C4.3 Functional Analytic Methods for PDEs Lecture 11

Luc Nguyen
luc.nguyen@maths

University of Oxford

MT 2021

In the last 6 lectures

- Sobolev spaces and their properties

This lecture

- Linear elliptic equations of second order
- Classical and weak solutions
- Energy estimates
- First existence theorem

The equation of interest

- We will consider the equation

$$
\begin{equation*}
L u:=-\partial_{i}\left(a_{i j} \partial_{j} u\right)+b_{i} \partial_{i} u+c u=f+\partial_{i} g_{i} \text { in } \Omega \tag{}
\end{equation*}
$$

where
$\star \Omega$ is a domain in \mathbb{R}^{n}, which frequently has Lipschitz regularity or better,
$\star u: \Omega \rightarrow \mathbb{R}$ is the unknown,
$\star a_{i j}, b_{i}, c: \Omega \rightarrow \mathbb{R}$ are given coefficients,
$\star f, g_{i}: \Omega \rightarrow \mathbb{R}$ are given sources.

- Equation $\left(^{*}\right)$ is said to be in divergence form. It can be written in more compact form:

$$
L u=-\operatorname{div}(a \nabla u)+b \cdot \nabla u+c u=f+\operatorname{div} g
$$

where

$$
\begin{aligned}
& \star a=\left(a_{i j}\right) \text { is an } n \times n \text { matrix, } \\
& \star b=\left(b_{i}\right) \text { and } g=\left(g_{i}\right) \text { are (column) vectors. }
\end{aligned}
$$

Divergence vs non-divergence form

- To dispel confusion, we note that we will not consider the equation

$$
-a_{i j} \partial_{i} \partial_{j} u+b_{i} \partial_{i} u+c u=f+\partial_{i} g_{i} \text { in } \Omega,
$$

which is also of importance. The equation (**) is said to be in non-divergence form.
To treat (**), we will need some preparation different from what we have had so far.

Structural assumptions

We make the following assumptions:

- The coefficients $a_{i j}, b_{i}, c: \Omega \rightarrow \mathbb{R}$ belong to $L^{\infty}(\Omega)$.
- The coefficients $a_{i j}$ is symmetric, i.e. $a_{i j}=a_{j i}$.
- The coefficients $a_{i j}$ is uniformly elliptic - this will be defined on the next slide.

Ellipticity

Definition

Let $a=\left(a_{i j}\right): \Omega \rightarrow \mathbb{R}^{n \times n}$ be symmetric and have measurable entries.

- a is elliptic if

$$
a_{i j}(x) \xi_{i} \xi_{j} \geq 0 \text { for all } \xi \in \mathbb{R}^{n} \text { and a.e. } x \in \Omega
$$

(In other words, a is non-negative definite a.e. in Ω.)

- a is strictly elliptic if there exists $\lambda>0$ such that

$$
a_{i j}(x) \xi_{i} \xi_{j} \geq \lambda|\xi|^{2} \text { for all } \xi \in \mathbb{R}^{n} \text { and a.e. } x \in \Omega
$$

- a is uniformly elliptic if there exist $0<\lambda \leq \Lambda<\infty$ such that

$$
\lambda|\xi|^{2} \leq a_{i j}(x) \xi_{i} \xi_{j} \leq \Lambda|\xi|^{2} \text { for all } \xi \in \mathbb{R}^{n} \text { and a.e. } x \in \Omega
$$

Examples

Two simplistic but important examples:

- $a_{i j}=\delta_{i j}$ in all of Ω.
- $a_{i j}=k(x) \delta_{i j}$ where $k=k_{1} \chi_{A}+k_{2} \chi_{\Omega \backslash A}$ for some subset A of Ω and some constants $k_{1}, k_{2}>0$.

The Dirichlet boundary value problem

We will write $L=-\partial_{i}\left(a_{i j} \partial_{j}\right)+b_{i} \partial_{i}+c$ to mean that

$$
L u=-\partial_{i}\left(a_{i j} \partial_{j} u\right)+b_{i} \partial_{i} u+c u .
$$

The Dirichlet boundary value problem for L asks to find a function u satisfying

$$
\left\{\begin{align*}
L u & =f+\partial_{i} g_{i} & & \text { in } \Omega, \tag{BVP}\\
u & =u_{0} & & \text { on } \partial \Omega .
\end{align*}\right.
$$

where
$\star f$ and g are given sources,
$\star u_{0}$ is given boundary data.

