C4.3 Functional Analytic Methods for PDEs Lecture 12

Luc Nguyen
luc.nguyen@maths

University of Oxford

MT 2021

In the last lecture

- Linear elliptic equations of second order
- Classical and weak solutions
- Energy estimates
- First existence theorem: Riesz representation theorem

This lecture

- First existence theorem: Direct method of the calculus of variation.
- Second existence theorem: Fredholm alternative.

An existence theorem

Theorem

Suppose that a, $c \in L^{\infty}(\Omega)$, a is uniformly elliptic, $c \geq 0$ a.e. in Ω, and $L=-\partial_{i}\left(a_{i j} \partial_{j}\right)+c$ (i.e. $b \equiv 0$). Then for every $f \in L^{2}(\Omega)$, $g \in L^{2}(\Omega)$ and $u_{0} \in H^{1}(\Omega)$, the Dirichlet boundary value problem

$$
\left\{\begin{aligned}
L u & =f+\partial_{i} g_{i} & & \text { in } \Omega, \\
u & =u_{0} & & \text { on } \partial \Omega
\end{aligned}\right.
$$

has a unique weak solution $u \in H^{1}(\Omega)$.

\|

Theorem

Suppose that a, $c \in L^{\infty}(\Omega)$, a is uniformly elliptic, $c \geq 0$ a.e. in Ω, and $L=-\partial_{i}\left(a_{i j} \partial_{j}\right)+c$ (i.e. $b \equiv 0$). Then $L_{H_{0}^{1}(\Omega)}$ is a bijection from $H_{0}^{1}(\Omega)$ into $H^{-1}(\Omega)$.

An existence theorem

First proof: Riesz representation theorem.

- The equation $L u=T$ with $T \in H^{-1}(\Omega)$ is equivalent to

$$
B(u, v)=T v \text { for all } v \in H_{0}^{1}(\Omega)
$$

- The bilinear form $B(\cdot, \cdot)$ defines an inner product on $H_{0}^{1}(\Omega)$, which is equivalent to the standard inner product of $H_{0}^{1}(\Omega)$. The conclusion is reached using the Riesz representation theorem.
Second proof: Direct method of the calculus of variation.
We'll use the fact that $H_{0}^{1}(\Omega)$ is weakly closed in $H^{1}(\Omega)$. This is a consequence of the following general theorem:

Theorem (Mazur)

Let K be a closed convex subset of a normed vector space $X,\left(x_{n}\right)$ be a sequence of points in K converging weakly to x. Then $x \in K$.

An existence theorem

Second proof

- Fix $T \in H^{-1}(\Omega)$ and define the 'variational energy':

$$
I[v]=\frac{1}{2} B(v, v)-T_{v} \text { for } v \in X:=H_{0}^{1}(\Omega) \text {. }
$$

The key point of the proof is the fact that: $u \in X$ solves $L u=T$ if u is a minimizer or I on X i.e. $I[u] \leq I[v]$ for all $v \in X$.

- Step 1: Boundedness of minimizing sequence.
$\overline{\text { Let } \alpha=} \inf _{X} I \in \mathbb{R} \cup\{-\infty\}$. Note that $I[0]=0$ and so $\alpha \leq 0$. Pick $u_{m} \in X$ such that $I\left[u_{m}\right] \rightarrow \alpha$. We show that the sequence $\left(u_{m}\right)$ is bounded in $H^{1}(\Omega)$.
\star By the ellipticity and the non-negativity of c, we have

$$
B\left(u_{m}, u_{m}\right)=\int_{\Omega}\left[a_{i j} \partial_{j} u_{m} \partial_{i} u_{m}+c u_{m}^{2}\right] d x \geq \lambda \int_{\Omega}\left|\nabla u_{m}\right|^{2} d x
$$

An existence theorem

Second proof

- Step 1: Boundedness of minimizing sequence $\left(u_{m}\right)$.
\star Hence, by Friedrichs' inequality, $B\left(u_{m}, u_{m}\right) \geq \frac{1}{C}\left\|u_{m}\right\|_{X}^{2}$.
* It follows that

$$
\begin{aligned}
I\left[u_{m}\right] & =\frac{1}{2} B\left(u_{m}, u_{m}\right)-T u_{m} \geq \frac{1}{2 C}\left\|u_{m}\right\|_{X}^{2}-\|T\|\left\|u_{m}\right\|_{X} \\
& \geq \frac{1}{4 C}\left\|u_{m}\right\|_{X}^{2}-C\|T\|^{2}
\end{aligned}
$$

* On the other hand, as $I\left[u_{m}\right] \rightarrow \alpha \leq 0$, we have $\left(I\left[u_{m}\right]\right)$ is bounded from above. Therefore $\left(u_{m}\right)$ is bounded in X.
- Step 2: The weak convergence of $\left(u_{m}\right)$ along a subsequence to a minimizer of I.
* Since $H^{1}(\Omega)$ is reflexive, the bounded sequence $\left(u_{m}\right)$ has a weakly convergent subsequence.
\star We still denote this subsequence $\left(u_{m}\right)$ so that $u_{m} \rightharpoonup u$ in $H^{1}(\Omega)$.

