BO1 History of Mathematics
 Lecture XIV
 Geometry and number theory

MT 2021 Week 7

Summary

Part 1

- Euclid's Elements revisited
- The parallel postulate
- Non-Euclidean geometry

Part 2

- Number theory down the centuries

Euclid's Elements

Euclid's Elements, in 13 books, compiled c. 250 BC.

Euclid's Elements

Euclid's Elements, in 13 books, compiled c. 250 BC.
Books I-V: definitions, postulates, plane geometry of lines and circles
Book VI: similarity, proportion
Books VII-IX: number theory
Book X : commensurability, irrational numbers, surds
Books XI-XIII: solid geometry ending with the classification of the regular polyhedra

Euclid's Elements

Euclid's Elements, in 13 books, compiled c. 250 BC.
Books I-V: definitions, postulates, plane geometry of lines and circles
Book VI: similarity, proportion
Books VII-IX: number theory
Book X : commensurability, irrational numbers, surds
Books XI-XIII: solid geometry ending with the classification of the regular polyhedra

Euclid in English

BOOK I.

definitions.

1. A point is that which has no part.
2. A line is breadthless length.
3. The extremities of a line are points.
4. A straight line is a line which lies evenly with the points on itself.
5. A surface is that which has length and breadth only.
6. The extremities of a surface are lines.
7. A plane surface is a surface which lies evenly with the straight lines on itself.
8. A plane angle is the inclination to one another of two lines in a plane which meet one another and do not lie in a straight line.
9. And when the lines containing the angle are straight, the angle is called rectilineal.
10. When a straight line set up on a straight line makes the adjacent angles equal to one another, each of the equal angles is right, and the straight line standing on the other is called a perpendicular to that on which it stands.
11. An obtuse angle is an angle greater than a right angle.
12. An acute angle is an angle less than a right angle. 13. A boundary is that which is an extremity of anything.
13. A figure is that which is contained by any boundary or boundaries.
14. A circle is a plane figure contained by one line such that all the straight lines falling upon it from one point among those lying within the figure are equal to one another ;

Canonical English edition by Sir Thomas L. Heath, 1908

See also the Reading Euclid Project

Billingsley's Euclid, 1570

The Elements of Geometrie:
"Faithfully (now first) translated into the Englishe toung" by H. Billingsley, London, 1570

Billingsley's Euclid, 1570

The Elements of Geometrie:
"Faithfully (now first) translated into the Englishe toung" by H. Billingsley, London, 1570

Available online

Billingsley's Euclid, 1570

The Elements of Geometrie:
"Faithfully (now first) translated into the Englishe toung" by H. Billingsley, London, 1570

Available online
Preface by John Dee

Dee＇s Preface

saTO THE VNFAINED LOVERS of truthe，and conitant Studentes of Noble Sciences，1OHN DEE of London，bartily
wifheth grace from heauen，and moft profpe－
rous／roceffe in all their boneff attemptes and
excrifes．

Iuine Plato，the great Mafter of many worthy Philofophers， and the conflate auoucher，and
puthy perfiwader of $\eta_{n v m}$ ，Bo Fumm，and Ens ：in his Schole and Academic，fundry times（befides his ordinary Scholers）was vifited of a cerwine linde of men，allured by the noble fame of P hato，and
thie preat commendation of hys the preat commendation of hys
profound and profitable doctrine． Butwhen fuch Hearers，afies long hankening to him，percenued，that the drift of his difcourfes iffued out，to conclude，this V num，Bo－ aim，and Ens，to be Spirimull，Infi－ othyng beyngalledged orexperfed，How，wortdly goods：how，worndly dieni Nothyng beyng aledged or expretted，How，wortdy geods：how，worldy dymi
tic：how，health，Stregth or luftines of body：horyet the meanes，how a merucifous
 the fantafies of thofe hearers，were dampet their opinion of Plate，was clene chaun－ gediy ca his doatrine wis by them de fpifed：and his fehole，no more of them vifi－ ted．Which thing，his Schofer，Ariforlf，narrowly cöfiveting，founde the caufe ther－ of，to be，For that they had no forwarnyng and infomation，in genenall，whereto his doettrine tended．For，fo，might they haue had occalion，citter to haue forborne his fthole hauntyng：（if they，thenladid mililiked his Scope and purpofe）or con－ ftantly to hate continued theninto their fulf fatifaction ：iffuch his finall fcope \＆ intent，had ben to ther delire．Wherfore，Amptrhs，cuer，aiter that，ved in bricf，to ende，he rooke in hand to f peake，orteach．While I confidet the diuere trades of ？ thefe two excellent Philolophers（and ammoft fure，both，that Phato righe well，o－ therwile could teach ：and dint © Prifote mought boldely，with his hearers，haue dealt in like forte as Phato did） 1 am in no little pang of perplexitic：Bycaufe，that， which I mifilike is moft cafy for me to performe（and to haue Plato for ny exple．） And thit，which 1 know to be moft commendable：and（in this firf bringynginto common hifficultie and fundty daungers．Yes，neether do It think itmete，for fo fraunge grase ter（as now is ment to be publifhed）and to fo ftruungean audience，to be bfuntly， at firt，put forth，withouta peculiar Prefice ：Nor（Imitacyng Arjfothe）well tan hope，thar accordyng to the amplenes and dignitic of the State crathematicalk， 1 am able，either playnly to prefcribe the materiall boundes ：or preciffly to experffe the chicf purpoles，and mioft wonderfull applicationstherof．And though Iam liure，that fuch as didflorinke from Plaro his ichole，after they had perceined his fi－

Dee's 'Groundplat'

Dee's 'Groundplat'

See: Jennifer M. Rampling, 'The Elizabethan mathematics of everything: John Dee's 'Mathematicall praeface' to Euclid's Elements', BSHM Bulletin: Journal of the British Society for the History of Mathematics 26(3) (2011) 135-146

