

Mathematical Institute

The Scattering Transform: a deterministic transform with depth

THEORIES OF DEEP LEARNING: C6.5, LECTURE / VIDEO 12 Prof. Jared Tanner Mathematical Institute University of Oxford

Oxford Mathematics

Scattering Transform (Mallat 12')

Repeated application of deterministic transforms

The Scattering Transform repeatedly applied a deterministic wavelet transform followed by $\sigma(x) = |x|$ as nonlinear activation

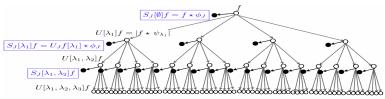
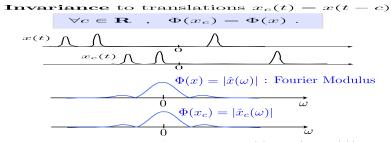


Figure 1: A scattering propagator U_J applied to f computes each $U[\lambda_1]f = |f \star \psi_{\lambda_1}|$ and outputs $S_J[\emptyset]f = f \star \phi_{2^J}$. Applying U_J to each $U[\lambda_1]f$ computes all $U[\lambda_1, \lambda_2]f$ and outputs $S_J[n] = U[\lambda_1] \star \phi_{2^J}$. Applying iteratively U_J to each U[p]f outputs $S_J[p]f = U[p]f \star \phi_{2^J}$ and computes the next path layer.

Depth allows the transform to become increasingly invariant to translation and small diffeomorphisms. https://arxiv.org/pdf/1101.2286.pdf

Classification as learning invariance (Mallat '13)

Projecting out invariants not needed for classification



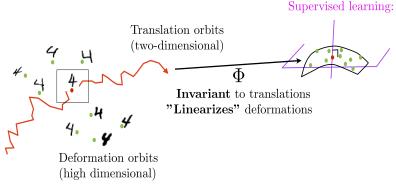
Lipschitz stable to deformations $x_{\tau}(t) = x(t - \tau(t))$ small deformations of $x \implies$ small modifications of $\Phi(x)$

$$\forall \tau$$
, $\|\Phi(x_{\tau}) - \Phi(x)\| \leq C \sup_{t \in T} |\nabla \tau(t)| \|x\|$
deformation size

http://lcsl.mit.edu/ldr-workshop/Home.html

Projecting out invariants not needed for classification

• Specific deformation invariance must be learned.

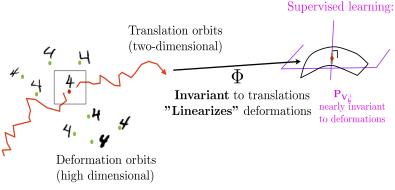


http://lcsl.mit.edu/ldr-workshop/Home.html

Linearising deformations (Mallat '13)

Projecting out invariants not needed for classification

• Specific deformation invariance must be learned.

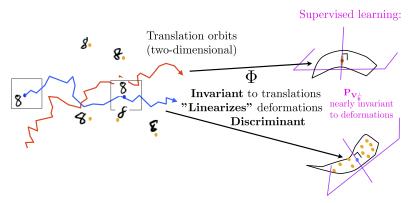


http://lcsl.mit.edu/ldr-workshop/Home.html

Linearising deformations (Mallat '13)

Projecting out invariants not needed for classification

• Specific deformation invariance must be learned.



http://lcsl.mit.edu/ldr-workshop/Home.html

イロト 不得 トイヨト イヨト ニヨー

Mathematica Institute

Wavelet Transform as frequency tiling (Mallat '13)

Wavelets decompose function into local frequency information

- Complex wavelet: $\psi(t) = \psi^a(t) + i \psi^b(t)$
- Dilated: $\psi_{\lambda}(t) = 2^{-j} \psi(2^{-j}t)$ with $\lambda = 2^{-j}$.

• Wavelet transform: $x \star \psi_{\lambda}(t) = \int x(u) \psi_{\lambda}(t-u) du$

$$Wx = \left(\begin{array}{c} x \star \phi(t) \\ x \star \psi_{\lambda}(t) \end{array}\right)_{t,\lambda}$$

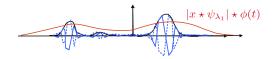
Unitary: $||Wx||^2 = ||x||^2$.

http://lcsl.mit.edu/ldr-workshop/Home.html

Oxford Mathematics

Modulus and averaging in wavelet domain (Mallat '13)

Smoothing to identify discontinuities and have energy decay



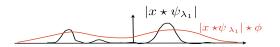
- The modulus $|x \star \psi_{\lambda_1}|$ is a regular envelop
- The average $|x \star \psi_{\lambda_1}| \star \phi(t)$ is invariant to small translations relatively to the support of ϕ .
- Full translation invariance at the limit:

$$\lim_{\phi \to 1} |x \star \psi_{\lambda_1}| \star \phi(t) = \int |x \star \psi_{\lambda_1}(u)| \, du = \|x \star \psi_{\lambda_1}\|_1$$

http://lcsl.mit.edu/ldr-workshop/Home.html

Second layer of the scattering transform (Mallat '13)

Increased smoothness with depth



• The high frequencies of $|x \star \psi_{\lambda_1}|$ are in wavelet coefficients:

$$W|x \star \psi_{\lambda_1}| = \left(\begin{array}{c} |x \star \psi_{\lambda_1}| \star \phi(t) \\ |x \star \psi_{\lambda_1}| \star \psi_{\lambda_2}(t) \end{array}\right)_{t,\lambda_2}$$