An existence theorem

Second proof

- Step 2: The weak convergence of $\left(u_{m}\right)$ along a subsequence to a minimizer of I.
$\star u_{m} \rightharpoonup u$ in H^{1}.
\star As X is weakly closed in H^{1} and $\left(u_{m}\right) \in X$, we have that $u \in X$.
\star By definition of weak convergence, we have $T u_{m} \rightarrow T u$. We claim that

$$
\begin{equation*}
\liminf _{m \rightarrow \infty} B\left(u_{m}, u_{m}\right) \geq B(u, u) \tag{}
\end{equation*}
$$

Once this is shown, we have that $I[u] \leq \lim \inf I\left[u_{m}\right]=\alpha$ and so $I[u]=\alpha$.

An existence theorem

Second proof

- Step 2: The convergence of (u_{m}) along a subsequence to a minimizer of I.
\star We now prove $\left(^{*}\right)$, i.e. $\liminf _{m \rightarrow \infty} B\left(u_{m}, u_{m}\right) \geq B(u, u)$.
\star To illustrate the idea, let us consider for now the case $c=0$ and $a_{i j}=\delta_{i j}$. Then

$$
\begin{aligned}
B\left(u_{m}, u_{m}\right)-B(u, u) & =\int_{\Omega}\left[\left|\nabla u_{m}\right|^{2}-|\nabla u|^{2}\right] d x \\
& =\int_{\Omega}\left|\nabla\left(u_{m}-u\right)\right|^{2} d x+2 \int_{\Omega} \nabla\left(u_{m}-u\right) \cdot \nabla u d x
\end{aligned}
$$

The first term is non-negative. The second term converges to 0 as $\nabla\left(u_{m}-u\right) \rightharpoonup 0$ in L^{2}. Hence

$$
\liminf _{m \rightarrow \infty}\left[B\left(u_{m}, u_{m}\right)-B(u, u)\right]=\liminf _{m \rightarrow \infty} \int_{\Omega}\left|\nabla\left(u_{m}-u\right)\right|^{2} d x \geq 0
$$

An existence theorem

Second proof

- Step 2: The convergence of $\left(u_{m}\right)$ along a subsequence to a minimizer of I.
* The proof in the general case is similar. We compute

$$
\begin{gathered}
B\left(u_{m}, u_{m}\right)-B(u, u)=\int_{\Omega}\left[a_{i j} \partial_{i}\left(u_{m}-u\right) \partial_{j}\left(u_{m}-u\right)+c\left(u_{m}-u\right)^{2}\right] \\
+\int_{\Omega}\left[a_{i j} \partial_{i}\left(u_{m}-u\right) \partial_{j} u+a_{i j} \partial_{i} u \partial_{j}\left(u_{m}-u\right)\right. \\
\left.+2 c\left(u_{m}-u\right) u\right] d x
\end{gathered}
$$

Again, the first integral is non-negative while the second and third terms tend to zero. The claim (*) follows, and we conclude Step 2.

An existence theorem

Second proof

- Step 3: We show that u solves $L u=T$, i.e. $B(u, \varphi)=T \varphi$ for all $\varphi \in X$.
\star For $t \in \mathbb{R}$, let $H(t)=I[u+t \varphi]$.
\star As shown in Step 2, $I[u] \leq I[u+t \varphi]$ for all t. Hence H has a global minimum at $t=0$.
* Now note that $H(t)$ is a quadratic polynomial in t :

$$
\begin{aligned}
H(t) & =\frac{1}{2} B(u+t \varphi, u+t \varphi)-T(u+t \varphi) \\
& =I[u]+\frac{1}{2} t(B(u, \varphi)+B(\varphi, u)-2 T \varphi)+\frac{1}{2} t^{2} B(\varphi, \varphi) .
\end{aligned}
$$

* We deduce that

$$
0=H^{\prime}(0)=\frac{1}{2}(B(u, \varphi)+B(\varphi, u)-2 T \varphi)
$$

\star Since B is symmetric, we deduce that $B(u, \varphi)=T \varphi$ as wanted.

