BO1 History of Mathematics Lecture XIII
 Complex analysis

MT 2021 Week 7

Summary

Part 1

- Complex numbers: validity and representation
- Substitution of complex values for real

Part 2

- Cauchy's contributions
- Riemann
- What is an analytic function?

Early ideas about complex numbers

Before 1600, very faint beginnings:

Early ideas about complex numbers

Before 1600, very faint beginnings:

- Cardano (1545) [from quadratics]

Early ideas about complex numbers

Before 1600, very faint beginnings:

- Cardano (1545) [from quadratics]
- Bombelli (1572) [from cubics]

Early ideas about complex numbers

Before 1600, very faint beginnings:

- Cardano (1545) [from quadratics]
- Bombelli (1572) [from cubics]
- Harriot (c. 1600) [from quartics]

Early ideas about complex numbers

Before 1600, very faint beginnings:

- Cardano (1545) [from quadratics]
- Bombelli (1572) [from cubics]
- Harriot (c. 1600) [from quartics]

But:
For the most part such roots were ignored: negative roots were described merely as 'false', but complex roots as 'impossible'.
(Mathematics emerging, p. 459.)

Cardano and complex numbers

Problem: find two numbers that add to 10 and multiply to 40 ,

Cardano and complex numbers

De Arithmetica Libi x :
66 exemplum, fi quis dicat, diuide 10 in duas partes, ex quarum unius in reliquam duftu, producatur 30 , aut 40 , maniffftumeft, quod cafus feu quaftio eft impofsibilis, fic tamé operabimur, diuidemus 1 o per feu queftio eft imporsibilis, fic tame operabimur, diuidemus io per
xqualia, \& fiet cius medietas 5, ducin fefit 25, auferes ex 25 , ipfum xqualia, \& fiet cius medictas 5 , ducin fefit 25 , auferes ex 25 , ipfum
producendum, utpote 40 , ut docuite, in capitulo operationum, in fer producendum, utpote 40 , ut docui te, in capitulo operationum, in fer
xto libro, fiet refiduum $\mathrm{m}: 15$, cuius re addita $\&$ detracta à 5 ,oftendir xto libro, fiet refiduum m : 15 , cuius re addita \& detracta à 5 , oftendic
partes, quax inuicem ductx producunt 40 , crunt igitur hax, 5 p : F m m: 15, \& 5 mike m: 15.

Demonstratio
Vt igitur regulx uerus pateat intellectus, fit As linea, que dicatur 2 10, diuidenda in duas partes, quarū rectangulum debeat effe 40 , eft aüt 40 đ̈druplüad 10 , quare nos uolumus quadruplum totius A B, igitur fiat A D, quan dratum $A C$ dimidĭ $A B, \&<$ CxA D auferatur quadruplum A B, abfos numero, Re igitur re fidui, fialiquid mantret, addira \& dermáa fidur, 10 quinererperies at quia tale refid ex A c, oltenderer parnes, quia rale relidu um eft minus, ideo imaginaberis pe m: 15, id eft differentix A $\mathrm{D}, 8$ quadrupli a B , quam adde $\&$ minue ex a c , \& habebis quxfitum, fcili*
 mak m: 15 , duc $5 \mathrm{p}: \mathrm{Re}_{\mathrm{m}} \mathrm{m}: 15$ in $5 \mathrm{~m}: \mathrm{rem}$ m: 15, dimifsis incruciationio bus, fit $25 \mathrm{~m}: \mathrm{m}: 15$, quodelt p:15, igitur hoc productum eft 40 , natu ratamẽ A D, non eft eadem cürnatura yo, nec A B, quia fuperficies eft remota ì natura numeri, \&\& linea, proximius ramē huic quantitati,quę uere eft fophiftica, quoniam per cam, non ut in puro m : nec in alijs, operationes exercerelicet, necuenari
$s \mathrm{p}: \mathrm{Re} \mathrm{m:} 15$
$\mathrm{sm:Rem:15}$
\qquad quid fireff,ur addas quadratum medietatis numeri numero produ* cendo, 8\% à re aggregati minuas ac addas dimidium diuidendi. Exem cendo, plü, inhoc cafu, diuide 10 in duas partes, producentes 40 , adde 25 quadraūu dimidh 10 ad 40 , hit 65 , ab huius pe minue $5,0 \mathrm{adac}$ cram 5, habebis parres fecundum fimilitudinem, $265 \mathrm{p}: 5$ \& 2 re $65 \mathrm{~m}: 5$. At hi numeri differunt in 10 , non iuncti faciunt $10,1 e d \supsetneqq 260$, 2 hucuf $\%$ progreditur Arithmetica fubtilitas, cuius hocextremumut dixi,adeo eft fubrile, ut fit inutile.

Fac de 6 duas partes, quarum quadrata iuncta fint $\varsigma 0$, haxc folui tur per primam,non per fecundam regulam, eft enim de puro m:ideo duc z dimidium 6 in f , fit 9 , minue ex dimidio 50 , quod eff 25 , fit res
R_{2} fiduum

Problem: find two numbers that add to 10 and multiply to 40 , i.e., solve an equation of the type 'square plus number equals thing'

Cardano and complex numbers

De Arithmetica Libi x: exemplum, fi quis dicat, diuide 10 in duas partes, ex quarum unius in reliquam ductu, producatur 30 , aut 40 , manifeftumeft, quodd cafus feu quaftio eft impofsibilis, fictamé operabimur, diuidemus 10 per feu quaftio eft impoisibilis, fic tame operabimur, ditudemus io per
aequalia, \& fiet cius medietas 5, ducin fe fit 25 , auferes ex 25 , ipfum aqualia, \&x fiet cius medietas 5 , ducin fefit 25 , auferes ex 25 , ipfum
producendum, utpote 40 , ut docuite, in capitulo operationum, in fer producendum, utpote 40 , ut docui te, in capitulo operationum, in fee
xto libro, fiet refiduum $\mathrm{m}: 15$, cuius re addita $\&$ detracta à 5 , oftendir xto libro, fiet refiduum $\mathrm{m}: 15$, cuius re addita \& detracta à 5 , oftendit
partes, quax inuicem ductx producunt 40 , erunt igitur hax, 5 p: re m : 15, 8 \& mak m: 15.

Demonstratio
Vt igitur regule uerus pateat intellectus, fit A 8 linea, quę dicatur 10, diuidenda in duas partes, quarur rectangulum debear effe 40 , eft aut 40 đ̈drupluad 10 , quare nos uolumus quadruplum totius A B,igitur fiat A D, qua* aratum A C,dimidn A B, \& Cx A D aufcratur
 er a ofenderer partes, at quia rale relidu
 \therefore A C, oltenderet partes, at quia tale reidd um eft minus, ideo imaginaberis re m: 15 , id eft differentix A $\mathrm{D}, \&$ quadrupli a b , quam adde \& minue ex a c , \& habebis quxfitum, fcili
 make m: 15 , duc $5 \mathrm{p}: \mathrm{Re}_{\mathrm{m}} \mathrm{m}: 15$ in $5 \mathrm{~m}: \mathrm{rem} \mathrm{m}: 15$, dimifsis incruciationio bus, fir $25 \mathrm{~m}: \mathrm{m}: 15$, quodelt p:15, igitur hoc productum eff 40 , natu ra tamé A D,non eft eadem cünatura yo, nec A B, quia fuperficies eft remota ì natura numeri, \& linex, proximus ramē huic quantitati,quę uere eft fophiftica, quoniam per cam, non ut in puro m: nec in

5p:Rem: 15
 5 misem: 15

 $25 \mathrm{~m}: \mathrm{m}: 15$ पुd.eft 40 quid fireft,ue addas quadratum medietatis numeri numero produ* cendo, 8 a a re aggregati minuas ac addas dimidium diuidendi. Exem plü, in hoc cafiu, diuide 10 in duas partes, producentes 40 , adde 25 plu, inhoc cafu, durde roin duas parres, producen 5 , 8 adde ctiom quadratu dimid 10 ad 5 , habebis parres fecundum fimilitudinem, 1265 p .5 , $105 \mathrm{~m}: 5$. At hi numeri differunt in 10 , non iuncti faciunt 10,1 ed $\ddagger 260,0$ hucuf p progreditur Arithmetica fubrilitas, cuius hocextremumur dixi,adeo eft fubrik, ut fit inutile.Fac de 6 duas partes, quarum quadrara iuncta fint $\varsigma 0$, hace folui tur per primam,non per fecundam regulam, eft enim de puro m:ideo due z dimidium 6 in fe , fit 9 , minue ex dimidio 50 , quod eft 25 , fit res

Problem: find two numbers that add to 10 and multiply to 40 , i.e., solve an equation of the type 'square plus number equals thing'

Cardano noted that $5+\sqrt{-15}$ and $5-\sqrt{-15}$ solve the problem, "dismissis incruciationibus",

Cardano and complex numbers

De Arithmetica Libi x: exemplum, fi quis dicat, diuide 10 in duas partes, ex quarum unius in reliquam ductu, producatur 30 , aut 40 , manifeftumeft, quodd cafus feu quaftio eft impofsibilis, fictamé operabimur, diuidemus 10 per equalia, \& fiet cius medietas 5 , ducin fefit 25 , auferes ex 25 , ipfum producendum, utpote 40 , ut docuite, in capitulo operationum, in fer xto libro, fiet refiduum m : 15 , cuius re addita \& detracta à 5 , oftendir partes, qux inuicem ductx producunt 40 , erunt igitur hax, $5 \mathrm{p}: 18 \mathrm{~m}$: $15,8 \%$ misk m: 15.