Billingsley's Preface, pp. 1, 3

q. 513

Eu $23^{5}=$ The Tranflator to the Reader:
 Here is (gentl Reader) nothing
(tbe word of God onely fet apare)
 dornetb the poule and minde of $m \bar{a}$, as dotb the c nuondedge of good artes and fiences: ar the fnowIedgco of naturalland morall PbiLofophbic. Theoriefetetetb befoure our eyes, the ireatures of G ad, bot bin the beauens about, and in the eartb beneath : in which as in a g gape, we bebolde the exceding maieftic and wijedome of God, in adorning and boautifing them as we fee : in geniing. .mso them fuch woonderfulland manifolde proprities, and naturall morkinges, and that \int odiwerfly and in fuch varietie: farther in maintaining and conferuing then continually, wberceby to praife and adore bim, as by S.Paule we are tangbt. The other teacbetb proules and preceptes of vertuc, buas, in conmon lifeamongeff men-, we ung br to walle ypright b: what dwetierpertaine to our felues, nebat pertaine to bo be goucmment or god order both of an bouloolde, and allo of a a itie or coimmon meatth. The reading lit nevije of bystaries, conduceth not a hitle, ta the adorning of the foule co minde of man a afudie ef fll meac cöncended: by itare feenc and hnownen the artes and deinges of infinite mife men gone before vs. In bijfories arce contaioned infinitecexamplese of beroicall vertuss to beog wis followed, and borriblifex-
 there are which bexamife the minde of mans buncof all ot ther none domoregarmijbe or becantiffits then thof anter which arecal. led Matbematical. Unto the hnowledglge finbich noman can attaine, without the per fele kuonpledge and infloutrion of the principles groundes and Elementes of Geametrie . But perQT.ii.
fectly
suthe Tranflater tothe Reader. well perceaue. The fruite and gaine which I require for thefe my paines and traunaile, /hall be nothing els, but onely that thoo gentle reader, will grate fully acceppt the fame : and that thon maye f t berectby receaue fone proffer:and moreoner to excite and firrevp others learned, to do the like, ev to takep paines in that bebalfe. By meaner wh berof, our Eng lifbe tounge haall no leffe be enriched with good Authors, tbenare other flaunge tonnger: as the Dusch, Frencb, Ftalian, and Spanilhe: : in which areved all good auth bors in a maner, found amongel the Gretes or Latines. Which is the chiefeff cany, , that anongeft the do foo
rijbefo omany cunning and /ilfful men, in tbe imentions of
fraunge and wonderfull tobinges, as in thefe our daies
ne fec there do. Whib fruite and gaine if 1 attaine गnto, it /ball encourage me bereaffer, in fuch bike fort to tranlatet, and fot abroad fome other good autbors, both pertaining to religion (arpartly I have already done) and
aljo pertaining to the ©Matbe-
matical Idres. Thurg gentle reader farwell.
(? 3$)$

Pop-up Euclid

Jet 2par ome phane /aperficies, and gatheredtegether is ont point.

 Cf

Book I: definitions

- Thefirt booke of Eu-
 clides Elementes.

 raty metry, as, namely, of Lynes, Angies, Triangles, Da
rallecs, Squares, and Parallelogramines. Firitof theye ralks, squates, and Patalielogrames. Fint of theye
definitions, hewyng what they are. After that it tea5 cheth how to draw Parallel lynes, and how to forme divenly flgures of tireefides, a- Foute fides according 1. to the variectic of their fides, ald Aligles : \& copaneth themall with Triangles, \&alifo together the one with fice other. In it allo is tayghe how a figure of any
fomme may be chaunged into a Figure of an other forme may he chaunged into a Figure of an other
fome. And for that itentreateth of thefe moft comCues zex whesken forme. And for that itentreateth of the feconde, mon and gensall thynges, thys booke is more viiusrall then is the feconch, third, or any othet, and thererore intry occupt which follow, and alfo the workes
without which, the other bookes of Erefter whe without which, the others which hauewritenin Geometry, cannot be percearied nor vaderftanded. And forafmach as all the demonfrutions and proofes of all the propofitided. And forafmuch as all the cemon thefe groundes and principles following ons in this whole booke, depence of then of playnes neede no greare declaration, yet to remoue al (beitneuct folitic) obfcuritie, there are here fet ceitaync thorte and manifelf expofitions of them.

so Deffinitions.

1. A fogne or point is that, which hath no parf.

The becrer to volerftand what maner of thing a figne or point is, ye cuut note that the nature and propertie of quantitic (wherof Ccometry entrentsth) 1 sto be deuided fo that whasfoever masy be deuided into fandry partes, iscallid quanticie, Mat a point, althoughit pertayne to quantitie, and hath as beyng in cionatite, yeti
tic, for thatitcamnotbe deuided. Becaufe(as she definition faith) it hath nopartes in tie, for thatitcamnot be decuided. Becanfe((as she definition faith) is hath no partes in-
to which ir flould be devided. So that a peinte is the liant hining that by minde and vnto whichir thould be deaided. So that a peintess the jitat thing that by mincte and vi-
defthanding can be imagined and conceywed a then which, there can be nothing lefle, as the point A in thic margent.

Afigncor point is of $P_{\text {ishggorat }}$ Scholersafter this manner defined: Apgwr is an Aite wench hart pyfian. Nübcrs are conceaued io mynde without any forme \& figure, and therfore aithout matrer wheron to recteaue figure, \& conlequently without place and pofition. Wherfore vnirie beyng a part of number, hath no pofition, or determinate place. Wherby it is manifele, that pamber is mote fimple and pure then is thagui-
 teridll, mind requisecth polition and phace, and therby differeth from vnitiv.

> 2. A line is lengtb without breadfb.

There pertaine to quantitiet three dimenfions, leedeth, bredrth, \&t thicknes, or depch

pypmincemen

The frist Booke

to thefe thrce dimeufions, threc kyndes of continuall quantities : 11 lync, 2 fupetficies,

 relree dumenfions Jt neithir hathlength, breadth, not thickenes. But to a line, which is the firt kynde of quantitic, is attributed the firft dimenfon, namely, Iength, and onely
thaxe for it bath quither beater thax, for it bath neirher breadthnor ehicknes, but is concecaued to be drswne in leng gh
oacly, and by it, it onyy be denided into partes as many oacly, and by it, it onyy be deuided ioto partes as many asyelifteequallior ynequall.Bet
as touching breadeh is remaineth indiumifibs. As the lyne $A B$, which is onely irawen in length, may bedevided in the pointe C equally, or in the point D voequally, and fo into as many partes as yelif. Therc
arealfo of divers other geuen other detinitions of a lyne: as $\overleftarrow{A} \quad \dot{C} \cdot \vec{b}$ there which follow fence malerhatyurg of apyore, as the motion or dranghtof pinne or a peane to yous
 bradibinuliture cess.

3 The endes or limites of it b ye, are pointes.
For a line hath his beginniag fiom a point, and likewifie endeth in a point: fo that by
 As the poinres $\mathcal{C} A, A$, ate ondy the cindes of theline $A B$, and no partes thercof. And
Difigmer of
Fxiticivoporr
of furborm.

 for that although vnitie be the beginning of nombers, and no numbertas a point is che Leginning of quantritic, and no quan-tiric) yet is vnitic a partof number. For number is nothyn elo Huta point is no part of quantitic,or of aly ye:ncither is a lyne compofed of pointes, aze number is of rnities. For things indititibibie being neucr fo nany added together, can
ncuer makea thing diuifile, 29 an inflantin time, is neither tyme only the beginning and end of time, and coupleth \&eioyneth partes of tyme tome but

Dopurifiosofe
Cimponis.

drace Archi- misdes.

Dy Givititberef Alter Plato.