An existence theorem

Second proof

- Step 4: We prove the uniqueness: If \bar{u} also solves $L \bar{u}=T$, then $\bar{u}=u$.
* It suffices to show that if $L u=0$, then $u=0$.
$\star L u=0$ means $B(u, \varphi)=0$ for all $\varphi \in X$. In particular $B(u, u)=0$.
* But we showed in Step 1 that $B(u, u) \geq \frac{1}{C}\|u\|_{X}^{2}$. Therefore $u=0$.

An example of non-existence and non-uniqueness

We now consider a motivating example for our next discussion:

$$
\left\{\begin{align*}
L u & =-u^{\prime \prime}-u=f \\
u(0) & =u(\pi)=0
\end{align*}\right.
$$

- This problem has no uniqueness, as the function $v_{0}(x)=\sin x$ satisfies $L v_{0}=0$ and $v_{0}(0)=v_{0}(\pi)=0$.
- Furthermore, if (Ω) is solvable, then upon multiplying with v_{0} and integrating we get

$$
\begin{aligned}
\int_{0}^{\pi} f v_{0} d x & =\int_{0}^{\pi}\left[-u^{\prime \prime} v_{0}-u v_{0}\right] d x=\int_{0}^{\pi}\left[u^{\prime} v_{0}^{\prime}-u v_{0}\right] d x \\
& =\int_{0}^{\pi}\left[-u v_{0}^{\prime \prime}-u v_{0}\right] d x=0
\end{aligned}
$$

Hence, when $\int_{0}^{\pi} f v_{0} d x \neq 0$, the problem (Ω) is not solvable.

An example of non-existence and non-uniqueness

- No uniqueness. Solvable only if $\int_{0}^{\pi} f v_{0} d x=0$.
- Conversely, suppose $\int_{0}^{\pi} f v_{0} d x=0$. If $f \in L^{2}(0, \pi)$, we can write
$f=\sum_{\substack{n=2 \\ \infty}}^{\infty} f_{n} \sin n x$ with $\left(f_{n}\right) \in \ell^{2}$. Formally expanding
$u=\sum_{n=1}^{\infty} u_{n} \sin n x$ gives
u_{1} is arbitrary and $u_{n}=\frac{f_{n}}{n^{2}-1}$ for $n \geq 2$.

An example of non-existence and non-uniqueness

- Let us check that $u_{*}:=\sum_{n=2}^{\infty} \frac{f_{n}}{n^{2}-1} \sin n x$ belongs to $H_{0}^{1}(0, \pi)$ and satisfies $L u_{*}=f$ in the weak sense.
* The function $\sin n x \in H_{0}^{1}(0, \pi)$ and has norm

$$
\|\sin n x\|_{H^{1}}^{2}=\int_{0}^{\pi}\left[n^{2} \cos ^{2} n x+\sin ^{2} n x\right] d x=\frac{\left(n^{2}+1\right) \pi}{2} .
$$

* The system $\{\sin n x\}$ is orthogonal in $H^{1}(0, \pi)$.
* It follows that

$$
\begin{aligned}
\left\|\sum_{m_{1} \leq n \leq m_{2}} \frac{f_{n}}{n^{2}-1} \sin n x\right\|_{H^{1}}^{2} & =\sum_{m_{1} \leq n \leq m_{2}} \frac{f_{n}^{2}}{\left(n^{2}-1\right)^{2}} \frac{\left(n^{2}+1\right) \pi}{2} \\
& \leq \frac{5 \pi}{18} \sum_{m_{1} \leq n \leq m_{2}} f_{n}^{2} \xrightarrow{m_{1}, m_{2} \rightarrow \infty} 0 .
\end{aligned}
$$

An example of non-existence and non-uniqueness

- We are checking that $u_{*}:=\sum_{n=2}^{\infty} \frac{f_{n}}{n^{2}-1} \sin n x \in H_{0}^{1}(0, \pi)$ and $L u_{*}=f$.
* Therefore, the series $\sum_{n=2}^{\infty} \frac{f_{n}}{n^{2}-1} \sin n x$ converges in H^{1} to $u_{*} \in H_{0}^{1}(0, \pi)$.
\star To show that $L u_{*}=f$, we consider the truncated series $u_{(N)}=\sum_{n=2}^{N} \frac{f_{n}}{n^{2}-1} \sin n x$ and $f_{(N)}=\sum_{n=2}^{N} f_{n} \sin n x$. These are smooth functions and satisfy $L u_{(N)}=f_{(N)}$. The convergence of $u_{(N)}$ to u_{*} in H^{1} and of $f_{(N)}$ to f in L^{2} thus implies that $L u_{*}=f$ (check this!).