Demonstratio
Vt igitur regule uerus pateat intellectus, fit As linea, quę dicatur 10, diuidenda in duas partes, quarū rectangulum debeat effe 40 , eft aüt 40 đ̈druplūad 10 , quare nos uolumus quadruplum totius A B,igitur fiat A D, quar dratum $A C_{C}$ dimidit A B, \& Cx A D auferatur fidui, idub ifiqua materest, adia ex A C,oltenderer pas, quia ralc reidu um eft minus, ideo imaginaberis pe m: 15 , id eft differentix a $\mathrm{D}, 8$ quadrupli a b, quam adde \& minue ex a $\mathrm{c}, \& \mathrm{C}$ habebis quafitum, fcili
 mak m: 15 , duc $5 \mathrm{p}: \mathrm{m}_{\mathrm{a}} \mathrm{m}: 15$ in 5 m : rem m: 15 , dimifsis incruciationio bus, fit $25 \mathrm{~m}: \mathrm{m}: 15$, quodelt p:15, igitur hoc productum eff 40 , natu ratamé A D, non eft eadem cünatura yo, nec A B, quia fuperficies eft remota in natura numeri, \& linew, proximius ramē huic quantitati,quę uere eft fophiftica, quoniam per cam, non ut in puro m : nec in

5 p :R m: 15
 5 misem: 15

$25 \mathrm{~m}: \mathrm{m}: 15$ वेd.eft 40 quid fireff,ut addas quadratum medietatis numeri numero produqendo, \& i a agregati minuas ac addas dimidium diuidendi. Exem plü inhoceafiu diuide 10 in duas partes, producentes 40 , adde 25 plu, imhoc cafu, durde quadratur dimid 10 ad 5 , habebis parres fecundum fimilitudinem, R2 65 p. $5,0,5$ m: 5 . At hinumeri differunt in $10, n o n$ iuncti faciunt 10 , ied 14260 , 2 hacuf progreditur Arithmetica fubtilitas, cuius hocextremumut dixi, adeo eft fubrile, ut fit inutile.

Fac de 6 duas partes, quarum quadrara iuncta fint $\varsigma 0$, hacc folui tur per primam,non per fecundam regulam, eft enim de puro m:ideo duc z dimidium 6 in fe , fit 9 , minue ex dimidio 50 , quodeft 25 , fit res

Problem: find two numbers that add to 10 and multiply to 40 , i.e., solve an equation of the type 'square plus number equals thing'

Cardano noted that $5+\sqrt{-15}$ and $5-\sqrt{-15}$ solve the problem, "dismissis incruciationibus", meaning
"putting aside mental tortures",

Cardano and complex numbers

Problem: find two numbers that add to 10 and multiply to 40 , i.e., solve an equation of the type 'square plus number equals thing'

Cardano noted that $5+\sqrt{-15}$ and $5-\sqrt{-15}$ solve the problem, "dismissis incruciationibus", meaning
"putting aside mental tortures",
or
"the cross-multiples having canceled out",

Cardano and complex numbers

Problem: find two numbers that add to 10 and multiply to 40 , i.e., solve an equation of the type 'square plus number equals thing'

Cardano noted that $5+\sqrt{-15}$ and $5-\sqrt{-15}$ solve the problem, "dismissis incruciationibus", meaning
"putting aside mental tortures",
or
"the cross-multiples having canceled out",
or
"the imaginary part being lost"

Cardano and complex numbers

Problem: find two numbers that add to 10 and multiply to 40 , i.e., solve an equation of the type 'square plus number equals thing'

Cardano noted that $5+\sqrt{-15}$ and $5-\sqrt{-15}$ solve the problem, "dismissis incruciationibus", meaning
"putting aside mental tortures",
or
"the cross-multiples having canceled out",
or
"the imaginary part being lost"
But regarded such ideas as absurd and useless

Bombelli and complex numbers

PRIMO.

169
Ho trouato un'altra forte di R.c.legate molto differen ti dall'altere, laqual nafce dal Capitolo di cubo eguale à tanti,e numero, quando il cubato del terzo delli tantiè maggiore del quadrato della meta del numero come in effo Capitolo fi dimoftrarà, laqual forte di i. q. hà nel fuo Algorifmo diuerfa operatione dall'altre, e diuerfo nome ; per che quando il cubato del terzo del litàntic̀ maggiore del quadrato della metà del numero; loecceffo loro non fi può chiamare ne piú, ne meno, perol lo chiamaro piu di meno, quando eglifi doue rà aggiongere, e quando fi douerà cauare, lo chiamerò men di meno, e quefta operatione è neceffiariffima più che l'altre R.c. L.per rifpetto delli Capitoli di potenze di potẽze, accompagnati có li cubi,ò tanti, ô con tutti due infieme, che molto più fonolicafi delliagguagliare doue ne nafce quefta forte di R. che quelli doue nafce l'altra, la quale parerà à molti più tofto fofiftica, che reale, e tale opinione hò tenuto anch'io, fin' che hò trouatola fua dimoltratione in linee (come fi dimoftrarà nella dimoftratione del detto Capitolo in fuperficie piana) e prima trattarò del Moltiplicare, ponendo la regola del più \& meno.

Più uia più di meno, fâ più di meno. Meno uia più di meno, fà meno di meno. Più uia meno di meno, fà meno di meno. Meno uia meno di meno, fà più di meno. Più di meno uia più di meno, fa meno. Più di meno uia men di meno, fa più. Meno di meno uia più di meno,fá più. Meno di meno uia men di meno fa meno.

Bombelli and complex numbers

PRIMO.

169
Ho trousto un'altra forte di R.c.legate molto differen ti dall'altere, laqual nafce dal Capitolo di cubo eguale à tanti,e e numero, quando il cubato del terzo delli tantiè maggiore del quadrato della meta del numero come in effo Capitolo fi dimoftrarà, laqual forte di κ. q. hà nel fuo Algorifmo diuerfa operatione dall'altre, e diuerfo nome ; per che quando il cubato del terzo del li tànti è maggiore del quadrato della metà del numero; loecceeflo loro non fi può chiamare ne piú, ne meno, però lo chiamarò piú di meno, quando egli fi doue rà aggiongere, e quando fi douerà cauare, lo chiamerò men di meno, e quefta operatione è neceffarijfima più che l'altre R.c. L.per rifpetto delli Capitoli di potenze di potẽze, accompagnati có lí cubi,ò tanti, ô con tutti due infieme, che molto più fonoli cafi dell'agguagliare doue ne nafce quefta forte di R. che quelli doue nafce l'altra, la quale parerà à molti più tofto fofiftica, che reale, e tale opinione hò tenuto anch'io, fin' che hò trouato la fua dimotratione in linee (come fi dimoftrarà nella dimoftratione del detto Capitolo in fuperficie piana) e prima trattarò del Moltiplicare, ponendo la regola del più \& meno.

Più uia più di meno, fâ più di meno. Meno uia più di meno, fà meno di meno. Più uia meno di meno, fà meno di meno. Meno uia meno di meno, fà più di meno. Più di meno uia più di meno, fa meno. Più di meno uia men di meno, fa più. Meno di meno uia più di meno, fă più. Meno di meno uia men di meno fà meno.

"Another sort of cube root much different from the former . . ."

Systematic rules:

più di meno via più di meno, fà meno $(\sqrt{-1} \times \sqrt{-1}=-1)$ meno di meno via più di meno, fà più $(-\sqrt{-1} \times \sqrt{-1}=1)$

Bombelli and complex numbers

PRIMO.

169
Ho trouato un'altra forte di R.c.legate molto differen ti dall'altre, laqual nafce dal Capitolo di cubo eguale à tanti, e numero, quando il cubato del terzo delli tantiè maggiore del quadrato della meta del numero come in effo Capitolo fi dimoftrarà, laqual forte di λ, q. hà nel fuo Algorifmo diuerfa operatione dall'altre, e diuerfo nome; per che quando il cubato del terzo del li tànti è maggiore del quadrato della metà del numero; loecceffo loro non fi può chiamare ne piú, ne meno, però lo chiamarò piú di meno, quando egli fi doue rà aggiongere, e quando fi douerà cauare, lo chiamerò men di meno, e quêta operatione è neceffarijfima più che l'altre R.c. L.per rifpetto delli Capitoli di potenze di potěze, accompagnati cóli cubi,ò tanti, ô con tuttidue infieme, che molto più fonolicafi delliggguaglize doue ne nafce quefta forte di R. che quelII doue nafce l'altra, la quale parerà̀ à molti più tofto fofiltica, che reale, e tale opinione hò tenuto anch'io, fin' che hò trouatola fua dimoitratione in linee (come fi dimoftrarà nella dimoftratione del detto Capitolo in fuperficie piana) e prima trattarò del Moltiplicare, ponendo la regola del più \& meno.

Più uia più di meno, fa più di meno. Meno uia più di meno, fâ meno di meno. Più uia meno di meno, fà meno di meno. Meno uia meno di meno,fà più di meno. Più di meno uia più di meno, fà meno. Più di meno uia men di meno, fâ più. Meno di meno uia più di meno, fà più. Meno di meno uia men di meno fà meno.

"Another sort of cube root much different from the former . . ."

Systematic rules:
più di meno via più di meno, fà meno $(\sqrt{-1} \times \sqrt{-1}=-1)$ meno di meno via più di meno, fà più $(-\sqrt{-1} \times \sqrt{-1}=1)$

But complex numbers were not admitted as solutions of equations - they could appear in calculations, provided they cancelled out by the end

Bombelli and complex numbers

PRIMO.

Ho trouato un'altra forte di R.c.legate molto differen ti dall'altre, laqual nafce dal Capitolo di cubo eguale à tanti, e numero, quando il cubato del terzo delli tantiè maggiore del quadrato della meta del numero come in effo Capitolo fi dimoftrarà, laqual forte di \bar{f}. . hà nel fuo Algorifmo diuerfa operatione dall'altre, e diuerfo nome; per che quando il cubato del terzo del li tànti è maggiore del quadrato della metà del numero; loecceffo loro non li può chiamare ne piú, ne meno, però lo chiamarò piú di meno, quando egli fi doue rà aggiongere, e quando fi douerà cauare, lo chiamerò men di meno, e quefta operatione è neceflarijflima più che l'altre R.c. L.per rifpetto delli Capitoli di potenze di potěze, accompagnati cóli cubi,ò tanti, ô con tuttidue infieme, che molto più fonolicafi delliagguagliare doue ne nafee quefta forte di R.che quelII doue nafce l'altra, la quale parerà à molti più tofto fofiltica, che reale, e tale opinione hò tenuto anch'io, fin' che hò trouatola fua dimoitratione in linee (come fi dimoftrarà nella dimoftratione del detto Capitolo in fuperficie piana) e prima trattarò del Moltiplıcare, ponendo la regola del più \& meno .