4 Aright bne is that thich liet equally betwene bis pointes.
4 As thie ehopte line ef 8 lyeth frsight and equally betwene thepognecs $A \bar{E}$ without ary going xp or courning downeoneyther fide.
A risho hum at thr fown ofit exters, fefine a daughe line thust

 poynte A, as Gamprones fivaketh of which thane the felf fame limites or codes, as Arsbbinedess foraketh, the 1yae $A B C$, beyng arigbe line, is she thorcelk. Piplarn de fineth arighir line after this maner: Aright yout put zny yout pue any wing in che middle of a cight lyne, you fanlt not fee from the one ende to Afto onowers) then liappencth, when the Sunne, the Moons, \& oure ef arein one (ay line. Far the Moune then being in the midft betwene rs sund the Sumae, caulech it to be

Book I：postulates

of Euclides Elementes．
Fol．6．
a line is a deaught fhom ons point to an other，cherfore frobsthe point D ，which in the ende of the lincer \bar{B} ，may bedrawnalime so fome othar point jas so the point C ，and from that to an o ther，aud fo intinitely：

Von any centre and at any difance，to de／cribe a circle．

A playne fuperficies may in compaffebe extended infi－ nitecy as from any pointe to any pointe may be drawen a right line，by reaforn wherof it cominiech to paffe thits cir de may be defcribed vpon any centre and at any 「pace or
diftance．As rpon the centre A；and vion the f pace $A B$ ，yo may deforibe the circle $B C$ ，so vpon the fanue centre，vpon the diftsnce $A D$ ，yemay defcribe the circle $D E$ ，or yppon the fame centre Al，according to the diftaunce A A．，yo may defcribe the circle $F G$ ，and foinfaitely extendyng your fpace．

4 All right angles areequall the one to the other．

This peticion is moftplaine，and offreth it felfe euen to the fence．For $1 s$ much as a right angle is caured of one rightityne falling perpendicularly yppon an other，and no ous line can fall more perpendiculaly ypo a time then an other；theffore no one tright angle can be greater the an otherwaither do the length or
thortenesof the lines alter the greatnes of the angle．For in the example，the right angle $A B C$ ，though it be made of much lon－ ger Hines thenthe rightangle D D E，whoic lives are much forter，yet is thar angle no greater then the other．Fot if $y \in$ ，tet the point E indt vpan the poine B ，then fay the line
 the line $B C$ ，and fo thal the angle $P E F$ ，be equall to the atgle $A B C$ ，for that the tines Which caufe them，are of likeinclination．
It may emidentiy alfo be cene at the centre of a circle．For if yedraw in a circle bro dianesers，the one cutting the other in the centre by right angles，ye fall denide the circlic into fowre
conall partes，of which echic contavneth one ripht anato，fo are alithe foute right angles about the centre of the circle equall．

5 VVhen a right line falling vpon thoo right lines，dot make on one to the felfe fame yde，the two impardeangles le β se tben two right angles，tben fhal thefe cavorighe lines beyng produced at lengit concrire on that part， in whisbare the two angles le ße then two right angles．
As if the right line $A B$ ，fall ppon two righe lines，
amely，$C D$ and $E F$ ，fo thatit make the two inward namely，$C D$ and E F ．fo thatit mate tie two inward
antes on the one fide，as the angle D HI $F T H$ angles on the one fide，as the angles $P H / \& F I H$ ，
lefle then $5 w o$ inghe anglos（ 2 sioche example they do）the（aid two lines $C D$ ，and $E F$ ，being drawe the forth mlegth on that part，wheron the two angles Exing lefe the ewo right angles conifft，thalatlesth
concurre and mecterogetier：as in the point D ，as
it is eafie to fee．For the partes of the lines towardes $D F$ ，are more enclined the one to

Postulate 5

5 VV hen a right line falling vpon tho right lines, doth make on one ef the felfe fame fyde, the two inpoarde angles le β Se then two right angles, then Shal thefe tho right lines beyng produced at length concurre on that part, in which are the two angles le ße then two right angles.

Postulate 5

5.VV ben a right line falling vpon tho right lines, doth make on one ev the felfe fame fyde, the two invoarde angles le β e then two right angles, then Shal thefet tho right lines beyng produced at length concurre on that part, in which are the two angles le ße then two right angles.

Postulate 5

5.VV ben a right line falling vpon tho right lines, doth make on one ev the felfe fame fyde, the two invparde angles le ße then two right angles, then Thal thefet tho right lines beyng produced at length concurre on that part, in which are the two angles le ße then two right angles.

Postulate 5

5VV ben a right line falling vpon two right lines, doth make on one ev the felfe fame fyde, the two inpparde angles le β Be then two right angles, then Shal the fe two right lines beyng produced at length concurre on that part, in which are the two angles le ße then two right angles.

Equivalent formulation (Proclus, 5th century; John Playfair, 1795): given a straight line L and a point P not on L there is one and only one straight line through P that is parallel to L.

Classical disquiet about the fifth postulate

Original to Euclid?

Classical disquiet about the fifth postulate

Original to Euclid? Less 'self-evident' than the other postulates?

Classical disquiet about the fifth postulate

Original to Euclid? Less 'self-evident' than the other postulates?
Euclid used it (e.g., in the proof of Proposition 29 of Book I), so the property is necessary

Classical disquiet about the fifth postulate

Original to Euclid? Less 'self-evident' than the other postulates?
Euclid used it (e.g., in the proof of Proposition 29 of Book I), so the property is necessary - but does it in fact follow from the other postulates?

Classical disquiet about the fifth postulate

Original to Euclid? Less 'self-evident' than the other postulates?
Euclid used it (e.g., in the proof of Proposition 29 of Book I), so the property is necessary - but does it in fact follow from the other postulates?

Proclus in commentary on Euclid, 5th century (after citing Ptolemy's attempted proof of the parallel postulate, and discussing the nature of truth, with reference to Aristotle and Plato):

It is then clear from this that we must seek a proof of the present theorem, and that it is alien to the special character of postulates.

Classical disquiet about the fifth postulate

Original to Euclid? Less 'self-evident' than the other postulates?
Euclid used it (e.g., in the proof of Proposition 29 of Book I), so the property is necessary - but does it in fact follow from the other postulates?

Proclus in commentary on Euclid, 5th century (after citing Ptolemy's attempted proof of the parallel postulate, and discussing the nature of truth, with reference to Aristotle and Plato):

It is then clear from this that we must seek a proof of the present theorem, and that it is alien to the special character of postulates.

Attempted (unsuccessfully) to prove the fifth postulate on the basis of the others

Classical disquiet about the fifth postulate

Original to Euclid? Less 'self-evident' than the other postulates?
Euclid used it (e.g., in the proof of Proposition 29 of Book I), so the property is necessary - but does it in fact follow from the other postulates?

Proclus in commentary on Euclid, 5th century (after citing Ptolemy's attempted proof of the parallel postulate, and discussing the nature of truth, with reference to Aristotle and Plato):

It is then clear from this that we must seek a proof of the present theorem, and that it is alien to the special character of postulates.

