay Was sind und was sollen die
Zahlen? (1888) [see below].

Translated into English as Essays on the theory of numbers by
Wooster Woodruff Beman (1901).

Popularised and organised for teaching, starting from Peano
axioms for natural numbers, by Edmund Landau in Grundlagen der
Analysis [Foundations of analysis] (1930), a book that contains
very few words.



Circulation of Dedekind's ideas

Stetigkeit und irrationale Zahlen reprinted many times, often in
conjunction with the later essay Was sind und was sollen die
Zahlen? (1888) [see below].

Translated into English as Essays on the theory of numbers by
Wooster Woodruff Beman (1901).

Popularised and organised for teaching, starting from Peano
axioms for natural numbers, by Edmund Landau in Grundlagen der
Analysis [Foundations of analysis] (1930), a book that contains
very few words.

A good modern (historically sensitive) account can be found in:
Leo Corry, A brief history of numbers, OUP, 2015, §10.6.
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Other approaches

Georg Cantor (1872) and Eduard Heine (1872) created real
numbers as equivalence classes of Cauchy sequences of rational
numbers. (Also: Charles Méray in 1869.)

(On Cantor's approach, see Mathematics emerging, §16.3.3.)

Heine acknowledged a debt to Cantor and a debt to the lectures of
Weierstrass.

Later constructions by many mathematicians and philosophers —
such as

» Carl Johannes Thomae, 1880, 1890;

» Giuseppe Peano, 1889, 1891;

» Gottlob Frege, 1884, 1893, 1903;
» Otto Holder, 1901,
>
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86 CARDINAL ARITHMETIC [PART 1x
*110632. F:peNC. DL pto 1= ((@y) .y ko =ty esmeu]
Dem.
F.#110631 45121192, .
FeHp. Dt d=E (@) yesmu.yefy=E-uy) A|ﬂ’ed NOI’th Whltehead and
[%13195] =E(qy).yeE. E—t'yesm u) 1 . Prop . ..
0 .onomo  [etton Bertrand Russell, Principia
¥110641, F.14,0=0+,1=1 [1105161.%1012]

CHOB. +.24,020+.203 [s1105T . s101S1] mathematica, 3 vols., Cambridge
oS =2 University Press, 1910, 1912, 1913

F.#110632.%101:2128. D
Pl d=E(ay).y ek E-ryel]
[¥543) =2.3F.Prop
The above proposition is occasionally useful. It is used at least three
times, in #1136 and ¥120123:472.
#110771 are required for proving ¥11072, and %11072 is used in
#1173, which is a fandamental proposition in the theory of greater and less.

#1107 F:BCa.D.(gu). peNC. Neta=NoB+.p

Dem.
FoA2441121. 3k Hp. D a=R v (@ f). B (a-f)=A.
[11032] 3. Ne‘a=Ne‘8+,Ne‘(a—B): D +. Prop
#1071 F: (gp) . New= NeB 4, 4. 3. (g8) . sm 8.5 Ca
Dem.
F.%1003.%1104. >

bz =Nc‘B4.u.d.neNC—tA (0]
F.#1103. 3 b : Nefa= Ne‘8 +, Nety . = . Nea= Ne(8 +1) -
[$100881]  D.asm(8+9).

[#731] 3.(@R). Rel—1.DR=a.AR= ] A, “Buis | “éty.
. [%115] >.@R). Rel—>1. | A “BCAR. R} A B Ca.
[#11012473:22] 3. (g8) . 5 C . Ssm 8 @

F.(1).(2).DF. Prop
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*110632. F:peNC. D p+ 1=F [(@y) . ye . £~ tyesmy)
Dem.
F.#110631 45121192,
FrHp. D1 =@y y) . yesm . ye by =F—1y}
[¥13195] =E(qy).yeE. E—t'yesm u) 1 . Prop
#11064. F.0+.0=0 [¥11062]
¥110641, F.14,0=0+,1=1 [1105161.%1012]
¥110642, F.24,0=04,2=2 [+1105161.¥101:31]
#110643. F.14,1=2

Dem.
F.#110632.%1012128. D

Bl -y et E-vyel)
.DF.Prop

The above proposition is occasionally useful. It is used at least three
times, in *113:66 and %120'123472.