Più uia più di meno, fâ più di meno. Meno uia più di meno, fa meno di meno. Più uia meno di meno, fà meno di meno. Meno uia meno di meno, fà più di meno. Più di meno uia più di meno, fa meno. Più di meno uia men di meno, fâ più. Meno di meno uia più di meno, fà più. Meno di meno uia men di meno fà meno.

"Another sort of cube root much different from the former . . ."

Systematic rules:
più di meno via più di meno, fà meno $(\sqrt{-1} \times \sqrt{-1}=-1)$ meno di meno via più di meno, fà più $(-\sqrt{-1} \times \sqrt{-1}=1)$

But complex numbers were not admitted as solutions of equations - they could appear in calculations, provided they cancelled out by the end

Complex numbers justified through practical use?

Harriot and complex numbers

Sngo: bcdf=\pi
Sngo: bcdf=\pi
n=|
n=|
a=c,ly.
a=c,ly.
{\mp@code{i-a}
{\mp@code{i-a}

AT\{
AT\{
A=c
A=c
\in
\in

\<\alpha
\<\alpha
\<a
\<a

i+\pi
i+\pi

\#F L, If
\#F L, If

rye: fcoff=x +1/cme
rye: fcoff=x +1/cme

|c=an}|={\mp@code{lytan
|c=an}|={\mp@code{lytan
suye: indy = = - icast + anea.
suye: indy = = - icast + anea.
AR=4c
AR=4c
Na=
Na=

Add MS 6783 f. 156

Harriot and complex numbers

Add MS 6783 f. 156

Unpublished manuscripts contain systematic treatment of complex roots of equations

Harriot and complex numbers

Add MS 6783 f. 156

Unpublished manuscripts contain systematic treatment of complex roots of equations - but these were removed by his editors

Harriot and complex numbers

Add MS 6783 f. 156

Unpublished manuscripts contain systematic treatment of complex roots of equations - but these were removed by his editors

Cf. Harriot's Artis analyticae praxis (1931), pp. 14-15;

Harriot and complex numbers

Add MS 6783 f. 156

Unpublished manuscripts contain systematic treatment of complex roots of equations - but these were removed by his editors

Cf. Harriot's Artis analyticae praxis (1931), pp. 14-15; see:

Muriel Seltman \& Robert Goulding, Thomas Harriot's Artis analyticae praxis: an English translation with commentary, Springer, 2007

Descartes and 'imaginaries'

La géométrie (1637):

introduced the term 'imaginaire'

Descartes and 'imaginaries'

La géométrie (1637):

> introduced the term 'imaginaire' - meant to be derogatory?

Descartes and 'imaginaries'

La géométrie (1637):

introduced the term 'imaginaire' - meant to be derogatory?

Didn't regard them as numbers

Ideas about complex numbers in the later 17th century

John Wallis, A treatise of algebra (1685): complex numbers based on insights derived from

- Euclidean geometry
- trigonometry
- properties of conics
(See: Mathematics emerging, §15.1.1.)

Wallis: justification of imaginary numbers

- A man starts at A and walks 5 yds to B, then retreats 2 yds to C: overall, he has covered 3 yds.

Wallis: justification of imaginary numbers

- A man starts at A and walks 5 yds to B, then retreats 2 yds to C: overall, he has covered 3 yds. If he instead retreats 8 yds to D, then we may say that he has covered -3 yds.

Wallis: justification of imaginary numbers

- A man starts at A and walks 5 yds to B, then retreats 2 yds to C : overall, he has covered 3 yds. If he instead retreats 8 yds to D, then we may say that he has covered -3 yds.
- Somewhere on the seashore, we gain 26 units of land from the sea, but lose 10 units.

Wallis: justification of imaginary numbers

- A man starts at A and walks 5 yds to B, then retreats 2 yds to C: overall, he has covered 3 yds. If he instead retreats 8 yds to D, then we may say that he has covered -3 yds.
- Somewhere on the seashore, we gain 26 units of land from the sea, but lose 10 units. Thus, we have gained 16 units overall;

Wallis: justification of imaginary numbers

- A man starts at A and walks 5 yds to B, then retreats 2 yds to C: overall, he has covered 3 yds. If he instead retreats 8 yds to D, then we may say that he has covered -3 yds.
- Somewhere on the seashore, we gain 26 units of land from the sea, but lose 10 units. Thus, we have gained 16 units overall; if this is a perfect square, then it has side 4 units of length.

Wallis: justification of imaginary numbers

- A man starts at A and walks 5 yds to B, then retreats 2 yds to C: overall, he has covered 3 yds. If he instead retreats 8 yds to D, then we may say that he has covered -3 yds.
- Somewhere on the seashore, we gain 26 units of land from the sea, but lose 10 units. Thus, we have gained 16 units overall; if this is a perfect square, then it has side 4 units of length.
- If instead we lose 26 units of land, but gain 10, then we have lost 16 units overall, or gained -16 .

Wallis: justification of imaginary numbers

- A man starts at A and walks 5 yds to B, then retreats 2 yds to C: overall, he has covered 3 yds. If he instead retreats 8 yds to D, then we may say that he has covered -3 yds.
- Somewhere on the seashore, we gain 26 units of land from the sea, but lose 10 units. Thus, we have gained 16 units overall; if this is a perfect square, then it has side 4 units of length.
- If instead we lose 26 units of land, but gain 10, then we have lost 16 units overall, or gained -16. The area in question (assumed to be a square) might therefore be viewed as having side $\sqrt{-16}$.
(see: Leo Corry, A brief history of numbers, OUP, 2015,
pp. 184-185)

Wallis: imaginary numbers as geometric means

Wallis: imaginary numbers as geometric means

(see: Leo Corry, A brief history of numbers, OUP, 2015, pp. 185-186)

"A new Impossibility in Algebra"

John Wallis, A treatise of algebra, p. 267 'Of negative squares':
... requires a new Impossibility in Algebra

$$
\text { Chap.LXVII. Of Negative Squares. } 267
$$

Which gives indeed (as before) a double value of $A B, \sqrt{ } 175,+\sqrt{ }-35$, and $\sqrt{ } 175,-\sqrt{ }-81$: But fuch as requites a new Imponfibility in Algebra, (which in Lateral Equations doth not happen;) not that of a Negative Root, or a Quantity lefs than nothing; (as before,) but the Root of a Negative Square. Which in ftrictnefs of fpeech, cannot be : fince that no Real Root (Affirmative or Negative,) being Multiplied into itfelf, will make a Negativo Square.

Complex numbers in the 18th century (1)

Nature remained unclear:
"that amphibian between being and not-being, which we call the imaginary root of negative unity" (Leibniz, 1702)

But complex numbers were increasingly being used ...

Complex numbers in the 18th century (2)

296 Memoires de l'Academie Royale boles, dépend en partie de la quadrature du cercle, \& en partie de la quadrature de l'hyperbole ou de la defcription de la Logacithmique.
Maniéres abrégées de transformer les différentielles compofées èn fimples, ©̛ réciproquement; Et même les fimples imaginaires en réellis compofées.
Probl. I. Transformer la différentielle $\frac{a d z}{b b-z z}$ en une différentielle Logarithmique $\frac{a d t}{2 b b}$, \& réciproquement.

Faites $z=\frac{z-1}{1+1} \times b, \&$ yous aurez $\frac{a d z}{b b-z z}=\frac{a d t}{2 b t}$. Réciproquement prenez $t=\frac{+z+b}{-x+b}, \&$ vous aurez $\frac{a d s}{2 b_{s}}=$ $=\frac{a d z}{b b-z z}$.

- Corol. On transformera de même la différentielle $\frac{a d z}{b b+z z}$ en $\frac{-a d t}{2 b N N_{2}}$ différentielle de Logarithme imaginaire; \& réciproquement.
Probl. II. Transformer la différentielle $\frac{a d z}{b b+z z}$ en différentielle de fecteur ou d’are circulaire $\frac{-a d t}{2 \sqrt{1-b b i t}}$; \& réciproquement.

Faites $z=\sqrt{\frac{1}{t}-b b}, \&$ vous aurez $\frac{a d z}{b b+z z}=\frac{-a d t}{\sqrt{1-b b t}}$, Réciproquement prenez $t=\frac{\mathrm{i}}{z \tau+66}$, \& vous aurez. $\frac{-a d t}{2 \sqrt{t-b b t}}=\frac{a d z}{b b+z z}$.
$\operatorname{Probl}_{\text {. III. Transformer la différentielle } \frac{a d z}{b b-x z} \text { en }}$ différentielle de feateur hyperbolique $\frac{a d s}{2 v \sqrt{1+6 b t}} ; \&$ réciproquement.

Faites $z=\sqrt{\frac{2}{t}+b \bar{b}}, \&$ enfuite $t=\frac{1}{b b-z x} ; ~ \& ~ y o u s$ aurez ce qu'on demande.

Proble.

Johann Bernoulli, 'Solution d'un problème concernant le calcul intégrale, ...', Mémoires de l'Académie royale des sciences, 1702:

Complex numbers in the 18th century (2)

290° Memoires de l'Academie Royale boles, dépend en partie de la quadrature du cercle, \& ent partie de la quadrature de l'hyperbole ou de la defcription de la Logarithnaque.
Maniéres abrigées de transformer les diffirentielles compofés en fimples, \&̛ réciproquement; Et même les fimples imaginaires un réellis compofees.
Probl. I. Transformer la différentielle $\frac{a d z}{b b-z z}$ en une differrentielle Logarithmique $\frac{a d t}{26}$, \& réciproquement.