Attempted (unsuccessfully) to prove the fifth postulate on the basis of the others

See Heath, pp. 202-220

Mediaeval disquiet about the fifth postulate

In the Islamic world:

Mediaeval disquiet about the fifth postulate

In the Islamic world:
Ibn al-Haytham (Alhazen) (965-1039) attempted (unsuccessfully) to prove the parallel postulate by contradiction

Mediaeval disquiet about the fifth postulate

In the Islamic world:
Ibn al-Haytham (Alhazen) (965-1039) attempted (unsuccessfully) to prove the parallel postulate by contradiction

Omar Khayyám (1050-1123) attempted to prove the fifth postulate on the basis of the following alternative:
two convergent straight lines intersect and it is impossible for two convergent straight lines to diverge in the direction in which they converge

Described the situations that may occur if the postulate is omitted

Mediaeval disquiet about the fifth postulate

In the Islamic world:
Ibn al-Haytham (Alhazen) (965-1039) attempted (unsuccessfully) to prove the parallel postulate by contradiction

Omar Khayyám (1050-1123) attempted to prove the fifth postulate on the basis of the following alternative:
two convergent straight lines intersect and it is impossible for two convergent straight lines to diverge in the direction in which they converge

Described the situations that may occur if the postulate is omitted
Nasir al-Din al-Tusi (1201-1274) criticised Khayyám's attempted proof, offered his own

Mediaeval disquiet about the fifth postulate

In the Islamic world:
Ibn al-Haytham (Alhazen) (965-1039) attempted (unsuccessfully) to prove the parallel postulate by contradiction

Omar Khayyám (1050-1123) attempted to prove the fifth postulate on the basis of the following alternative:
two convergent straight lines intersect and it is impossible for two convergent straight lines to diverge in the direction in which they converge

Described the situations that may occur if the postulate is omitted
Nasir al-Din al-Tusi (1201-1274) criticised Khayyám's attempted proof, offered his own

Al-Tusi's thoughts found their way into Europe via the writings (1298) of his son Sadr al-Tusi

Early modern disquiet about the fifth postulate

After reading al-Tusi, John Wallis showed that the parallel postulate is equivalent to the following:
on a given finite straight line it is always possible to construct a triangle similar to a given triangle

Early modern disquiet about the fifth postulate

After reading al-Tusi, John Wallis showed that the parallel postulate is equivalent to the following:
on a given finite straight line it is always possible to construct a triangle similar to a given triangle

He lectured on this in Oxford in 1663

Early modern disquiet about the fifth postulate

After reading al-Tusi, John Wallis showed that the parallel postulate is equivalent to the following:
on a given finite straight line it is always possible to construct a triangle similar to a given triangle

He lectured on this in Oxford in 1663
Attempts to prove the fifth postulate on the basis of Euclid's other axioms had resulted only in equivalent forms

Early modern disquiet about the fifth postulate

After reading al-Tusi, John Wallis showed that the parallel postulate is equivalent to the following:
on a given finite straight line it is always possible to construct a triangle similar to a given triangle

He lectured on this in Oxford in 1663
Attempts to prove the fifth postulate on the basis of Euclid's other axioms had resulted only in equivalent forms - so can we have a consistent geometry in which it the parallel postulate fails?

Early hints of non-Euclidean geometry

Giovanni Girolamo Saccheri (1667-1733): sought to establish the validity of Euclidean geometry

Early hints of non-Euclidean geometry

Giovanni Girolamo Saccheri (1667-1733): sought to establish the validity of Euclidean geometry - negated the parallel postulate in search of a contradiction;

Early hints of non-Euclidean geometry

Giovanni Girolamo Saccheri (1667-1733): sought to establish the validity of Euclidean geometry - negated the parallel postulate in search of a contradiction; two cases:

- internal angles of a triangle add up to less than two right angles

Early hints of non-Euclidean geometry

Giovanni Girolamo Saccheri (1667-1733): sought to establish the validity of Euclidean geometry - negated the parallel postulate in search of a contradiction; two cases:

- internal angles of a triangle add up to less than two right angles - contradicts Euclid's second postulate

Early hints of non-Euclidean geometry

Giovanni Girolamo Saccheri (1667-1733): sought to establish the validity of Euclidean geometry - negated the parallel postulate in search of a contradiction; two cases:

- internal angles of a triangle add up to less than two right angles - contradicts Euclid's second postulate
- internal angles of a triangle add up to more than two right angles

Early hints of non-Euclidean geometry

Giovanni Girolamo Saccheri (1667-1733): sought to establish the validity of Euclidean geometry - negated the parallel postulate in search of a contradiction; two cases:

- internal angles of a triangle add up to less than two right angles - contradicts Euclid's second postulate
- internal angles of a triangle add up to more than two right angles - leads to non-intuitive ideas

Early hints of non-Euclidean geometry

Giovanni Girolamo Saccheri (1667-1733): sought to establish the validity of Euclidean geometry - negated the parallel postulate in search of a contradiction; two cases:

- internal angles of a triangle add up to less than two right angles - contradicts Euclid's second postulate
- internal angles of a triangle add up to more than two right angles - leads to non-intuitive ideas

Similar results derived by Johann Heinrich Lambert (1728-1777) in his Theorie der Parallellinien (1766)

Non-Euclidean geometries

Consistent non-Euclidean geometry probably first constructed (tentatively) by Gauss, c. 1817-1830, but remained unpublished

Non-Euclidean geometries

Consistent non-Euclidean geometry probably first constructed (tentatively) by Gauss, c. 1817-1830, but remained unpublished

Problem pursued independently (without success) by Gauss' friend Farkas Bolyai (1775-1856)

Non-Euclidean geometries

Consistent non-Euclidean geometry probably first constructed (tentatively) by Gauss, c. 1817-1830, but remained unpublished

Problem pursued independently (without success) by Gauss' friend Farkas Bolyai (1775-1856)

Pursued (against paternal advice) and solved by János Bolyai (1802-1860): "I have created a new and different world out of nothing" (1823)

Bolyai's geometry

He [Farkas Bolyai] gave me the opinion that if I was really successful, I should quickly make a public announcement and that for two reasons. First because the idea might easily pass to someone else who would then publish it; second because, and this is another truth, several things ripen at the same time and appear in different places in the manner of violets coming to light in early spring, and since all scientific striving is like a great war in which one does not know when peace will come, one must win, if possible; for here preeminence comes to him who is first.
Janos Bolyai, 1823 - as quoted in Barrow-Green, Gray \& Wilson, Volume 2.

Bolyai's geometry

A P P EN D I X.

scientiam spatil alisolute veram exhibens:
a veritate aut falsitats Axiomatis XI Euclidei
(a priopi haud unquam decidenda) independentem: adjecta ad casum falsitatis, quadratura circuli geometrica.

Whetore jomanne bolyay de eadem, Geomotrarum in Exercitn Caesaren Regio Ausiriaco Castrensium Capitaneo.
=

Published as appendix 'The science absolute of space: independent of the truth or falsity of Euclid's axiom XI (which can never be decided a priori)' to father's textbook
Tentamen iuventutem studiosam in elementa matheosos introducendi (1832)

English translation by George Bruce Halstead (1896)

Meanwhile in Russia...

Non-Euclidean geometry developed independently by Nikolai Ivanovich Lobachevskii [Николай Иванович Лобачевский] (1792-1856) using the negation of Playfair's version of the postulate

Lobachevskii's works

©eometriide lluterfuфungen

ィих

Cheoric ber ${ }^{\text {Jatallellinien }}$

bon

शicolaus 2obatichetusft.
Saifetl. ruff. wittl. Stactsratbe unb orb. prof. ber وRatbematif bel ber thiverffat gajon.

Complicated story of dissemination...