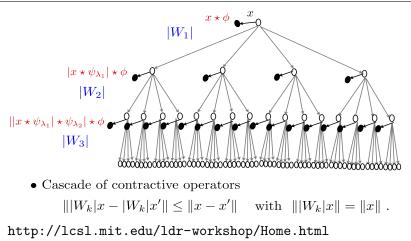
• Translation invariance by time averaging the amplitude:

 $\forall \lambda_1, \lambda_2, \quad | | x \star \psi_{\lambda_1} | \star \psi_{\lambda_2} | \star \phi(t)$

http://lcsl.mit.edu/ldr-workshop/Home.html

Scattering transform (Mallat '13)

Lipshitz continuous, inputs contract to one another



▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Scattering transform properties(Mallat '13)

Stability to deformormations

$$Sx = \begin{pmatrix} x \star \phi (u) \\ |x \star \psi_{\lambda_1}| \star \phi(u) \\ ||x \star \psi_{\lambda_1}| \star \psi_{\lambda_2}| \star \phi(u) \\ ||x \star \psi_{\lambda_2}| \star \psi_{\lambda_2}| \star \psi_{\lambda_3}| \star \phi(u) \\ \dots \end{pmatrix}_{u,\lambda_1,\lambda_2,\lambda_3,\dots}$$

Theorem: For appropriate wavelets, a scattering is contractive $||Sx - Sy|| \le ||x - y||$ preserves norms ||Sx|| = ||x||stable to deformations $x_{\tau}(t) = x(t - \tau(t))$ $||Sx - Sx_{\tau}|| \le C \sup_{t} |\nabla \tau(t)| ||x||$

 $\Rightarrow {\rm linear\ discriminative\ classification\ from\ } \Phi x = Sx$ http://lcsl.mit.edu/ldr-workshop/Home.html

Scattering Transform: energy decay (Mallat 12')

The transform can be truncated stably

For suitably chosen wavelet transforms (see Theorem 2.6 in footnote) then for all $f \in L^2(\mathbb{R}^d)$

$$\lim_{m \to \infty} \|U[\Lambda_J^m]f\|^2 = \lim_{m \to \infty} \sum_{n=m}^{\infty} \|S_J[\Lambda_J^n]f\|^2 = 0$$

where $U[\lambda]f = |f \star \psi_{\lambda}|$ and $S_J[\lambda]f = \phi_i \star U[\lambda]f$ and $||S_J[P_J]f|| =$ ||f||. Morevover, for all $c \in \mathbb{R}^d$

$$\lim_{J\to\infty} \|S_J[P_J]f - S_J[P_J]L_cf\| = 0$$

where $L_c f = f(x - c)$ is the translation operator.

https://arxiv.org/pdf/1101.2286.pdf

TABLE 1 Percentage of Energy $\sum_{p \in \mathcal{P}_{i}^{m}} \|S[p]x\|^{2} / \|x\|^{2}$ of Scattering Coefficients on Frequency-Decreasing Paths of Length *m*, Depending upon *J*

J	m = 0	m = 1	m=2	m = 3	m = 4	$m \leq 3$
1	95.1	4.86	-	-	-	99.96
2	87.56	11.97	0.35	-	-	99.89
3	76.29	21.92	1.54	0.02	-	99.78
4	61.52	33.87	4.05	0.16	0	99.61
5	44.6	45.26	8.9	0.61	0.01	99.37
6	26.15	57.02	14.4	1.54	0.07	99.1
7	0	73.37	21.98	3.56	0.25	98.91

These average values are computed on the Caltech-101 database, with zero mean and unit variance images.

https://www.di.ens.fr/data/publications/papers/
pami-final.pdf

Accuracy on MNIST based on training size

TABLE 4

Percentage of Errors of MNIST Classifiers, Depending on the Training Size

Training	x		Wind. Four.		Scat. $\overline{m} = 1$		Scat. $\overline{m} = 2$		Conv.
size	PCA	SVM	PCA	SVM	PCA	SVM	PCA	SVM	Net.
300	14.5	15.4	7.35	7.4	5.7	8	4.7	5.6	7.18
1000	7.2	8.2	3.74	3.74	2.35	4	2.3	2.6	3.21
2000	5.8	6.5	2.99	2.9	1.7	2.6	1.3	1.8	2.53
5000	4.9	4	2.34	2.2	1.6	1.6	1.03	1.4	1.52
10000	4.55	3.11	2.24	1.65	1.5	1.23	0.88	1	0.85
20000	4.25	2.2	1.92	1.15	1.4	0.96	0.79	0.58	0.76
40000	4.1	1.7	1.85	0.9	1.36	0.75	0.74	0.53	0.65
60000	4.3	1.4	1.80	0.8	1.34	0.62	0.7	0.43	0.53

https://www.di.ens.fr/data/publications/papers/
pami-final.pdf

Scattering Transform: MNIST digit 3 (Mallat 13')

Example of energy in a scattering transform

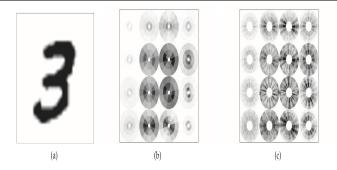


Fig. 7. (a) Image X(u) of a digit "3." (b) Arrays of windowed scattering coefficients S[p]X(u) of order m = 1, with u sampled at intervals of $2^{d} = 8$ pixels. (c) Windowed scattering coefficients S[p]X(u) of order m = 2.

https://www.di.ens.fr/data/publications/papers/
pami-final.pdf