Classical solutions

$$
\begin{gathered}
L=-\partial_{i}\left(a_{i j} \partial_{j}\right)+b_{i} \partial_{i}+c \\
\left\{\begin{aligned}
L u & =f+\partial_{i} g_{i} \\
u=u_{0} & \text { in } \Omega \\
u & \text { on } \partial \Omega
\end{aligned}\right.
\end{gathered}
$$

Definition

Suppose $a \in C^{1}(\Omega), b, c \in C(\Omega)$. For a given $f \in C(\Omega), g \in C^{1}(\Omega)$ and $u_{0} \in C(\partial \Omega)$, a function $u \in C^{2}(\Omega) \cap C(\bar{\Omega})$ is called a classical solution to the Dirichlet boundary value problem (BVP) if it satisfies (BVP) in the usual sense.

- We saw in the first lecture that the notion of classical solutions is insufficient for our need.

An observation

- Suppose $a \in C^{1}(\Omega), b, c \in C(\Omega), f \in C(\Omega)$ and $g \in C^{1}(\Omega)$. Suppose $u \in C^{2}(\Omega)$ satisfies

$$
\begin{equation*}
L u=-\partial_{i}\left(a_{i j} \partial_{j} u\right)+b_{i} \partial_{i} u+c u=f+\partial_{i} g_{i} \text { in } \Omega . \tag{}
\end{equation*}
$$

- If $\varphi \in C_{c}^{\infty}(\Omega)$ is a test function, then

$$
\int_{\Omega}(L u) \varphi d x=\int_{\Omega}\left[a_{i j} \partial_{j} u \partial_{i} \varphi+b_{i} \partial_{i} u \varphi+c u \varphi\right] d x
$$

and

$$
\int_{\Omega}\left[f+\partial_{i} g_{i}\right] \varphi d x=\int_{\Omega}\left[f \varphi-g_{i} \partial_{i} \varphi\right] d x
$$

- Therefore, for all $\varphi \in C_{c}^{\infty}(\Omega)$,

$$
\int_{\Omega}\left[a_{i j} \partial_{j} u \partial_{i} \varphi+b_{i} \partial_{i} u \varphi+c u \varphi\right] d x=\int_{\Omega}\left[f \varphi-g_{i} \partial_{i} \varphi\right] d x .
$$

An observation

- Conversely, if u is such that (\diamond) holds for all $\varphi \in C_{c}^{\infty}(\Omega)$, then by reversing the argument, we have

$$
\int_{\Omega}(L u) \varphi d x=\int_{\Omega}\left[f+\partial_{i} g_{i}\right] \varphi d x \text { for all } \varphi \in C_{c}^{\infty}(\Omega)
$$

This implies $L u=f+\partial_{i} g_{i}$ in Ω, i.e. u satisfies (${ }^{*}$).

- We conclude that $u \in C^{2}(\Omega)$ satisfies

$$
\begin{equation*}
L u=-\partial_{i}\left(a_{i j} \partial_{j} u\right)+b_{i} \partial_{i} u+c u=f+\partial_{i} g_{i} \text { in } \Omega \tag{}
\end{equation*}
$$

if and only if u satisfies

$$
\int_{\Omega}\left[a_{i j} \partial_{j} u \partial_{i} \varphi+b_{i} \partial_{i} u \varphi+c u \varphi\right] d x=\int_{\Omega}\left[f \varphi-g_{i} \partial_{i} \varphi\right] d x
$$

for all $\varphi \in C_{c}^{\infty}(\Omega)$.