Geometriya [Геометрия] written in 1823 but was not published until 1909

Lobachevskii's works

©eometriide lluterfuфungen

ィих

Cheorie Der Warallellinism

ben

शicolaus 2obatichetusft.
Saifet. ruff. witfl. ©taotsratbe unb orb. Prof. Det qlatbematif bel ber Univerfitat ralon.

Complicated story of dissemination...

Geometriya [Геометрия] written in 1823 but was not published until 1909

Ideas presented in Kazan in 1826, published there 1829

Lobachevskii's works

Lobachevskii's works

©eometrijøe ilnterfuфungen

${ }^{\text {дих }}$

Cheorie Der Marallellinism

ben

शicolaus 2obatichetusft.
Saifetl. ruff. wittl. Stactsratbe unb orb. prof. ber وlatbematif bel ber Univerfitat Majon.

Berlin. 1840.
In ber ©. Finfeifden \$u\$banblang

Complicated story of dissemination...

Geometriya [Геометрия] written in 1823 but was not published until 1909

Ideas presented in Kazan in 1826, published there 1829 - but rejected by St Petersburg Academy

Other works in Russian, French and German, including Geometrische Untersuchungen zur Theorie der Parallellinien (1840), Pangéométrie (1855)

Acceptance and impact of non-Euclidean geometries

Slow to gain acceptance due to

- obscurity of publications

Acceptance and impact of non-Euclidean geometries

Slow to gain acceptance due to

- obscurity of publications
- lack of intuitive understanding

Acceptance and impact of non-Euclidean geometries

Slow to gain acceptance due to

- obscurity of publications
- lack of intuitive understanding

But non-Euclidean geometries

- overturned old ideas of mathematical certainty

Acceptance and impact of non-Euclidean geometries

Slow to gain acceptance due to

- obscurity of publications
- lack of intuitive understanding

But non-Euclidean geometries

- overturned old ideas of mathematical certainty
- introduced new ideas about space

Acceptance and impact of non-Euclidean geometries

Slow to gain acceptance due to

- obscurity of publications
- lack of intuitive understanding

But non-Euclidean geometries

- overturned old ideas of mathematical certainty
- introduced new ideas about space
- helped drive the late 19th-century move towards axiomatisation

Part 2: Early Number Theory

Euclid on numbers

Euclid on numbers (positive integers)

Euclid on numbers (positive integers)

of Exclides Elementes? Fol.i84.

 Thas much of filis for the declazitionof the thingel fllowiog.

1. Apart is aleflemomber in comparifon to the grater when the
-rgorneafucto the grates.

As he number sompurd to the mamber t12 is apart. For 3 ina lefle number then in thand mo

+ Partes are a le β enkmber in refpect of thegreater, when the lege menfisn Thefiarsh de
reth not thegreater.

$$
\begin{aligned}
& \text { I Multiplex is agrater number in comparifon of the le } \beta \text {, when the lege theforb dos } \\
& \text { medufretb the greater. }
\end{aligned}
$$

6 Anenen nomber is that, which mos be desided into two equal partes.
As the number \& may be deilided into 3 and s which are hls partes, and they are equall, she ooe not

 i. Ai encn number is thar which may be

The Euclidean algorithm (Proposition VII.2)

. 281.63

Thefewenth Booke to

 ble. Wherfore ns namber doth nestfive she numbers AB and CD , whog fore the numbers

The conuerfe of tuis propofitionafter Campane.

Thenamerpor
f

 Iheffarg sherumbers Asadad CD azesumbers corppofed:whefore they are not prime dhe one so the

 Ofthe Iedeffont hiegreater, you come at the leng th to vnitic. Then are thole numbers gewen prime the one to the othicy, Bat if there be a fay before you come to vaitic, then
are the numbers genen, numbers compofed the one fo the other.

> oTbe s. Probleme. The 2. Propoficion.?
*hdituo mamiers being gewen not prime the one to the other, to finde onc their Thatugrate fle compnon meafure.

of Eudides Elementes.
Fol. 189.

 me CD

 CF

 \qquad fore dfla it metfineth the relidee, wawty, AE (by the + comamas fentence of the fo

Corroling.

Hercbu it is manifff, that if a number mea fure two nwmbers it fhall alfo mesfare theingreateft common meafive. For if it meafure the whole \& the parteaken away, it fhall alwayes meifure the refidueallo, which refidue is as the length, the greatelt common meafure of the two mumbers genen.

> IThe 2.Probleme.

Tbs. Propofition.
Th bre nanbers being geuen yot prime the one to the other: to finde out tbeir

 br Cornot.

Finflet D mesfure C . .Andit $A f /$ med ineth the nomber, A and B , wherfore D

Euclid on prime numbers

Euclid on prime numbers

12 A prime (or firff) number is that, Dobich onely onitie doth meafure. As $\$$.7.ri. r . For no number meafureth ξ, but onely vnitie. For $\boldsymbol{\gamma}$.vnities make the number s. Sona number meafurech 7 , but onely vnitie. z.taken 3 .times makech 6 , which is leffe then 7 : and 2 , taken 4 times is 8 , which is more then 7 . And fo of 11.13 . and fuch others. So that all prime numbers, which alfo are called firft numbers, and numbers vncompofed, haue no part to meafure thê,but onely ynitie.s

Euclid on prime numbers (Proposition IX.20)

> of Euclides Elementes. Fol,232.
 fourth nawher prepartionall with she fonambors B, B, C. Fso if it be pasible, let there be
 Eequall to shat whichis prodsced of B into C. Det that nobict is prodxced of B into C is D. Wherfore that wivich ss produced of A inso E is cquall unfo D. Wherefore A multiptiteng 5 praduced D, wheref ore A meef areth D, but it alfo menfurcth it not, which is impopible: Wher

But now fuppofe
thas $A_{2} B, C$ benei-
Stier in continiwal fo their enirkmes be fo their currumes be prime tbe ane to the
ather And lat B moll

 poffille : which was required se be troned.

> 5The 20. Theoreme.

Prime numbers being genen bow many foencr, there may, be genen more prime numbers.


```
            SINAvd vato D E didevwitie D F, Now EF iseishor a prime mamber or nof.
            Fifflec is be a prime number, then are there fownd.
efleprme nmmbers A,D,C;and EF more in wonith-
Nat then the prime numbors fofIf gouen }A,\mp@subsup{B}{1}{\prime}C\mathrm{ C.
                A...
#us now wopol chas E F LC nor prime. What for
gonse promenumber menfurath it (by the 24, of the fe E IIt D.F
wemt), Lera; pine number mediurc it, messety, G.
Then If cy, that G w now of thege mambers A,B,C.Fo
```



```
somber. Wherefore thare Are fownd thofe prime sambers A,B,C,G, boing more tm mulfitade
then she prime numblers gener }A,B,C\mathrm{ , whbich mas required so be demusjfrated.
* A Corollary.
```

By thys Propolition itismanifff, that the multitude of prime numbers is infinite.

Euclid on prime numbers (Proposition IX.20)

of Euclides Elementes. Fol.232.