Faites $z=\frac{t-1}{1+1} \times b, \&$ vous aurez $\frac{a d z}{b b-z z}=\frac{a d t}{26 t}$. Réciproquement prencz $t=\frac{+z+b}{-z+b}, k$ vous aurez $\frac{a d t}{2 b_{j}}=$ $=\frac{a d z}{b b-z z}$.

- Corol. On transformera de même la différentielle $\frac{a d z}{b b+z x}$ en $\frac{-a d t}{2 b v-1}$ différentielle de Logarithme imaginaire; \& séciproquement.
Probl. II. Transformer la différentielle $\frac{a d z}{b b+z z}$ en différentielle de fecteur ou d’arc circulare $\frac{-a d i}{2 \sqrt{1-b b t s}} ;$ \& réciproquement.
Faites $z=\stackrel{\square}{\frac{1}{t}-b b}, \&$ vous auree $\frac{a d x}{b b+z z}=\frac{-a d t}{2 \sqrt{1-b b t} t}$ Réciproquement prenez $t=\frac{\varepsilon}{\hbar \varepsilon+6 b}$, \& vous aurez. $\frac{-a d t}{2 \sqrt{1-b b i t}}=\frac{a d z}{b b+x z}$.
${ }_{\text {Probl. III. Transformer la différentielle } \frac{a d z}{b b-x z}}$ en différentielle de fecteur hyperbolique $\frac{a d t}{2 v i+b b i t} ; \& r e ́ c i-$ proquement.

Faites $z=V \overline{\frac{1}{2}+b \bar{b}}$, \& enfuire $t=\frac{1}{b b-z x} ;$ \& yous aurez ce qu'on demande.

Proble.

Johann Bernoulli, 'Solution d'un problème concernant le calcul intégrale, ...', Mémoires de l'Académie royale des sciences, 1702:
by making the substitution $z=\sqrt{\frac{1}{t}-b b}$, transform the differential $\frac{a d z}{b b+z z}$ into $\frac{-a d t}{2 b t \sqrt{-1}}$

Complex numbers in the 18th century (2)

290° Memoires de l'Academie Royale boles, dépend en partie de la quadrature du cercle, $8 x$ en partie de la quadrature de l'hyperbole ou de la defcription de la Logarithnaque.
Maniéres abrigées de transformer les diffirentielles compofés en fimples, \&̛ réciproquement; Et même les fimples imaginaires un réellis compofees.

Probl. I. Transformer la différentielle $\frac{a d z}{b b-x z}$ en une différentielle Logarithmique $\frac{a d t}{2 b}$, \& réciproquement.

Faites $z=\frac{t-1}{1+1} \times b, \&$ vous aurez $\frac{a d z}{b b-z z}=\frac{a d t}{2 b t}$, Réciproquement prenez $t=\frac{+z+b}{-x+b}, \&$ vous aurez $\frac{a d s}{2 b_{s}}=$ $=\frac{a d z}{b 6-z z}$.

- Corol. On transformera de même la différentielle $\frac{a d z}{b b+z z}$ en $\frac{-a d t}{26 N-1}$ différentielle de Logarithme imaginaire; \& séciproquement.
Probl. II. Transformer la différentielle $\frac{a d z}{b b+z z}$ en différentielle de fecteur ou d'arc circulaire $\frac{-a d t}{2 \sqrt{1-b b t s}}$; \& réciproquement.
Faites $z=\sqrt{\frac{1}{t}-b b}, \&$ vous aurez $\frac{a d x}{b b+z \varepsilon}=\frac{-a d t}{\sqrt{1-b b t}}$, Réciproquement prenez $t=\frac{-\mathrm{t}}{z \tau+6 b}$, \& vous aurez. $\frac{-a d t}{2 \sqrt{t-b b t t}}=\frac{a d z}{b b+z z}$.
Probl. III. Transformer la différentielle $\frac{a d z}{b b-\varepsilon z}$ en différentielle de fęteur hyperbolique $\frac{a d t}{2 v i+b b t s} ; \&$ réciproquement.

Faires $z=\sqrt{\frac{2}{1}+b \bar{b}}$, \& enfuire $t=\frac{1}{b 6-z z} ; \&$ yous aurez ce qu'on demande.

Probl.

Johann Bernoulli, 'Solution d'un problème concernant le calcul intégrale, ...', Mémoires de l'Académie royale des sciences, 1702:
by making the substitution $z=\sqrt{\frac{1}{t}-b b}$, transform the differential $\frac{a d z}{b b+z z}$ into $\frac{-a d t}{2 b t \sqrt{-1}}$

No worries about the validity of switching between real and complex integrals
(See Mathematics emerging, §15.2.1)

Complex numbers in the 18th century (3)

[192]

How Æquations are to be folv'd.

AFTER therefore in the Solution of a Queftion you are come to an Equation, and that Equation is duly reduc'd and order'd; when, the Quantitics which are fuppos'd given, are really given in Numbers, thofe Numbers are to Se fab年itured in their room in the Equation, and you'h have a Numeral Equation, whofe Root being extracted will fatidfe the Queflion. As if in the Divifion of an Angle into five equal Parts, by purting r for the Radius of the Circle, q for the Chowl of the Coraplement of the propos'd Angle to two right ones, and x for the Chord of the Complement of the fifth Part of that Angle, I had come to this Equation, $x^{4}-s r r x^{i}+5 r^{4} x-r^{3} q=0$. Where in any particular Cafe the Radius r is given in Numbers, and the line q fubrending the Complement of the given Angle; an if Radius were 10; and the Chord 3; 1 fubftitute thofe Numbers in the Equation for r and q, and there comes out the Numeral Equation $x^{i}-500 x^{3}+50000 x-30500$ $=0$, whereof the Root being excrated will be x, or the line fubtending the Complement of the fifth Part of that given Angle.

But the Roor is a, Number which being fubfituted in the Equation tor the Letuer or Species fignifying of the Nature the Rnor, will make all the lerms vanifh of the Roors of Thus Unity is the Root of the Equation \boldsymbol{x}^{2} an Xquation, $-x-19 x x+49 x-30=0$, becaufe being writ for x it produces $1=1-19+49$ - 30 , that is, nothing. And thus, if for x you write the Number 3, or the Negative Number - 5 , and in both Cafes there will be procuc'd nothing, the Affirmative and Aegative Terms in thefe four Cafcs deftroying one anpther; then fince any of the Numbers written in the Equation fulfils the Condition of x, by making all the Terms of the frquation rogether equal to nothing, any of them will be the Root of the fiquation.

And that you may not wonder that the fame Equation may have feveral Roots, you muft know that there may be more Solutions [than cne] of the fame Problem. As if there was fought the Interfection of two given Circles; there are two Interfections, and confequently the Queftion admits two Aurwers ; and then the equation determining

Isaac Newton, Universal Arithmetick, 1728:
p. 195: "it is just that the Roots of Equations should be often impossible, lest they should exhibit the cases of Problems that are impossible as if they are possible"

Complex numbers in the 18th century (3)

[192]

How Æquations are to be folv'd.

AFTER therefore in the Solution of a Queftion you are come to an Equation, and that Equation is duly reduc'd and order'd; when, the Quantitics which are fuppos'd given, are really given in Numbers, thofe Numbers are to Se fab年itured in their room in the Equation, and you'h have a Numeral Equation, whofe Root being extracted will fatidfe the Queflion. As if in the Divifion of an Angle into five equal Parts, by purting r for the Radius of the Circle, q for the Chowl of the Coraplement of the propos'd Angle to two right ones, and x for the Chord of the Complement of the fifth Part of that Angle, I had come to this Equation, $x^{4}-\varsigma r x^{i}+5 r^{4} x-r^{4} q=0$. Where in any particular Cafe the Radius r is given in Numbers, and the line q fubrending the Complement of the given Angle; no if Radiua were 10; and the Chord 3; 1 fubftitute thofe Numbers in the Equation for r and q, and there comes out the Numeral Equation $x^{i}-500 x^{3}+50000 x-30500$ $=0$, whereof the Root being excrated will be x, or the line fubtending the Complement of the fifth Part of that given Angle.

But the Root is a, Number which being fubfitituted in the Equation tor the Letter or Species fignifying of the Nature the Rnot, will make all the lerms vanifl of the Roors of Thus Unity is the Root of the Equation \boldsymbol{x}^{2} an Xquation, $-x-19 x x+49 x-30=0$, becaufe being writ for x it produces $\mathrm{I}-1-19+49$ - 30 , that is, nothing. And thus, if for x you write the Number 3, or the Negative Number - 5 , and in both Cafes there will be procuc'd nothing, the Affirmative and Alegative Terms in thefe four Cafcs deftroying one anpther; then fince any of the Numbers written in the Equation fulfiss the Condition of x, by making all the Terms of the Fquation rogether equal to nothing, any of them will be the Root of the fiquation.