#110771 are required for proving %11072, and %11072 is used in
#1173, which is a fandamental proposition in the theory of greater and less.

#1107 F:BCa.D.(gu). peNC. Neta=NoB+.p

Dem.
F.#2441121.0F: Hp. D a= B v (a=B).Bn (a-f)=A.
[¥11032) 3. Nefa=Nes@ + Ne(a— £) D k. Prop

#1071 F: (gu). Neta= NetB+, 4.3 . (g8) - 5sm 8.5 Car
Dem.
F.%1003.%1104. >
b2 Nofa=NetB 4,43 . ue NC= A )
F.#1108. 3 F: Nea=Ne/g +, Nety . = . Nea= Ne(B +) .
[#$100331]  D.asm(8+9).

[#731] 3.(@R). Rel—1.DR=a.AR= ] A, “Buis | “éty.
[%8715] >.@R). Rel—>1. | A “BCAR. R} A B Ca.
[#11012.#7322] 3. (g8) . 5 Cat. Ssm B @

F.(1).(2).DF. Prop

Alfred North Whitehead and
Bertrand Russell, Principia
mathematica, 3 vols., Cambridge
University Press, 1910, 1912, 1913

Vol. Il, p.86: 1+1=2



Extreme formalism

36 CARDINAL ARITHMETIC [T

#110632. b1 eNC. D pt 1 =F{(@y).yef. E—tyesmy)
Dem.
F.#110631 45121192, .
FeHp. Dt d=E (@) yesmu.yefy=E-uy) A|ﬂ’ed NOI’th Whltehead and
[#13195] =E{(ay).y et E-t'yesmu): Dk Prop . ..
0 .onomo  [etton Bertrand Russell, Principia
*110641. F.14+,0=0+1=1 [¥110'51:61.%1012]

10842, b.24.0=04.202 [e105161.210151] mathematica, 3 vols., Cambridge
st in =2 University Press, 1910, 1912, 1913

F.#110:632.%101-21-28.D
Bl -y et E-vyel)
.DF.Prop

The above proposition is occasionally useful. Tt is vsed at least three Vol i | | . P 86 1 + 1=2

times, in 11366 and ¥120'123472.

#110771 are required for proving %11072, and %11072 is used in
#1173, which is a fandamental proposition in the theory of greater and less.
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#110632. b1 eNC. D pt 1 =F{(@y).yef. E—tyesmy)
Dem.
F.#110631 45121192, .
FeHp. D p 1= E () yesmUu.yet .y =E- 1y} Alfred North Whitehead and
[%13195] =E(qy).yeE. E—t'yesm u) 1 . Prop

0 bos0m0 o Bertrand Russell, Principia

¥110641, F.14,0=0+,1=1 [1105161.%1012]

CHOB. +.24,020+.203 [s1105T . s101S1] mathematica, 3 vols., Cambridge
oS =2 University Press, 1910, 1912, 1913
F.#110632.,%10121-28.D

(@y).ye-E-vyel]
3) =2.3F.Prop

The above proposition is occasionally useful. It is used at least three Vol. |l p. 86: 1+1=2
times, in *113:66 and %120'123472. !

#110771 are required for proving 11072, and #1072 is used in
#1173, which is a fundamental proposition in the theory of greater aud less.
#1107, +:8Ca.D. (gu). peNC. Nea=NesB+op u—I—h b e .

Dem, e above proposition Is

24411210k Hp. D a=B v (a—B). B (a-B)=A.

tonom) > NN Nee £ - occasionally useful.”

#1107 b (5u) . Nefa= NcB +, .. (38) . 8sm B.8Ca
Dem.