 Esequall to shat which is produced of 8 into C. Sut that which is prodxced of B nnto C is D. Whar fors that sibith is produced of A inso Evs cquall unto D. Wherefore A mwiripitang A
 whenferaer A mentifurcth not D.
Sut now fugpofe
thas A, B, C benei-
sher in contintidll
sher in continsaall
propurta, wicither al
fo their currwer be
$A \ldots \ldots$
B
C
E
D_{1350}
sther And lic B Bme
tiptiresg C produce D. And in tike fortemay weprowe that if A do menfare D, it is pof $]$ I funde cut if forth nambler propertionall winh them. But if it do sot meaffore D, the sh it poflule : which ness required se be prosed.
\$Tbe 20. Theoreme. The 20. Propofition.

Prime numbers being genen bow many forwer, there maty be geren,
prime numbers.

Prime numbers being geuen bow many foeuer, there may be genen more prime numbers.

$4(30$
$\left.y^{2}\right)^{2}$
andKppofe that the prime numbers genen be $\propto A, B, C$. Then I fay, that there are yet more prime numbers befides A, B, C. T ake (by the 38 .of the feuenth) the left number whom the fe numbers \mathcal{A}, B, C do meafure, and let the fame be $D E$. And vnto D E adde vnitie D F. Now E F is either a prime namber or not. Firft let it be a prime number, then are therefound the fe prime numbers A, B, C, and E F more in multitude then the prime numbers firft geven A, B, C.
But now fuppole that E F be not prime. Wherefore Some prime number meafureth it (by the 24 . of the fewenth). Let a prime number meafure it, namely, G.

```
A..
```

```
B
```

B
C
C
EIIA D,F

```
EIIA D,F
``` \(T\) hen I \(f a y\), that \(G\) is none of thefe numbers \(A, B, C\).For if \(G\) be one and the \(\int\) ame with any, of the \(f \in A, B, C . B u t, A, B, C\), meaf ure the niwber \(D\) E: wher. fore \(G\) alfo mead ureth \(D E\) : and it alfo meaf ureth the whole \(E F\).Wherefore \(G\) bcing a num ber fhall meaf ure the refidue \(D\) F being vnitie: which is impoßible. Wherefore \(G\) is not one and the fame with any of thefe prime numbers \(A, B, C\) : and it is alfo fuppofed to be a prime number. Wherefore there are found thefe prime numbers \(A, B, C, G, b e i n g\) more in multitude then the prime numbers geuen \(A, B, C\) - which was required to be demonfirated.

By thys Propofition itismanifeft, that the multitude of prime numbers is infini...

\section*{Euclid on perfect numbers}
of Eurlides Elementes．Fol． 187.

 Fepontionall eambist，

 apnuefhitfelfe within the linites and bendes sof fatio call quazitice and raumben．
22．Like plaine nunters，and like folide numbers，are fuch，wlich bake tbeir fides proportionall．

Before he thewed thax a plaine number hath two fifes，and a Folide number three fides．Now he

2）Aperfect number is that，which is equall to all his partes．

\section*{Euclid on perfect numbers}
of Eurlides Elementes. Fol. 187.

23 A perfect number is that, which is equall to all lis partes.
As the partes of 6 are 1.2.3. three is the halfe of 6 , two the third part, and 1 , the fixth part, and mo partes 6 hath not: which three partes \(1,2,3\), added toget her, make 6 the whole number, whofe partes they are. Wherfore 6 is a perfect number. So likewifc is 28 a perfed number, the partes whereof are thefe numbers 14.7 .2 and \(1: 14\) is the halfe therof, 7 is the quarter, 4 is the fewenth part, 2 is a fourtenth part, and 12028 part, and thefe are all the partes of 23 . all which, namely, \(1,2,4,7\) and 14 added together, make iufly without more or leffe 28. Wherfore 28 is a perfect number, and fo of others the like. This kinde of numbers is very rare and feldome found. From \(I\) to 10, there is but one perfect num ber, namely 6 . From no to an 102, there is alfo but one, that is, 28 . Alfo from roc to 1000 there is but one which is 496 . From 1000 to 10000 hikewife but one. So that betwene euery ftay in numbring, which is euer in the tenth place, there is found but one perfect number And for their rarenes and great perfection, they are of maruelous vfe in magike, and in the fecret part of philofophy.
- Thiskinde frumberli - 1 - - magike, and

\section*{Euclid on perfect numbers (Proposition IX.36)}

\section*{Euclid on perfect numbers (Proposition IX.36)}

\section*{The ninthBooke}
 and \(L E\), to \(D, B C\), and \(A\) (thy the it of the fremeth), But it 's proved, that \(\bar{K} H\) ise
 of the fecond is vato the forf, fo is the cexoge of the loft to all the nambers going before the huf: which wa regqured to be prosed.

1ffrom wnitie be taken numbers how many foener in doxble proportion
Iffrom pnitie be taken numbers how many foeuer in double proportion continually, pontill the whole added together be a prime number, and if the whole multiplying the laft produce any number, that which is produced is a perfectenumber.

Conlinatians. How masy in mustitude \(A, B, G, D\), are, fa wany in consinnall dowble propartion talk beginaing of \(E\), whichl lat be the members \(E, H K, L\), sad \(M\). Wherefore of equalisie (by

 arthe cxrey] of the found number is wo the firl menober, fois she excej] of the Lait to all the

\section*{Euclid on perfect numbers (Proposition IX.36)}

\section*{ThenintbBooke}
 and \(L E\), to \(D, B C\), and \(A\) (ty she 12. of the (rwenth). But in ts prowed, that \(\pi H\) Hise
 of the fcoend is wato the forf, fo is the exarse e of the iaft to all ther numblers going before the haf: which was required to be prosed.

1ffrom mitie be taken nombers how many foener in dowble proportion
Iffrom mitie be taken numbers bow many foeuer in double proportion continually, pontill the whole added together be a prime number, and if the whole multiplying the laft produce any number, that which is produced is a perfecten number.

Contrinatians. How many in multitade \(A, B, G, D\), ane, fa wany in continnall donble propartion take beginaing an \(E\), which let be the numbers \(E, H K, L\), and \(M\). Wherefore of equalisie (by
 ro \(D\), is the number \(F G . W W\) herefier that mivich is troduced of \(A\) into \(M\), is cinudl viste \(F G\).
 Thich far in \(A\). But \(A\) is the number tup . Wherefure \(F G\) is dowble to \(M\). And the nomer.

 the C cound number \(K H\), and f f om the lgd \(F G\) a mamber equall ento obe firl, nowely, to \(E\) :

In modern terms: if \(2^{n}-1\) is prime, then \(2^{n-1}\left(2^{n}-1\right)\) is perfect

Number theory after Euclid
Very little for many centuries...