And that you may not wonder that the fame Equation may have feveral Roots, you muft know that there may be more Solutions [than cne] of the fame Problem. As if there was fought the Interfection of two given Circles; there are two Interfections, and confequently the Queftion admits two Aurwers ; and then the equation determining

Isaac Newton, Universal Arithmetick, 1728:
p. 195: "it is just that the Roots of Equations should be often impossible, lest they should exhibit the cases of Problems that are impossible as if they are possible" - complex numbers as an indicator of real-world solvability of problems

Complex numbers in the 18th century (4)

Leonhard Euler also used them freely: e.g., in Introductio in analysin infinitorum, 1748, §138:

$$
\begin{aligned}
& e^{+v \sqrt{-1}}=\cos \cdot v+\sqrt{-1} \cdot \sin \cdot v \\
& e^{-v \sqrt{-1}}=\cos . v-\sqrt{-1} \cdot \sin . v
\end{aligned}
$$

(See Mathematics emerging, §9.2.3)
$\begin{aligned} & \text { Ex quibus intelligitur quomodo quantitates exponentiales ima- } \\ & \text { ginarix ad Sinus \& Cofinus Arcuum realium reducantur. Erit }\end{aligned}$
$\begin{aligned} & \text { ginarix ad Sinus \& Cofinus Arcuum realium reducantur. Erit } \\ & \text { vero } e^{+v} V^{1}=\operatorname{cof} . v+\sqrt{ }-1 \text {. } \mathrm{m} . v \& e^{-v}-1=\end{aligned}$

> 139. Sit jam in iifdem formulis $\mathbf{9 . 1 3 0}$, numerus infinite parvus, feu $n=\frac{1}{i}$, exiftente i numero infinite magno, erit $\operatorname{cof} \cdot n \varepsilon=\operatorname{cof}, \frac{2}{i}=1 \& \rho \mathrm{in}, n \varepsilon=f i n, \frac{z}{i}=\frac{2}{i} ;$ Arcus enim evanefcentis $\frac{2}{i}$ Sinus eft ipfi zqualis, Cofinus vero $=1$. His pofigis habebirur
> $I=\frac{(\cos . z+\sqrt{ }-1 . \operatorname{cou}, z)^{\frac{\pi}{i}}+(\operatorname{cof} / . z-\sqrt{ }-1 . \operatorname{man} . z)^{\frac{1}{4}}}{2} \&$
> - $\frac{a}{i}=\frac{(\cos . z+V-1 . \operatorname{fon} z)^{\frac{1}{i}}-(\cos / . z-V-1 . \min , z)^{\frac{a}{i}}}{2 \sqrt{-1}} \mathrm{Su}-$ mendis autem Logarithmis hyperbolicis fupra (125) oftendimus effe $l(1+x)=i(1+x)^{\frac{1}{i}}-i$, feuy $y^{\frac{1}{i}}=1+\frac{1}{i} l$,

The Fundamental Theorem of Algebra

Every polynomial equation of degree n has exactly n roots.

The Fundamental Theorem of Algebra

Every polynomial equation of degree n has exactly n roots.

- Early 17th century: known that an equation of degree n may have n roots

The Fundamental Theorem of Algebra

Every polynomial equation of degree n has exactly n roots.

- Early 17th century: known that an equation of degree n may have n roots
- During 17th century: complex numbers gradually admitted as roots

The Fundamental Theorem of Algebra

Every polynomial equation of degree n has exactly n roots.

- Early 17th century: known that an equation of degree n may have n roots
- During 17th century: complex numbers gradually admitted as roots
- 15 Sept 1759: Euler asserted theorem in a letter to Nicholas Bernoulli, but didn't prove it

The Fundamental Theorem of Algebra

Every polynomial equation of degree n has exactly n roots.

- Early 17th century: known that an equation of degree n may have n roots
- During 17th century: complex numbers gradually admitted as roots
- 15 Sept 1759: Euler asserted theorem in a letter to Nicholas Bernoulli, but didn't prove it
- Mid/late 18th century: attempted proofs by Euler, d'Alembert, Lagrange, and others

The Fundamental Theorem of Algebra

Every polynomial equation of degree n has exactly n roots.

- Early 17th century: known that an equation of degree n may have n roots
- During 17th century: complex numbers gradually admitted as roots
- 15 Sept 1759: Euler asserted theorem in a letter to Nicholas Bernoulli, but didn't prove it
- Mid/late 18th century: attempted proofs by Euler, d'Alembert, Lagrange, and others
- 1799: proof by Gauss in his doctoral dissertation, followed by several others

The Fundamental Theorem of Algebra

Every polynomial equation of degree n has exactly n roots.

- Early 17th century: known that an equation of degree n may have n roots
- During 17th century: complex numbers gradually admitted as roots
- 15 Sept 1759: Euler asserted theorem in a letter to Nicholas Bernoulli, but didn't prove it
- Mid/late 18th century: attempted proofs by Euler, d'Alembert, Lagrange, and others
- 1799: proof by Gauss in his doctoral dissertation, followed by several others
- 1806: new proof by Argand

The Fundamental Theorem of Algebra

Every polynomial equation of degree n has exactly n roots.

- Early 17th century: known that an equation of degree n may have n roots
- During 17th century: complex numbers gradually admitted as roots
- 15 Sept 1759: Euler asserted theorem in a letter to Nicholas Bernoulli, but didn't prove it
- Mid/late 18th century: attempted proofs by Euler, d'Alembert, Lagrange, and others
- 1799: proof by Gauss in his doctoral dissertation, followed by several others
- 1806: new proof by Argand
- 1821: Argand's proof appears in Cauchy's Cours d'analyse

New ways of viewing complex numbers

On
Directionenz analytiffe Betegning,

```
        et %otfog,
```

 anyenot fornemmelig
 til
 plane og fphariffe grolygoners Dplobning.
${ }^{7 f}$
Eafpar $\mathfrak{F z c f f e l , ~ e a n d m a t e r . ~}$

[^0]Caspar Wessel, 'Om Directionens analytiske Betegning ...' ['On the analytic representation of direction ...'], Nye Samling af det Kongelige Danske Videnskabers Selskabs Skrifter, 1799

New ways of viewing complex numbers

On
Ditectionens analytiffe Betegning,

```
        et%゙0rfog,
```

 anyenbe forncmactig
 111
 plane og fphariffe grolygoners Dplobning.
${ }^{7 f}$
Eafpar $\mathfrak{F z c f f e l , ~ e a n d m a t e r . ~}$

[^1]> Caspar Wessel, 'Om Directionens analytiske Betegning ...' ['On the analytic representation of direction ...'], Nye Samling af det Kongelige Danske Videnskabers Selskabs Skrifter, 1799

Published in Danish

New ways of viewing complex numbers

On
Ditectionens analytiffe Betegning,

anyent forncmmelig
${ }^{111}$
plane og fphariffe grolygoners Dplobning.
af
Eafpar Wicffel, eanbmater.

[^2]> Caspar Wessel, ‘Om Directionens analytiske Betegning ...' ['On the analytic representation of direction ...'], Nye Samling af det Kongelige Danske Videnskabers Selskabs Skrifter, 1799

Published in Danish not well known

New ways of viewing complex numbers

On
Ditectionens analytiffe Betegning,

```
                        et%orfog,
```

 anyent forncmmelig
 til
 plane og fpharifte grolygoners Dplobning.
af
Eafpar $\mathfrak{F z c f f e l , ~ e a n d m a t e r . ~}$

[^3]> Caspar Wessel, ‘Om Directionens analytiske Betegning ...' ['On the analytic representation of direction ...'], Nye Samling af det Kongelige Danske Videnskabers Selskabs Skrifter, 1799

Published in Danish not well known

French translation published in 1897

New ways of viewing complex numbers

ESSAI

SUR CNE Manitere de representer

LES Quantités imaginaires

Bass
Les CONSTRUCTIONS GÉOMÉTRIQUES,
Par R. ARGAND.
répition
PAECEDE D'UNE PAEFACE
Par M. J. houtel
er aeivit d'ex appersica
Coatesas des Eitralia den Annalez de Cergoner, relatith it ie quesilon dee tanagiasires.

PARIS,

GAUTHIER-VILLARS, IMPRIMEUR-LIBRAIRE
DE EEAEAE DES LOSGITEDES, DE L'ECOLE POLTTECRMIQEE, SUCCESSELR DE MALLET-BACHELJEA,

Qual des Angreation, is
1874
(Tons drolts reserves.)

Robert Argand, Essay on a method of representing imaginary quantities ..., 1806

Fig. 2.

Fig. 2 bis.

New ways of viewing complex numbers

Theory of Conjugate Functions, or Algebraic Couples; with a Preliminary and Elementary Essay on Algebra as the Science of Pure Time.

By william rowan hamilton,
M.R.I.A., F.R.A.S., Hon. M. R.S.Ed. and Dub., Fellow of the Amerioan Aoademy of Arts and Sciences, and of the Royal Northern Antiquarian Society at Copenhagen, Andrees' Professor of Astronomy in the Uniocrsity of Dublin, and Royal Astronomer of Ireland.

Read November 4th, 1833, and June 1st, 1885.

General Introductory Remarks.
The Study of Algebra may be pursued in three very different schools, the Practical, the Philological, or the Theoretical, according as Algebra itself is accounted an Instrument, or a Language, or a Contemplation; according as ease of operation, or symmetry of expression, or clearness of thought, (the agere, the fari, or the sapere,) is cminently prized and sought for. The Practical person seeks a Rule which he may apply, the Philological person seeks a Formula which he may write, the Theoretical person seeks a Theorem on which he may meditate. The felt imperfections of Algebra are of three answering kinds. The Practical Algebraist complains of imperfection when he finds his Instrument limited in power; when a rule, which he could happily apply to many cases, can be hardly or not at all applied by him to some new ease; when it fails to enable him to do or to discover something else, in some other Art, or in some own sake, he studied Algebra. The Philological Algebraist complains of imperfection, when his Language own sake, he studied Algebra. The Philological Algebraist complains of imperfection, when his Language
presents him with an Anomaly ; when he finds an Exception disturb the simplicity of his Notation, or the presents him with an Anomaly ; when he finds an Exception disturb the simplicity of his Notation, or the
symmetrieal structure of his Syntax ; when a Formula must be written with precaution, and a Symbolism is not universal. The Theoretical Algebraist complains of imperfection, when the clearness of his Contemplation is obscured; when the Reasonings of his Science seem anywhere to oppose each other, or become in any part too complex or too little valid for his belief to rest firmly upon them; or when, though trial may have taught him that a rule is useful, or that a formula gives true results, be cannot prove that rule, nor understand that formula : when he cannot rise to intuition from induction, or canmot look beyond the signs to the things signified.