F.%1003.%1104.2 . .

b N N 3 NO—c5A o NB. This is not the source of our
F.#1108. 3k : Nofa= NeB+, Nefy . = . Nea=Ne{(8 +1) - R
(100331) 3.aom (3. axioms for the reals.
[*731] 3.(qR). Rel—>1.D'R=a.AR=| A, “1Bul, | “t%y.
[#3715] 3.(R)-Rel>1. | A “BCAR. R A ““BCa.
[#11012.#7322] 3. (g8) . 5 Cat. Ssm B @
F.(1).(2).2F. Prop
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New ideas

An idea that emerged as central to Dedekind’s work: that of a set

In fact, naive notions of sets had already appeared all but
unremarked earlier in the nineteenth century

» as Gauss' classes, orders, genera (of binary quadratic forms
with integer coefficients) [see Lecture XIV];

» as Galois' groupes (of permutations and of substitutions);

v

as Cauchy's systemes (of substitutions);

» as Dedekind’s Zahlkorpern (of algebraic numbers).

This is by no means an exhaustive list of examples; see
Mathematics emerging, §18.2 for others.
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Formalisation of the concept of a set

Georg Cantor: series of articles in
Mathematische Annalen, 1879-1883

Final one also published separately as
Grundlagen einer allgemeinen
Mannigfaltigkeitslehre [Foundations of a
general theory of aggregates|, Teubner,
Leipzig, 1883:

By an “aggregate” (Menge) we
are to understand any collec-
tion into a whole (Zusammen-
fassung zu einem Ganzen) M of
definite and separate objects m
of our intuition or our thought.
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Cantor and the continuum

Cantor’'s major interest: the continuum (i.e., the set of real
numbers).

How to characterise this set within the collection of all sets? — A
question that Cantor never satisfactorily answered.

Cantor's first great insight regarding sets (1873): infinite sets can
have different sizes.
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Cantor's first proof that the continuum is uncountable

Proposition: Given any sequence of real numbers w1, ws, ws, . ..
and any interval [«, 3], there is a real number in [, ] that is not
contained in the given sequence.

Proof proceeds by construction of a sequence of nested intervals
[, B8] 2 [a1, B1] 2 [z, B2] 2 [z, B3] 2 - --. Cantor considered the
different cases where the sequence terminates or does not, but in
all instances he constructed a real number in the interval that does
not lie in the original sequence.

Next suppose that the continuum is countable, i.e., that the real
numbers may be listed w1, w>,ws,.... But then there is a real
number in any interval [«, 3] that does not belong to this list — a
contradiction.

The more famous diagonal argument came later (1891).
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One-to-one correspondences

Also in the 1874 paper:

The algebraic A numbers are countable — therefore transcendental
numbers exist.

NB: In 1851 Joseph Liouville had already produced a
constructive proof of the existence of transcendental numbers.

Charles Hermite proved in 1873 that e is transcendental.

Proof of the transcendence of 7 was finally accomplished by
Carl Louis Lindemann in 1882.

Cantor to Dedekind (1877): there is a one-to-one correspondence
between a line and the plane — “Je le vois, mais je ne le crois
pas!” ("l see it, but | don't believe it!")
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Developed at the end of the nineteenth century (1878-1897): a
general theory of sets and of transfinite numbers — infinite
cardinals (e.g., #N = Ng, #R = ¢), transfinite ordinals, ...

Mixed terminology: Inbegriff, System, Mannigfaltigkeit, Menge

Continuum hypothesis (1878): there is no infinite cardinal strictly
between Ng and ¢

Power set construction given in 1890: #?(S) — the set of all
subsets of a set S

Cantor’'s Theorem: #2(S) > #S

Further: #2(N) = #R, or 2% = ¢
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Was sind und was sollen die Zahlen?

Was find uud was follen
die Richard Dedekind, Was sind und

Bahlen? was sollen die Zahlen?
Braunschweig, 1893

B e bi Ak i AR Contains, amongst other things:
— » a definition of infinite sets;

Sweite wnverduverte Nuflage. » an axiomatisation of the
i 4 s natural numbers (soon
simplified by Peano).

Braunfdweig,
Drud und Berlag von Friedrid) Bieweg und Sofn.

1893,
)
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Was sind und was sollen die Zahlen?

Was find uud was follen Also includes a definition of a
e function as a mapping between
Bahlen? sets (p.6):

Bon

i Dedehind, By a mapping of a system S we

el 4 e 14 St 1 e : understand a law according to
— which every determinate element
Bweite unverdnderte Anflage. S Of 5 |S aSSOCIated W|th a

determinate thing which is called
the image of s and is denoted by

Braunfdweig, ¢(s) . .”