\section*{Number theory after Euclid}

Very little for many centuries...
Recall that Diophantus' Arithmetica (13 books, c. AD 250) featured number problems;

\section*{Number theory after Euclid}

Very little for many centuries...
Recall that Diophantus' Arithmetica (13 books, c. AD 250) featured number problems; for example [from Lecture VIII]:

Problem I.27: Find two numbers such that their sum and product are given numbers

\section*{Number theory after Euclid}

Very little for many centuries...
Recall that Diophantus' Arithmetica (13 books, c. AD 250) featured number problems; for example [from Lecture VIII]:

Problem I.27: Find two numbers such that their sum and product are given numbers

The Arithmetica also features problems and ideas that we would now classify as number-theoretic;

\section*{Number theory after Euclid}

Very little for many centuries...
Recall that Diophantus' Arithmetica (13 books, c. AD 250) featured number problems; for example [from Lecture VIII]:

Problem I.27: Find two numbers such that their sum and product are given numbers
The Arithmetica also features problems and ideas that we would now classify as number-theoretic; for example:

Problem III.19: To find four numbers such that the square of their sum plus or minus any one singly gives a square

\section*{Number theory after Euclid}

Very little for many centuries...
Recall that Diophantus' Arithmetica (13 books, c. AD 250) featured number problems; for example [from Lecture VIII]:

Problem I.27: Find two numbers such that their sum and product are given numbers
The Arithmetica also features problems and ideas that we would now classify as number-theoretic; for example:

Problem III.19: To find four numbers such that the square of their sum plus or minus any one singly gives a square Problem V.9: To divide unity into two parts such that, if a given number is added to either part, the result will be a square

\section*{Number theory after Euclid}

Very little for many centuries...
Recall that Diophantus' Arithmetica (13 books, c. AD 250) featured number problems; for example [from Lecture VIII]:

Problem I.27: Find two numbers such that their sum and product are given numbers
The Arithmetica also features problems and ideas that we would now classify as number-theoretic; for example:

Problem III.19: To find four numbers such that the square of their sum plus or minus any one singly gives a square Problem V.9: To divide unity into two parts such that, if a given number is added to either part, the result will be a square
Restrictions on the permitted form of solutions to problems eventually gave rise to the notion of Diophantine equations

\section*{Number theory outside Europe}

Sūnzǐ Suànjīng 孙子算经（The Mathematical Classic of Master Sun） （3rd－5th century BC）contains a statement，but no proof，of the Chinese Remainder Theorem for the solution of simultaneous congruences

\section*{Number theory outside Europe}

Sūnzǐ Suànjīng 孙子算经（The Mathematical Classic of Master Sun） （3rd－5th century BC）contains a statement，but no proof，of the Chinese Remainder Theorem for the solution of simultaneous congruences

An algorithm for the solution was provided by Aryabhata in 6th－century India

\section*{Number theory outside Europe}

Sūnzǐ Suànjīng 孙子算经（The Mathematical Classic of Master Sun） （3rd－5th century BC）contains a statement，but no proof，of the Chinese Remainder Theorem for the solution of simultaneous congruences

An algorithm for the solution was provided by Aryabhata in 6th－century India

In 7th－century India，Brahmagupta studied Diophantine equations （including Pell＇s equation－see later）

\section*{Number theory outside Europe}

> Sūnzǐ Suànjīng 孙子算经（The Mathematical Classic of Master Sun） （3rd－5th century BC）contains a statement，but no proof，of the Chinese Remainder Theorem for the solution of simultaneous congruences

An algorithm for the solution was provided by Aryabhata in 6th－century India

In 7th－century India，Brahmagupta studied Diophantine equations （including Pell＇s equation－see later）

These works were unknown in Europe until the 19th century

\section*{17th-century number theory}

\section*{DIOPHANTI ALEXANDRINI}

\section*{ARITHMETICORVM}

LIBRI SEX.
ET DE NVMERIS MVLTANGVLIS
LIBER VNVS.
Tere primiom Grect of Latind cliti, atgucetfolatifiomi Compmontanis illyfrati.

Bachet's Latin edition of Diophantus' Arithmetica (1621)*
*Claude Gaspard Bachet de Méziriac (1581-1638)

\section*{17th-century number theory}

\section*{DIOPHANTI ALEXANDRINI}

\section*{ARITHMETICORVM}

LIBRI SEX,
ET DE NVAERIS MVLTANGVLIS
LIBER VNVS.
Tore primion Greà of Latine elisi, atguce atjolarifiomì Compmentanis illuftrati.

LVTETIAE PARISIORVM,
Sumptibus Sebastiani Cramoisy, via Iacobxa, fub Ciconiis.

CVM PRIVILEGIO REGIS:

Bachet's Latin edition of Diophantus' Arithmetica (1621)*
*Claude Gaspard Bachet de Méziriac (1581-1638)

Pierre de Fermat owned a 1637 edition, which he studied and annotated

\section*{Fermat on number theory}

Fermat's Little Theorem: if \(a\) is any integer and \(p\) is prime then \(p\) divides \(a^{p}-a\)

\section*{Fermat on number theory}

Fermat's Little Theorem: if \(a\) is any integer and \(p\) is prime then \(p\) divides \(a^{p}-a\)

Studies of 'Pell's Equation' \(x^{2}-D y^{2}=1\)

\section*{Fermat on number theory}

Fermat's Little Theorem: if \(a\) is any integer and \(p\) is prime then \(p\) divides \(a^{p}-a\)

Studies of 'Pell's Equation' \(x^{2}-D y^{2}=1\)
Conjectures on perfect numbers [more in a moment]

\section*{Fermat on number theory}

Fermat's Little Theorem: if \(a\) is any integer and \(p\) is prime then \(p\) divides \(a^{p}-a\)

Studies of 'Pell's Equation' \(x^{2}-D y^{2}=1\)
Conjectures on perfect numbers [more in a moment]
Studies of diophantine problems leading to 'Fermat's Last Theorem' [more in a moment]

\section*{Fermat on number theory}

Fermat's Little Theorem: if \(a\) is any integer and \(p\) is prime then \(p\) divides \(a^{p}-a\)

Studies of 'Pell's Equation' \(x^{2}-D y^{2}=1\)
Conjectures on perfect numbers [more in a moment]
Studies of diophantine problems leading to 'Fermat's Last Theorem' [more in a moment]

Published nothing — had to be exhorted to write his ideas down
(See Mathematics emerging, §§6.1-6.3)

\section*{The 'Last Theorem'}

Arithmetica Problem II. 8 concerns the splitting of a given square number into two other squares

\section*{The 'Last Theorem'}

Arithmetica Problem II. 8 concerns the splitting of a given square number into two other squares

Fermat's marginal note:
It is impossible to separate a cube into two cubes, or a fourth power into two fourth powers, or in general, any power higher than the second, into two like powers. I have discovered a truly marvelous proof of this, which this margin is too narrow to contain.
(See: Simon Singh, Fermat's Last Theorem, Fourth Estate, 1998)

\section*{Perfect numbers}

Euclid's Theorem: if \(2^{n}-1\) is prime then \(2^{n-1}\left(2^{n}-1\right)\) is perfect

\section*{Perfect numbers}

Euclid's Theorem: if \(2^{n}-1\) is prime then \(2^{n-1}\left(2^{n}-1\right)\) is perfect
Fermat to Mersenne (1640): if \(2^{n}-1\) is prime then \(n\) must be prime

\section*{Perfect numbers}

Euclid's Theorem: if \(2^{n}-1\) is prime then \(2^{n-1}\left(2^{n}-1\right)\) is perfect
Fermat to Mersenne (1640): if \(2^{n}-1\) is prime then \(n\) must be prime

Mersenne (1644): if \(p \leq 257\) and \(2^{p}-1\) is prime then \(p\) is one of \(2,3,5,7,13,17,67\) (a misprint for 61 perhaps?), 127, 257. Not quite right: \(2^{89}-1,2^{107}-1\) are prime and \(2^{257}-1\) is composite.