Transactions of the Royal Irish Academy, 1837

Complex numbers as ordered pairs subject to specified rules:

New ways of viewing complex numbers

Theory of Conjugate Functions, or Algebraic Couples ; with a Preliminary and Elementary Essay on Algebra as the Science of Pure Time.
by william rowan hamilton,
M.R.I.A., F.R.A.S., Hon. M. R. S. Ed. and Dub., Fellow of the Amerioan Academy of Arts and Sciences, and of the Royal Northern Antiquarian Society at Copenhagen, Andrees' Professor of Astronomy in the Uniocrsity of Dublin, and Royal Astronomer of Ireland.

Read November 4th, 1833, and June 1st, 1835.

General Introductory Remarks.

The Study of Algebra may be pursued in three very different schools, the Practical, the Philological, or the Theoretical, according as Algebra itself is accounted an Instrument, or a Language, or a Contemplation ; according as ease of operation, or symmetry of expression, or clearness of thought, (the agere, the fari, or the sapere,) is eminently prized and sought for. The Practical person seeks a Rule which he may apply, the Philological person seeks a Formula which he may write, the Theoretical person seeks a Theorem on which he may meditate. The felt imperfections of Algebra are of three answering kinds. The Practical Algebraist complains of imperfection when he finds his Instrument limited in power; when a rule, which he could happily apply to many cases, can be hardly or not at all applied by him to some new ease; when it fails to enable him to do or to discover something else, in some other Art, or in some other Science, to which Algebra with him was but subordinate, and for the sake of which and not for its own sake, he studied Algebra. The Philological Algebraist complains of imperfection, when his Language presents him with an Anomaly ; when he finds an Exception disturb the simplicity of his Notation, or the symmetrical structure of his Syntax ; when a Formula must be written with precaution, and a Symbolism is not universal. The Theoretical Algebraist complains of imperfection, when the clearness of his Contemplation is obscured; when the Reasonings of his Science seem anywhere to oppose each other, or become in any part too complex or too little valid for his belief to rest firmly upon them; or when, though trial may have taught him that a rule is useful, or that a formula gives true results, be cannot prove that rule, nor understand that formula : when he cannot rise to intuition from induction, or canmot look beyond the signs to the things signified.

Transactions of the Royal Irish Academy, 1837

Complex numbers as ordered pairs subject to specified rules:

$$
\begin{gathered}
(a, b) \pm(c, d)=(a \pm c, b \pm d) \\
(a, b)(c, d)=(a c-b d, a d+b c) \\
\frac{(a, b)}{(c, d)}=\left(\frac{a c+b d}{c^{2}+d^{2}}, \frac{b c-a d}{c^{2}+d^{2}}\right)
\end{gathered}
$$

New ways of viewing complex numbers

Theory of Conjugate Functions, or Algebraic Couples; with a Preliminary and Elementary Essay on Algebra as the Science of Pure Time.
by william rowan hamilton,
M.R.I.A., F.R.A.S., Hon. M. R. S. Ed. and Dub., Fellow of the Amerioan Academy of Arts and Sciences, and of the Royal Northern Antiquarian Society at Copenhagen, Andreos' Prefessor of Astronomy in the Univcraity of Dublin, and Royal Astronomer of Ireland.

Read November 4th, 1833, and June 1st, 1835.

General Introductory Remarks.

The Study of Algebra may be pursued in three very different schools, the Practical, the Philological, or the Theoretical, according as Algebra itself is accounted an Instrument, or a Language, or a Contemplation ; according as ease of operation, or symmetry of expression, or clearness of thought, (the agere, the fari, or the sapere,) is eminently prized and sought for. The Practical person seeks a Rule which he may apply, the Philological person seeks a Formula which he may write, the Theoretical person seeks a Theorem on which he may meditate. The felt imperfections of Algebra are of three answering kinds. The Practical Algebraist complains of imperfection when he finds his Instrument limited in power; when a rule, which he could happily apply to many cases, can be hardly or not at all applied by him to some new ease; when it fails to enable him to do or to discover something else, in some other Art, or in some other Science, to which Algebra with him was but subordinate, and for the sake of which and not for its own sake, he studied Algebra. The Philological Algebraist complains of imperfection, when his Language presents him with an Anomaly ; when he finds an Exception disturb the simplicity of his Notation, or the symmetrical structure of his Syntax ; when a Formula must be written with precaution, and a Symbolism is not universal. The Theoretical Algebraist complains of imperfection, when the clearness of his Contemplation is obscured; when the Reasonings of his Science seem anywhere to oppose each other, or become in any part too complex or too little valid for his belief to rest firmly upon them; or when, though trial may have taught him that a rule is useful, or that a formula gives true results, be cannot prove that rule, nor understand that formula : when he cannot rise to intuition from induction, or canmot look beyond the signs to the things signified.

Transactions of the Royal Irish Academy, 1837

Complex numbers as ordered pairs subject to specified rules:

$$
\begin{gathered}
(a, b) \pm(c, d)=(a \pm c, b \pm d) \\
(a, b)(c, d)=(a c-b d, a d+b c) \\
\frac{(a, b)}{(c, d)}=\left(\frac{a c+b d}{c^{2}+d^{2}}, \frac{b c-a d}{c^{2}+d^{2}}\right)
\end{gathered}
$$

Led to the search for triples, and thence to quaternions

Part 2: Functions of a Complex Variable

Complex analysis

The origins of complex analysis may be seen in early achievements by Johann Bernoulli, Euler, and others, using complex transformations to evaluate real integrals.

Complex analysis

The origins of complex analysis may be seen in early achievements by Johann Bernoulli, Euler, and others, using complex transformations to evaluate real integrals. But is substitution of complex variables for real variables permissible?

Complex analysis

The origins of complex analysis may be seen in early achievements by Johann Bernoulli, Euler, and others, using complex transformations to evaluate real integrals. But is substitution of complex variables for real variables permissible?

- Euler (posthumous, 1794): yes

Complex analysis

The origins of complex analysis may be seen in early achievements by Johann Bernoulli, Euler, and others, using complex transformations to evaluate real integrals. But is substitution of complex variables for real variables permissible?

- Euler (posthumous, 1794): yes
- Laplace $(1785,1812)$: yes

Complex analysis

The origins of complex analysis may be seen in early achievements by Johann Bernoulli, Euler, and others, using complex transformations to evaluate real integrals. But is substitution of complex variables for real variables permissible?

- Euler (posthumous, 1794): yes
- Laplace $(1785,1812)$: yes
- Poisson (1812): doubtful

Complex analysis

The origins of complex analysis may be seen in early achievements by Johann Bernoulli, Euler, and others, using complex transformations to evaluate real integrals. But is substitution of complex variables for real variables permissible?

- Euler (posthumous, 1794): yes
- Laplace $(1785,1812)$: yes
- Poisson (1812): doubtful
- Cauchy (1814): inspired by Laplace, set to work on the problem

Sources for the origins of complex analysis

Secondary:

- Katz: §17.3 (3rd ed.); §22.3 (brief ed.)
- Frank Smithies: Cauchy and the creation of complex function theory, Cambridge University Press, 1997

Primary: as quoted by Smithies; some extracts reproduced in Mathematics emerging, §15.2.

Real and complex analysis united

The Real and the Complex: A History of Analysis in the 19th Century

Cauchy as 'creator' of complex analysis

Some of Cauchy's contributions to complex analysis:

Cauchy as 'creator' of complex analysis

Some of Cauchy's contributions to complex analysis:

- integration along paths and contours (1814) [1827]

Cauchy as 'creator' of complex analysis

Some of Cauchy's contributions to complex analysis:

- integration along paths and contours (1814) [1827]
- calculus of residues (1826)

Cauchy as 'creator' of complex analysis

Some of Cauchy's contributions to complex analysis:

- integration along paths and contours (1814) [1827]
- calculus of residues (1826)
- integral formulae (1831)

Cauchy as 'creator' of complex analysis

Some of Cauchy's contributions to complex analysis:

- integration along paths and contours (1814) [1827]
- calculus of residues (1826)
- integral formulae (1831)
- inferences about Taylor series expansions

Cauchy as 'creator' of complex analysis

Some of Cauchy's contributions to complex analysis:

- integration along paths and contours (1814) [1827]
- calculus of residues (1826)
- integral formulae (1831)
- inferences about Taylor series expansions
- applications to evaluation of difficult definite integrals of real functions

Cauchy's changing views of complex numbers and variables

At different times, Cauchy regarded complex numbers in different ways:

Cauchy's changing views of complex numbers and variables

At different times, Cauchy regarded complex numbers in different ways:

- as formal (numerical) expressions $a+b \sqrt{-1}$;

Cauchy's changing views of complex numbers and variables

At different times, Cauchy regarded complex numbers in different ways:

- as formal (numerical) expressions $a+b \sqrt{-1}$;
- geometrically;

Cauchy's changing views of complex numbers and variables

At different times, Cauchy regarded complex numbers in different ways:

- as formal (numerical) expressions $a+b \sqrt{-1}$;
- geometrically;
- by reducing $i=\sqrt{-1}$ to a "real but indeterminate quantity"

Cauchy's changing views of complex numbers and variables

At different times, Cauchy regarded complex numbers in different ways:

- as formal (numerical) expressions $a+b \sqrt{-1}$;
- geometrically;
- by reducing $i=\sqrt{-1}$ to a "real but indeterminate quantity" This done, there is no need to torture the mind to discover what the symbolic sign $\sqrt{-1}$ could represent ...