Dend unb Berlag von Friedrid) Bieweg und Sofn.
1893,

“Asi 8 avdgunos doudunilen,

)

¥\




Was sind und was sollen die Zahlen?

Extract from William Ewald, From Kant to Hilbert: a source book
in the foundations of mathematics, OUP, 1996, vol. I, p. 790:

The title of Dedekind’s paper is subtle: rigidly translated
it asks ‘What are, and what ought to be, the numbers?’
But sollen here carries several senses—among them, ‘What
is the best way to regard the numbers?’; ‘What is the
function of numbers?; ‘What are numbers supposed to
be?’. But perhaps Dedekind’s title is famous enough to
be left in the original.

W. W. Beman translated the essay under the title The nature and
meaning of numbers (1901).
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(wegen der Aehnlidleit von @) aud) o’ und jedes Glement o'
veridjieden von @ und folglih in 7' enthalten fein; mithin ift
¥Y(T)3T, und da T endlidy ift, fo mup ¥ (7) = T, alfo
M (), U) = T fein. Dieraus folgt aber (nad) 15)

M@, 0 U)=M@T),
b. §. nad) dem Obigen 8’ = S. Aljo ift aud) in. diefem 3111]:
der erforderlije Beweis gefiifet.

§ 6.

Cinfad unendlide Syfteme. Reihe der natitrligen
Bahlen.

71. Gelldrung. Gin Spftem N Beift einfad) unendlid),
wenn e3 eine jolde dfnlihe Abbilbung @ von N in fid felbft
giebt, daf N. al3 Rette (44) eines Glementes eridjeint, weldyes nicht
in @ (N) enthalten ift. 2Wir nennen died Element, dad wir im
Folgenden durd) dad Shmbol 1 beyeidhnen wollen, dag Grund-
element von N und fagen gugleich, das einfad) unendliche Spftem N
fei durd) dieje Abbildung @ geordnet. Behalten wir die friiheren
bequemen Begeidnungen file die BVilder und RKetten bei (§. 4), fo
Bejteht mithin das Wefen eined einfady unendlidhen Syftems N in
der Grifteny einer Abbildung @ von N und eines Glementes 1, die

. ben folgenden Bedingungen «, B, », & genilgen:
« N'3N.
B N=1,
.. Dag Glement .1 ift nidt in N’ entpalten.
8. Die Abbildung o ijt dhnlicy.

Offenbar folgt aus «, 7, &, dap jeded einfac) unendliche
Syftem N wirlid) ein unendliches Spftem ift (64), weil 8 einem
edten. Theile N’ feiner felbft dhnlicy ift.

72. Sap. JIn jedem unendlien Syfteme S ift ein einfady
unendliches Spftem N als Theil enthalten.

Was sind und was sollen die Zahlen?

Written in an explicitly
set-theoretic language

(But with slightly different
notation from ours.)

For a summary, see: Kathryn
Edwards, ‘Richard Dedekind
(1831-1916)', Mathematics
Today 52(1) (Feb 2016)
212-215
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Set theory in our lives

Set theory as an effective language for mathematics:
» Set-builder notation

» Unification of ideas concerning functions and relations
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SMP /New Math

School Mathematics Project (UK)/New Mathematics (USA):

» Response to the launch of Sputnik | in 1957

» Traditional school arithmetic and geometry replaced by
abstract algebra, matrices, symbolic logic, ... — in short,
mathematical topics based on set theory

» Tom Lehrer song, New Math

» Much debate — now usually regarded as a passing fad


https://www.youtube.com/watch?v=UIKGV2cTgqA
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Conclusions

» Our modern perception of real numbers took well over 2000
years to crystallise, with geometric, arithmetic, set-theoretic
intuitions to the fore at different times.

P> The concept of set emerged at about the same time as the
modern concept of real number, 1870-1890.

» This coincidence is no coincidence.



Further reading on the development of analysis

The Origins

A EeTopy S p
A HISTORY of Cauchy's

OF ANALYSIS Rigorous e
S Calculus o
JUDITH V. GRABINER The Real and the
Complex: A History
of Analysis in the
= 19th Century
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