An observation

- We conclude that $u \in C^{2}(\Omega)$ satisfies

$$
\begin{equation*}
L u=-\partial_{i}\left(a_{i j} \partial_{j} u\right)+b_{i} \partial_{i} u+c u=f+\partial_{i} g_{i} \text { in } \Omega \tag{*}
\end{equation*}
$$

if and only if u satisfies

$$
\int_{\Omega}\left[a_{i j} \partial_{j} u \partial_{i} \varphi+b_{i} \partial_{i} u \varphi+c u \varphi\right] d x=\int_{\Omega}\left[f \varphi-g_{i} \partial_{i} \varphi\right] d x
$$

for all $\varphi \in C_{c}^{\infty}(\Omega)$.

- Key: While the formulation $\left(^{*}\right)$ requires u to be twice differentiable, the formulation (\diamond) requires u to be only once differentiable.

Weak solutions

Definition

Let $a, b, c \in L^{\infty}(\Omega)$ and $L=-\partial_{i}\left(a_{i j} \partial_{j}\right)+b_{i} \partial_{i}+c$.

- Suppose $f \in L^{2}(\Omega), g \in L^{2}(\Omega)$.

We say that $u \in H^{1}(\Omega)$ is a weak solution (or generalized solution) to the equation

$$
\begin{equation*}
L u=f+\partial_{i} g_{i} \text { in } \Omega \tag{}
\end{equation*}
$$

if

$$
\int_{\Omega}\left[a_{i j} \partial_{j} u \partial_{i} \varphi+b_{i} \partial_{i} u \varphi+c u \varphi\right] d x=\int_{\Omega}\left[f \varphi-g_{i} \partial_{i} \varphi\right] d x
$$

holds for all $\varphi \in H_{0}^{1}(\Omega)$.
When this holds, we also say that u satisfies $\left({ }^{*}\right)$ in the weak sense.

Weak solutions

Definition

Let $a, b, c \in L^{\infty}(\Omega)$ and $L=-\partial_{i}\left(a_{i j} \partial_{j}\right)+b_{i} \partial_{i}+c$.

- Suppose that $f \in L^{2}(\Omega), g \in L^{2}(\Omega)$ and $u_{0} \in H^{1}(\Omega)$. We say that $u \in H^{1}(\Omega)$ is a weak solution (or generalized solution) to the Dirichlet boundary value problem

$$
\left\{\begin{aligned}
L u & =f+\partial_{i} g_{i} & & \text { in } \Omega \\
u & =u_{0} & & \text { on } \partial \Omega
\end{aligned}\right.
$$

if $L u=f+\partial_{i} g_{i}$ in Ω in the weak sense and if $u-u_{0} \in H_{0}^{1}(\Omega)$.

Weak solutions

- It is convenient to introduce the bilinear form $B(\cdot, \cdot)$:

$$
B(u, v)=\int_{\Omega}\left[a_{i j} \partial_{j} u \partial_{i} v+b_{i} \partial_{i} u v+c u v\right] d x \quad u, v \in H^{1}(\Omega)
$$

B is called the bilinear form associated with the operator L.

- Then $u \in H^{1}(\Omega)$ satisfies $\left(^{*}\right)$ in the weak sense if

$$
B(u, \varphi)=\langle f, \varphi\rangle-\left\langle g_{i}, \partial_{i} \varphi\right\rangle \text { for all } \varphi \in H_{0}^{1}(\Omega)
$$

where $\langle\cdot, \cdot\rangle$ denotes the inner product of $L^{2}(\Omega)$.

Energy estimate

Theorem (Energy estimates)

Suppose that $a, b, c \in L^{\infty}(\Omega)$, a is uniformly elliptic, $L=-\partial_{i}\left(a_{i j} \partial_{j}\right)+b_{i} \partial_{i}+c$ and B is its associated bilinear form. Then there exists some large constant $C>0$ such that

$$
\begin{aligned}
|B(u, v)| & \leq C\|u\|_{H^{1}(\Omega)}\|v\|_{H^{1}(\Omega)} \\
\frac{\lambda}{2}\|u\|_{H_{1}(\Omega)}^{2} & \leq B[u, u]+C\|u\|_{L^{2}(\Omega)}^{2}
\end{aligned}
$$

Here λ is the constant appearing in the definition of ellipticity of a.