Cauchy's changing views of complex numbers and variables

At different times, Cauchy regarded complex numbers in different ways:

- as formal (numerical) expressions $a+b \sqrt{-1}$;
- geometrically;
- by reducing $i=\sqrt{-1}$ to a "real but indeterminate quantity" This done, there is no need to torture the mind to discover what the symbolic sign $\sqrt{-1}$ could represent ... (in modern terms, Cauchy reduced complex arithmetic to calculations modulo $i^{2}+1$ in $\left.\mathbb{R}[i]\right)$

Cauchy's changing views of complex numbers and variables

At different times, Cauchy regarded complex numbers in different ways:

- as formal (numerical) expressions $a+b \sqrt{-1}$;
- geometrically;
- by reducing $i=\sqrt{-1}$ to a "real but indeterminate quantity" This done, there is no need to torture the mind to discover what the symbolic sign $\sqrt{-1}$ could represent ... (in modern terms, Cauchy reduced complex arithmetic to calculations modulo $i^{2}+1$ in $\left.\mathbb{R}[i]\right)$
Moreover, Cauchy's view of complex variables gradually shifted
- from quantities with two parts $x+y \sqrt{-1}$

Cauchy's changing views of complex numbers and variables

At different times, Cauchy regarded complex numbers in different ways:

- as formal (numerical) expressions $a+b \sqrt{-1}$;
- geometrically;
- by reducing $i=\sqrt{-1}$ to a "real but indeterminate quantity" This done, there is no need to torture the mind to discover what the symbolic sign $\sqrt{-1}$ could represent ...
(in modern terms, Cauchy reduced complex arithmetic to calculations modulo $i^{2}+1$ in $\left.\mathbb{R}[i]\right)$
Moreover, Cauchy's view of complex variables gradually shifted
- from quantities with two parts $x+y \sqrt{-1}$
- to single quantities z.

Cauchy's first 'Mémoire' (1814/1827)

ménoire
 $8 t 1$
 LES INTÉGRALES DÉFINIES ${ }^{\prime \prime}$.

\qquad

INTRODUCTION.

La solution d'un grand nombre de problèmes se réduit, en derniere analyse, a l'évaluation des intégrales définies; aussi les géomètres se sont-ils beaucoup occupés de leur détermination. On trouve, à ce égard, une foule de théorèmes curicux et utiles dans les Mémoires et lo Calcul intégral d'Euler, dans plusieurs Mémoires de M. Laplace, dans ses Recherches sur les approximations de certaines formules, et dans les Exercices de Calcul intégrat de M. Legendre. Mais, parmi les diverses intégrales ohtenues par les deux premiers géomètres que je viens de eiter, plusicurs ont été découvertes pour la première fois à l'aide d'une espèce d'induction fondée sur le passage du réel à l'imaginaire. Les passages de cette nature conduisent souvent d'une manière très prompte à des résultats dignes de remarque. Toutefois cette portion de la théorie est, ainsi que l'a observé M. Laplace, sujette à plusieurs difficultés. Aussi, après avoir montré, dans le calcul des fonctions génératriees, les ressources que l'Analyse peut retirer de semblables considérations, l'auteur ajoute : a On peut donc considérer ces passages comme des moyens de découvertes semblables à l'induction dont les
(1) Mémoires présentés par dilvers savants à C'Acutcimic noyale des Sciences tele l'Institut de France et inprime's par son ortlee. Sciences mathématiques et physiques. Tome I. Imprimé, jar autorisation du Roi, à I'Imprimerie royalo; t8z7.

OEnoresde.C. -S, I, t. I.
47°

> Cited Laplace's concerns about the solution of integrals by "the passage from the real to the imaginary"

Cauchy's first 'Mémoire' (1814/1827)

MÉMOIRE
 8 CH
 LES INTÉGRALES DÉFINIES ${ }^{\prime \prime}$.

INTRODUCTION.

La solution d'un grand nombre de problemes se réduit, en derniere amalyse, a l'évaluation des intégrales définies; aussi les géomètres se sont-ils beaucoup occupés de leur détermination. On trouve, à cet égard, une foule de théorèmes curicux et utiles dans les Mémoires et lo Calcul intégral d'Euler, dans plusieurs Mémoires de M. Laplace, dans ses Recherches sur les approximations de certaines formules, et dans les Exercices de Calcul intégrat de M. Legendre. Mais, parmi les diverses intégrales ohtenues par les deux premiers géomètres que je viens de eiter, plusicurs ont été découvertes pour la première fois à l'aide d'une espèce d'induction fondée sur le passage du réel à l'imaginaire. Les passages de cette nature conduisent souvent d'une maniëre tres prompte \ddagger des resultats dignes de remarque. Toutefois cette portion de la théorie est, ainsi que l'a observé M. Laplace, sujette à plusieurs difficultés. Aussi, après avoir montré, dans le calcul des fonctions génératrices, les ressources que l'Analyse peut retirer de semblables considérations, l'auteur ajoute : a On peut donc considérer ces passages comme des moyens de découvertes semblables à l'induction dont les
(1) Mémoires présentés par dilvers savants à C'Acutcimic noyale des Sciences tele l'Institut de France et inprime's par son ortlee. Sciences mathématiques et physiques. Tome I. Imprimé, par autorisation du Roi, à l'Imprimerie royale; 1827 .

OEnoresde. C. -S, I, t. I.

> Cited Laplace's concerns about the solution of integrals by "the passage from the real to the imaginary"

First part: evaluation of improper integrals, such as

$$
\int_{-\infty}^{\infty} \frac{\cos x}{1+x^{2}} d x
$$

Cauchy's first 'Mémoire' (1814/1827)

MEMOIRE
 8 CH
 LES INTÉGRALES DÉFINIES ${ }^{\prime \prime}$.

INTRODUCTION.

La solution d'un grand nombre de problemes se réduit, en derniere amalyse, a l'évaluation des intégrales définies; aussi les géomètres se sont-ils beaucoup occupés de leur détermination. On trouve, à cet égard, une foule de théorèmes curicux et utiles dans les Mémoires et lo Calcul intégral d'Euler, dans plusieurs Mémoires de M. Laplace, dans ses Recherches sur les approximations de certaines formules, et dans les Exercices de Calcul intégrat de M. Legendre. Mais, parmi les diverses intégrales ohtenues par les deux premiers géomètres que je viens de eiter, plusicurs ont été découvertes pour la première fois à l'aide d'une espèce d'induction fondée sur le passage du réel à l'imaginaire. Les passages de cette nature conduisent souvent d'une maniëre tres prompte \ddagger des resultats dignes de remarque. Toutefois cette portion de la théorie est, ainsi que l'a observé M. Laplace, sujette à plusieurs difficultés. Aussi, après avoir montré, dans le calcul des fonctions génératrices, les ressources que l'Analyse peut retirer de semblables considérations, l'auteur ajoute : a On peut donc considérer ces passages comme des moyens de découvertes semblables à l'induction dont les
(1) Mémoires présentés par dilvers savants à C'Acutcimic noyale des Sciences tele l'Institut de France et inprime's par son ortlee. Sciences mathématiques et physiques. Tome I. Imprimé, par autorisation du Roi, à l'Imprimerie royale; 1827 .

OEnoresde. C. -S, I, t. I.
47°

> Cited Laplace's concerns about the solution of integrals by "the passage from the real to the imaginary"

First part: evaluation of improper integrals, such as

$$
\int_{-\infty}^{\infty} \frac{\cos x}{1+x^{2}} d x=\frac{\pi}{e}
$$

Cauchy's first 'Mémoire' (1814/1827)

ménoire
86
les intégrales dérinies" ${ }^{\text {" }}$.

introduction.

La solution d'un grand nombre de problèmes se réduit, en derniere amalyse, a l'évaluation des intégrales définies; aussi les géomètres se sont-ils beaucoup occupés de leur détermination. On trouve, à cet ègard, une foule de théorèmes curicux et utiles dans les Mémoires et le Calcul intégral d'Euler, dans plusieurs Mémoires de M. Laplace, dans ses Recherches sur les approximations de certaines formules, et dans les Exercices de Calcul integral de M. Legendre. Mais, parmi les diverses intégrales obtenues par les deux premiers géomètres que je viens de citer, plusicurs ont été découvertes pour la première fois à l'aide d'unc espèce d'induction fondée sur le passage du réel à l'imaginaire. Les passages de cette nature conduisent souvent d'une maniëre tres prompte à des résultats dignes de remarque. Toutefois cette portion de la théorie est, ainsi que l'a observé M. Laplace, sujette à plusieurs difficultés. Aussi, après avoir montré, dans le calcul des fonctions génératrices, les ressources que l'Analyse peut retirer de semblables considérations, l'auteur ajoute : a On peut donc considérer ces passages comme des moyens de découvertes semblables à l'induction dont les
(1) Mémoires présentés par nlivers swoants à l'Aculémie royale des Sciences tel I'Institut de France et inprime's par son orrlie. Sciences mathèmatiques et physiques. Tome I. Imprimé, par autorisation du Roi, à l'Imprimerie royale; 1827 .

OEnoresdeC. - S, I, t.I.

Cited Laplace's concerns about the solution of integrals by "the passage from the real to the imaginary"

First part: evaluation of improper integrals, such as

$$
\int_{-\infty}^{\infty} \frac{\cos x}{1+x^{2}} d x=\frac{\pi}{e}
$$

Noted Cauchy-Riemann equations in passing (as had d'Alembert and Euler) as general useful property of analytic functions, rather than fundamental feature of the theory

Complex numbers in the Cours d'analyse (1821)

176
COURS D'ANALYSE.
toute expression symbolique de la forme

$$
a+b \sqrt{-1}
$$

$a, 6$ désignant deux quantités réelles; et lon dit que deux expressions imaginaires

$$
\alpha+6 \sqrt{-1}, \gamma+\delta \sqrt{-1}
$$

sont égales entre elles, lorsqu'il y a égalité de part et d'autre, $1 .^{\circ}$ entre les parties réelles a et γ, $2 .{ }^{\circ}$ entre les coefficiens de $\sqrt{-1}$, savoir, 6 et δ. Légalité de deux expressions imaginaires sindique, comme celle de deux quantités réelles, par le signe $=$; et il en résulte ce qu'on appelle une équation imaginaire. Cela posé, toute équation imaginaire n'est que la représentation symbolique de deux équations entre quantités réelles. Par exemple, léquation symbolique

$$
a+6 \sqrt{-1}=\gamma+\delta \sqrt{-1}
$$

équivant seule aux deux équations réelles

$$
\alpha=\gamma, \quad 6=\delta
$$

Lorsque, dans l'expression imaginare

$$
a+b \sqrt{-1}
$$

le coefficient 6 de $\sqrt{-1}$ s'évanouit, le terme $6 \sqrt{-1}$ est censé réduit à zéro, et f'expression elle-méme à la quantité réelle a. En vertu de cette convention, les expressions imaginaires comprennent, comme cas particuliers, les quantités réelles.