An example of non-existence and non-uniqueness

$$
\left\{\begin{align*}
L u & =-u^{\prime \prime}-u=f \tag{9}\\
u(0) & =u(\pi)=0
\end{align*}\right.
$$

- We conclude that, for given $f \in L^{2}(0, \pi),(\Omega)$ is solvable if and only if $\int_{0}^{\pi} f v_{0} d x=0$. Furthermore, when that is the case, all solutions are of the form $u(x)=u_{*}(x)+C \sin x$ for some particular solution u_{*}.
- Exercise: Check that $u_{*} \in H^{2}(0, \pi)$.

An obstruction for existence and uniqueness

We now return to the general setting: $L=-\partial_{i}\left(a_{i j} \partial_{j}\right)+b_{i} \partial_{i}+c$ is a bounded linear operator from $H^{1}(\Omega)$ into $H^{-1}(\Omega)$.

- Uniqueness holds if and only if $\left.L\right|_{H_{0}^{1}(\Omega)}$ is injective.
- Existence holds if and only if $\left.L\right|_{H_{0}^{1}(\Omega)}$ is surjective.
- If $u \in H_{0}^{1}(\Omega)$ satisfies $L u=T$, then for all $\varphi \in H_{0}^{1}(\Omega)$, we have

$$
T \varphi=B(u, \varphi)=\int_{\Omega}\left[a_{i j} \partial_{j} u \partial_{i} \varphi+b_{i} \partial_{i} u \varphi+c u \varphi\right] d x
$$

If we can integrate by parts once more, we then have

$$
T \varphi=\int_{\Omega} u\left[-\partial_{j}\left(a_{i j} \partial_{i} \varphi\right)+\partial_{i}\left(b_{i} \varphi\right)+c \varphi\right] d x
$$

Hence, if v_{0} is such that $-\partial_{j}\left(a_{i j} \partial_{i} v_{0}\right)+\partial_{i}\left(b_{i} v_{0}\right)+c v_{0}=0$ in Ω, then we must necessarily have $T v_{0}=0$.

The formal adjoint operator

Definition

Let $L u=-\partial_{i}\left(a_{i j} \partial_{j} u\right)+b_{i} \partial_{i} u+c u$. The formal adjoint L^{*} of L is defined as the operator $L^{*}: H^{1}(\Omega) \rightarrow H^{-1}(\Omega)$ defined by

$$
\begin{aligned}
L^{*} v & =-\partial_{i}\left(a_{i j} \partial_{j} v\right)-\partial_{i}\left(b_{i} v\right)+c v, \\
L^{*} v(\psi) & =\int_{\Omega}\left[a_{i j} \partial_{j} \psi \partial_{i} v+b_{i} \partial_{i} \psi v+c \psi v\right] d x \text { for } \psi \in H_{0}^{1}(\Omega) .
\end{aligned}
$$

- The formal adjoint satisfies

$$
L u(v)=B(u, v)=L^{*} v(u) \text { for all } u, v \in H_{0}^{1}(\Omega) .
$$

- For $v \in H^{1}(\Omega)$ and $T \in H^{-1}(\Omega)$, we have $L^{*} v=T$ if and only if

$$
B(\psi, v)=T \psi \text { for all } \psi \in H_{0}^{1}(\Omega)
$$

The Fredholm alternative

Theorem (Fredholm alternative)

Suppose that Ω is a bounded Lipschitz domain. Suppose that $a, b, c \in L^{\infty}(\Omega)$, a is uniformly elliptic, and $L=-\partial_{i}\left(a_{i j} \partial_{j}\right)+b_{i} \partial_{i}+c$.
(1) The boundary value problem

$$
\left\{\begin{aligned}
L u & =f+\partial_{i} g_{i} & & \text { in } \Omega \\
u & =u_{0} & & \text { on } \partial \Omega
\end{aligned}\right.
$$

is uniquely solvable for each $f \in L^{2}(\Omega), g \in L^{2}(\Omega)$ and $u_{0} \in H^{1}(\Omega)$ if and only if $\left.L\right|_{H_{0}^{1}(\Omega)}$ is injective.
(1) The kernels N of $\left.L\right|_{H_{0}^{1}(\Omega)}$ and N^{*} of $\left.L^{*}\right|_{H_{0}^{1}(\Omega)}$ are finite dimensional, and their dimensions are equal.
(i) If N is non-trivial, $(B V P)$ has a solution if and only if $B\left(u_{0}, v\right)=\langle f, v\rangle-\left\langle g_{i}, \partial_{i} v\right\rangle$ for all $v \in N^{*}$.