Energy estimate

Proof

- The first estimate is clear from the definition of B and Cauchy-Schwarz's inequality:

$$
\begin{aligned}
& |B(u, v)| \leq \int_{\Omega}\left[| a _ { i j } | \left|\partial _ { j } u \left\|\partial_{i} v\left|+\left|b_{i}\left\|\partial_{i} u\right\| v\right|+|c\|u\| v|\right] d x\right.\right.\right. \\
& \leq\|a\|_{L^{\infty}}\|\nabla u\|_{L^{2}}\|\nabla v\|_{L^{2}}+\|b\|_{L^{\infty}}\|\nabla u\|_{L^{2}}\|v\|_{L^{2}} \\
& \quad+\|c\|_{L^{\infty}}\|u\|_{L^{2}}\|v\|_{L^{2}} \\
& \leq C\|u\|_{H^{1}}\|v\|_{H^{1}} .
\end{aligned}
$$

Energy estimate

Proof

- For the second estimate, we start by estimating the lower order term in the same fashion while leaving the highest order term untouched:

$$
\begin{aligned}
& B(u, u) \geq \int_{\Omega}\left[a_{i j} \partial_{j} u \partial_{i} u-\left|b_{i}\left\|\partial_{i} u\right\| u\right|-|c \| u|^{2}\right] d x \\
& \geq \int_{\Omega} a_{i j} \partial_{j} u \partial_{i} u d x \\
& \quad \quad-\|b\|_{L^{\infty}}\|\nabla u\|_{L^{2}}\|u\|_{L^{2}}-\|c\|_{L^{\infty}}\|u\|_{L^{2}}^{2}
\end{aligned}
$$

- The leading term is treated using the ellipticity condition:

$$
a_{i j} \partial_{j} u \partial_{i} u \geq \lambda|\nabla u|^{2}
$$

Energy estimate

Proof

- We thus have

$$
B(u, u) \geq \lambda\|\nabla u\|_{L^{2}}^{2}-\|b\|_{L^{\infty}}\|\nabla u\|_{L^{2}}\|u\|_{L^{2}}-\|c\|_{L^{\infty}}\|u\|_{L^{2}}^{2}
$$

- Using the inequality $x y \leq \frac{\lambda}{2} x^{2}+\frac{1}{2 \lambda} y^{2}$, we can absorb the quantity $\|\nabla u\|_{L^{2}}$ in the second term on the right hand side to the first term:

$$
\begin{aligned}
B(u, u) & \geq \lambda\|\nabla u\|_{L^{2}}^{2}-\frac{\lambda}{2}\|\nabla u\|_{L^{2}}^{2}-\frac{1}{2 \lambda}\|b\|_{L^{\infty}}^{2}\|u\|_{L^{2}}^{2}-\|c\|_{L^{\infty}}\|u\|_{L^{2}}^{2} \\
& =\frac{\lambda}{2}\|\nabla u\|_{L^{2}}^{2}-C\|u\|_{L^{2}}^{2}
\end{aligned}
$$

L as an operator on $H^{1}(\Omega)$

Corollary

Suppose that $a, b, c \in L^{\infty}(\Omega)$, a is uniformly elliptic, $L=-\partial_{i}\left(a_{i j} \partial_{j}\right)+b_{i} \partial_{i}+c$.
For every $u \in H^{1}(\Omega)$, define a map $L u: H_{0}^{1}(\Omega) \rightarrow \mathbb{R}$ by

$$
(L u)(\varphi)=B(u, \varphi) \text { for all } \varphi \in H_{0}^{1}(\Omega)
$$

Then $L u: H_{0}^{1}(\Omega) \rightarrow \mathbb{R}$ is bounded linear, i.e.
$L u \in\left(H_{0}^{1}(\Omega)\right)^{*}=: H^{-1}(\Omega)$.
Furthermore, L is a bounded linear map from $H^{1}(\Omega)$ into $H^{-1}(\Omega)$.