\section*{Perfect numbers}

Euclid's Theorem: if \(2^{n}-1\) is prime then \(2^{n-1}\left(2^{n}-1\right)\) is perfect
Fermat to Mersenne (1640): if \(2^{n}-1\) is prime then \(n\) must be prime

Mersenne (1644): if \(p \leq 257\) and \(2^{p}-1\) is prime then \(p\) is one of \(2,3,5,7,13,17,67\) (a misprint for 61 perhaps?), 127, 257. Not quite right: \(2^{89}-1,2^{107}-1\) are prime and \(2^{257}-1\) is composite.

Euler: proof that all even perfect numbers are of Euclid's form (proved 1749, but published posthumously)
(See Mathematics emerging, §6.1.2)

\section*{Perfect numbers}

Euclid's Theorem: if \(2^{n}-1\) is prime then \(2^{n-1}\left(2^{n}-1\right)\) is perfect
Fermat to Mersenne (1640): if \(2^{n}-1\) is prime then \(n\) must be prime

Mersenne (1644): if \(p \leq 257\) and \(2^{p}-1\) is prime then \(p\) is one of \(2,3,5,7,13,17,67\) (a misprint for 61 perhaps?), 127, 257. Not quite right: \(2^{89}-1,2^{107}-1\) are prime and \(2^{257}-1\) is composite.

Euler: proof that all even perfect numbers are of Euclid's form (proved 1749, but published posthumously)
(See Mathematics emerging, §6.1.2)
NB. 51 Mersenne primes are currently known, the largest being 28,589,933 - 1 (found in June 2019)

\section*{17th-century attitudes to number theory}

Fermat failed to spark an interest in number theory in his contemporaries

\section*{17th-century attitudes to number theory}

Fermat failed to spark an interest in number theory in his contemporaries

Pascal to Fermat (1655):
... seek elsewhere those who can follow you in your numerical discoveries ... I confess to you that this goes far beyond me...

\section*{17th-century attitudes to number theory}

Fermat failed to spark an interest in number theory in his contemporaries

Pascal to Fermat (1655):
... seek elsewhere those who can follow you in your numerical discoveries ... I confess to you that this goes far beyond me...

Number-theoretic investigations were widely regarded as trivial and uninteresting

\section*{17th-century attitudes to number theory}

Fermat failed to spark an interest in number theory in his contemporaries

Pascal to Fermat (1655):
... seek elsewhere those who can follow you in your numerical discoveries ... I confess to you that this goes far beyond me...

Number-theoretic investigations were widely regarded as trivial and uninteresting

Huygens to Wallis:
There is no lack of better topics for us to spend our time on ...

\section*{The 'rebirth' of number theory}

\section*{DIOPHANTI}

\section*{ALEXANDRINI}

ARITHMETICORVM
LIBRI SEX,
ET DE NVMERIS MVLTANGVLIS
LIBER VNVS
CVM COMMENT AR 11 C. G. BACHETI V.C. GobferuationibusD.P.de FERMAT Senatoris Tolofani.
Acceffit Doctrinx Analyticx inuentum nouum, collectum ex varijs ciufdem D. de FERMAT Epiftolis.

1670 edition of Bachet, published by Samuel Fermat, including his father's notes

\section*{The 'rebirth' of number theory}

\section*{DIOPHANTI \\ ALEXANDRINI \\ ARITHMETICORVM}

LIBRI SEX,
ET DE NVMERIS MVLTANGVLIS
LIBER VNVS.
CVM COMMENT AR 11 S C. G. BACHET I V.C. GobferuationibusD.P.de FERMAT Senatoris Tolofani.
Acceffie Doctrinx Analyticx inuentum nouum, collectum ex varijs ciufdem D. de FERMAT Epiftolis.

1670 edition of Bachet, published by Samuel Fermat, including his father's notes

The 'Last Theorem' was not the only result for which Fermat failed to provide a proof

\section*{The 'rebirth' of number theory}

\section*{DIOPHANTI \\ ALEXANDRINI \\ ARITHMETICORVM}

LIBRI SEX,
ET DE NVMERIS MVLTANGVLIS
LIBER VNVS.
CVM COMMENT AR 11 S C. G. BACHET I V.C. GobferuationibusD.P.de FERMAT Senatoris Tolofani.
Acceffie Doctrinx Analyticx inuentum nouum, collectum ex varijs ciufdem D. de FERMAT Epiftolis.

1670 edition of Bachet, published by Samuel Fermat, including his father's notes

The 'Last Theorem' was not the only result for which Fermat failed to provide a proof

Number theory was 'reborn' from the attempts of Euler (and later Lagrange and Legendre) to fill the gaps left by Fermat

\section*{Euler on number theory}

Euler (1747):
Nor is the author disturbed by the authority of the greatest mathematicians when they sometimes pronounce that number theory is altogether useless and does not deserve investigation. In the first place, knowledge is always good in itself, even when it seems to be far removed from common use. Secondly, all the aspects of the truth which are accessible to our mind are so closely related to one another that we dare not reject any of them as being altogether useless. ...
Consequently, the present author considers that he has by no means wasted his time and effort in attempting to prove various theorems concerning integers and their divisors. ... Moreover, there is little doubt that the method used here by the author will turn out to be of no small value in other investigations of greater import.

\section*{19th-century number theory}

Gauss's Disquisitiones arithmeticae (1801) became a key text for many years to come: modular arithmetic, quadratic forms, cyclotomy, ...

\section*{19th-century number theory}

Gauss's Disquisitiones arithmeticae (1801) became a key text for many years to come: modular arithmetic, quadratic forms, cyclotomy, ...

Number-theoretic problems (especially attempts to prove Fermat's Last Theorem) led to the development of ideal theory, and the linking of number theory and abstract algebra in algebraic number theory

\section*{19th-century number theory}

Gauss's Disquisitiones arithmeticae (1801) became a key text for many years to come: modular arithmetic, quadratic forms, cyclotomy, ...

Number-theoretic problems (especially attempts to prove Fermat's Last Theorem) led to the development of ideal theory, and the linking of number theory and abstract algebra in algebraic number theory

By the end of the 19th century, a new branch, analytic number theory, had also emerged (e.g., Riemann hypothesis, Prime Number Theory \(\left.\pi(x) \sim \frac{x}{\log x}, \ldots\right)\)

\section*{Sophie Germain}

Arithmetic and Memorial Practices by and Around Sophie Germain in the 19th Century, by Jenny Boucard, In:Kaufholz-Soldat, E., \& Oswald, N. (2020). Against all odds: Women's ways to mathematical research since 1800, Springer.

\section*{The history of number theory}

\section*{ANDRÉ WEIL}

NumberTheory
Aln approach through history
From Hammurapito Legendre

Leonard Eugene Dickson, History of the theory of numbers, 3 vols., Carnegie Institution of Washington, 1919-1923: I, II, III```