L as an operator on $H^{1}(\Omega)$

Proof

- Linearity if clear. By the energy estimate, $|(L u)(\varphi)| \leq C\|u\|_{H^{1}}\|\varphi\|_{H^{1}}$ and so $L u$ belongs to $H^{-1}(\Omega)$.
- Furthermore, we have

$$
\|L u\|_{H^{-1}(\Omega)}=\sup _{\varphi \in H_{0}^{1}(\Omega),\|\varphi\|_{H^{1}} \leq 1}|L u(\varphi)| \leq C\|u\|_{H^{1}}
$$

This means $L \in \mathscr{L}\left(H^{1}(\Omega), H^{-1}(\Omega)\right)$.

Weak sense vs H^{-1} sense

Corollary

u is a weak solution to $\left(^{*}\right)$ if and only if $L u=f+\partial_{i} g_{i}$ as elements of $H^{-1}(\Omega)$.

Here $f+\partial_{i} g_{i}$ is viewed as an element of $H^{-1}(\Omega)$ by letting

$$
\left(f+\partial_{i} g_{i}\right)(\varphi)=\int_{\Omega}\left[f \varphi-g_{i} \partial_{i} \varphi\right] d x
$$

$W^{1, p}$ solutions

Remark

One can similarly define a notion of $W^{1, p}$ solutions to $\left(^{*}\right)$ and (BVP) using $p \neq 2$. The treatment for these type of solutions is beyond the scope of this course.

An existence theorem

Theorem

Suppose that a, $c \in L^{\infty}(\Omega)$, a is uniformly elliptic, $c \geq 0$ a.e. in Ω, and $L=-\partial_{i}\left(a_{i j} \partial_{j}\right)+c$ (i.e. $b \equiv 0$). Then for every $f \in L^{2}(\Omega)$, $g \in L^{2}(\Omega)$ and $u_{0} \in H^{1}(\Omega)$, the Dirichlet boundary value problem

$$
\left\{\begin{aligned}
L u & =f+\partial_{i} g_{i} & & \text { in } \Omega, \\
u & =u_{0} & & \text { on } \partial \Omega .
\end{aligned}\right.
$$

has a unique weak solution $u \in H^{1}(\Omega)$.

An existence theorem

The above theorem is a consequence of the following statement:

Theorem

Suppose that a, $c \in L^{\infty}(\Omega)$, a is uniformly elliptic, $c \geq 0$ a.e. in Ω, and $L=-\partial_{i}\left(a_{i j} \partial_{j}\right)+c$ (i.e. $b \equiv 0$). Then $\left.L\right|_{H_{0}^{1}(\Omega)}$ is a bijection from $H_{0}^{1}(\Omega)$ into $H^{-1}(\Omega)$.

Indeed, if we let $L^{-1}: H^{-1}(\Omega) \rightarrow H_{0}^{1}(\Omega)$ be the inverse of $\left.L\right|_{H_{0}^{1}(\Omega)}$, then the unique solution to (BVP) is given by

$$
u=u_{0}+L^{-1}\left(-L u_{0}+f+\partial_{i} g_{i}\right)
$$

An existence theorem

First proof: Riesz representation theorem.

- Observe that the bilinear form associated with L is positive in $H_{0}^{1}(\Omega)$:

$$
\begin{aligned}
B(u, u) & =\int_{\Omega}\left[a_{i j} \partial_{j} u \partial_{i} u+c u^{2}\right] d x \\
& \geq \lambda\|\nabla u\|_{L^{2}}^{2} \geq \frac{1}{C}\|u\|_{H^{1}}^{2} \text { for all } u \in H_{0}^{1}(\Omega)
\end{aligned}
$$

Hence $B(\cdot, \cdot)$ defines an inner product on $H_{0}^{1}(\Omega)$, which is equivalent to the standard inner product of $H_{0}^{1}(\Omega)$.

- Thus, by the Riesz representation theorem, for every $T \in H^{-1}(\Omega)$ there exists a unique $u \in H_{0}^{1}(\Omega)$ such that

$$
B(u, v)=T v \text { for all } v \in H_{0}^{1}(\Omega)
$$

But this means precisely that $L u=T$. We conclude that $\left.L\right|_{H_{0}^{1}(\Omega)}$ is a bijection from $H_{0}^{1}(\Omega)$ into $H^{-1}(\Omega)$.