Les expressions imaginaires peuvent étre sou-

Defined as "symbolic expressions"
 $a+b \sqrt{-1}$

Complex numbers in the Cours d'analyse (1821)

176

cours d'analyse.
toute expression symbolique de la forme

$$
a+6 \sqrt{-1}
$$

$a, 6$ désignant deux quantités réelles; et lon dit que deux expressions imaginaires

$$
a+6 \sqrt{-1}, \quad \gamma+\delta \sqrt{-1}
$$

sont égales entre elles, Iorsqu'il y a égalité de part et d'autre, $1 .^{\circ}$ entre les parties réelles a et γ, $2 .^{\circ}$ entre les coefficiens de $\sqrt{-1}$, savoir, 6 et δ. Légalité de deux expressions imaginaires sindique, comme celle de deux quantités réelles, par le signe $=$; et il en résulte ce qu'on appelle une équation imaginaire. Cela posé, toute équation imaginaire n'est que la représentation symbolique de deux équations entre quantités réelles. Par exemple, l'équation symbolique

$$
a+6 \sqrt{-1}=\gamma+\delta \sqrt{-1}
$$

équivant seule aux deux équations réelles

$$
\alpha=\gamma, b=\delta
$$

Lorsque, dans l'expression imaginaire

$$
a+6 \sqrt{-1}
$$

le coefficient 6 de $\sqrt{-1}$ s'évanouit, le terme $6 \sqrt{-1}$ est censé réduit à zéro, et f'expression elle-méme à la quantité réelle a. En vertu de cette convention, les expressions imaginaires comprennent, comme cas particuliers, les quantités réelles.

Les expressions imaginaires peuvent être sou-

> Defined as "symbolic expressions"
> $a+b \sqrt{-1}$

55-page development of formal definitions and properties

Complex numbers in the Cours d'analyse (1821)

176

COURS D'ANALYSE.
toute expression symbolique de la forme

$$
a+b \sqrt{-1},
$$

$a, 6$ désignant deux quantités réelles; et lon dit que deux expressions imaginaires

$$
a+6 \sqrt{-1}, \quad \gamma+\delta \sqrt{-1}
$$

sont égales entre elles, Iorsqu'il y a égalité de part et d'autre, $1 .^{\circ}$ entre les parties réelles a et γ, $2 .{ }^{\circ}$ entre les coefficiens de $\sqrt{-1}$, savoir, 6 et δ. Légalité de deux expressions imaginaires sindique, comme celle de deux quantités réelles, par le signe $=$; et il en résulte ce qu'on appelle une équation imaginaire. Cela posé, toute équation imaginaire n'est que la représentation symbolique de deux équations entre quaantités réelles. Par exemple, lè́quation symbolique

$$
a+6 \sqrt{-1}=\gamma+\delta \sqrt{-1}
$$

équivant seule aux deux équations réelles

$$
\alpha=\gamma, b=\AA
$$

Lorsque, dans l'expression imaginaire

$$
a+6 \sqrt{-1}
$$

le coefficient 6 de $\sqrt{-1}$ s'évanouit, le terme $6 \sqrt{-1}$ est censé réduit à zéro, et f'expression elle-méme à la quantité réelle a. En vertu de cette convention, les expressions imaginaires comprennent, comme cas particuliers, les quantités réelles.

Les expressions imaginaires peuvent étre sou-

Defined as "symbolic expressions"
$a+b \sqrt{-1}$
55-page development of formal definitions and properties

Consideration of multi-functions which are the most natural branches to take?

Complex numbers in the Cours d'analyse (1821)

176

cours d'analyse.
toute expression symbolique de la forme

$$
a+b \sqrt{-1},
$$

$a, 6$ désignant deux quantités réelles; et lon dit que deux expressions imaginaires

$$
a+b \sqrt{-1}, \quad \gamma+\delta \sqrt{ }=1
$$

sont égales entre elles, lorsquill y a égalité de part et dautre, 10° entre les parties réelles a et γ, 2.0 entre les coefficiens de $\sqrt{-1}$, savoir, 6 et δ.

Légalité de deux expressions imaginaires sindique, comme celle de deux quantités réelles, par le signe $=$; et il en résulte ce qu'on appelle une équation imaginaire. Cela posé, toute équation imaginaire n'est que la représentation symbolique de deux équations entre quantités réelles. Par exemple, lèquation symbolique

$$
\alpha+b \sqrt{-1}=\gamma+\delta \sqrt{-1}
$$

équivaut seule aux deux équations réelles

$$
\alpha=\gamma, b=\lambda .
$$

Lorsque, dans lexpression imaginare

$$
a+6 \sqrt{-1},
$$

le coefficient 6 de $\sqrt{-1}$ s'évanouit, le terme $6 \sqrt{-1}$ est censé réduit à zéro, et f'expression elle-mème à la quantité réelie a. En vertu de cette convention, les expressions imaginaires comprennent, comme cas particuliers, les quantités réelles.

Les expressions imaginaires peuvent étre sou-

Defined as "symbolic expressions"
$a+b \sqrt{-1}$
55-page development of formal definitions and properties

Consideration of multi-functions which are the most natural branches to take?

Sought to extend ideas for real functions to the complex case, particularly those relating to power series and convergence

Cauchy's second 'Mémoire' (1825)

'Mémoire sur les intégrales définies, prises entre des limites imaginaires'

Direct adaptation of definition of real integral to the complex case:

Cauchy's second 'Mémoire' (1825)

'Mémoire sur les intégrales définies, prises entre des limites imaginaires'

Direct adaptation of definition of real integral to the complex case:

$$
\int_{X_{0}+y_{0} \sqrt{-1}}^{X+Y \sqrt{-1}} f(z) d z
$$

is the limit (or one of the limits) of a sum of products of the form

$$
\sum\left(x_{i-1}+y_{i-1} \sqrt{-1}\right) f\left(x_{i-1}+y_{i-1} \sqrt{-1}\right)
$$

Cauchy's second 'Mémoire' (1825)

'Mémoire sur les intégrales définies, prises entre des limites imaginaires'

Direct adaptation of definition of real integral to the complex case:

$$
\int_{X_{0}+y_{0} \sqrt{-1}}^{X+Y \sqrt{-1}} f(z) d z
$$

is the limit (or one of the limits) of a sum of products of the form

$$
\sum\left(x_{i-1}+y_{i-1} \sqrt{-1}\right) f\left(x_{i-1}+y_{i-1} \sqrt{-1}\right)
$$

NB. No explicit definition of a function of a complex variable;

Cauchy's second 'Mémoire' (1825)

'Mémoire sur les intégrales définies, prises entre des limites imaginaires'

Direct adaptation of definition of real integral to the complex case:

$$
\int_{X_{0}+y_{0} \sqrt{-1}}^{X+Y \sqrt{-1}} f(z) d z
$$

is the limit (or one of the limits) of a sum of products of the form

$$
\sum\left(x_{i-1}+y_{i-1} \sqrt{-1}\right) f\left(x_{i-1}+y_{i-1} \sqrt{-1}\right)
$$

NB. No explicit definition of a function of a complex variable; tacit assumption of differentiability, hence that the Cauchy-Riemann equations hold.

Contour integration

In any domain where the function does not become infinite, the value of a complex integral is independent of the path along which it is taken.

Contour integration

In any domain where the function does not become infinite, the value of a complex integral is independent of the path along which it is taken.

Cauchy: consider two different paths within the rectangle $\left(x_{0}, y_{0}\right)$, (X, Y) such that the function $f(x+y \sqrt{-1})$ does not become infinite for values of x, y lying within the domain enclosed by the paths.

Contour integration

In any domain where the function does not become infinite, the value of a complex integral is independent of the path along which it is taken.

Cauchy: consider two different paths within the rectangle $\left(x_{0}, y_{0}\right)$, (X, Y) such that the function $f(x+y \sqrt{-1})$ does not become infinite for values of x, y lying within the domain enclosed by the paths. Then the value of the integral $\int_{X_{0}+y_{0} \sqrt{-1}}^{X+Y \sqrt{-1}} f(z) d z$ is independent of the path taken.

Contour integration

In any domain where the function does not become infinite, the value of a complex integral is independent of the path along which it is taken.

Cauchy: consider two different paths within the rectangle (x_{0}, y_{0}), (X, Y) such that the function $f(x+y \sqrt{-1})$ does not become infinite for values of x, y lying within the domain enclosed by the paths. Then the value of the integral $\int_{X_{0}+y_{0} \sqrt{-1}}^{X+Y \sqrt{-1}} f(z) d z$ is independent of the path taken.

Really a theorem about real functions in the plane?

Contour integration

In any domain where the function does not become infinite, the value of a complex integral is independent of the path along which it is taken.

Cauchy: consider two different paths within the rectangle (x_{0}, y_{0}), (X, Y) such that the function $f(x+y \sqrt{-1})$ does not become infinite for values of x, y lying within the domain enclosed by the paths. Then the value of the integral $\int_{X_{0}+y_{0} \sqrt{-1}}^{X+Y \sqrt{-1}} f(z) d z$ is independent of the path taken.

Really a theorem about real functions in the plane?
(Gauss had found this in 1811, alongside a similar definition of a complex integral, but did not publish.)

Contour integration

For the case where $f(x+y \sqrt{-1})$ becomes infinite at the point $x=a, y=b$, Cauchy considered the limit

$$
\mathrm{f}:=\lim _{\substack{x \rightarrow a \\ y \rightarrow b}}(x-a+(y-b) \sqrt{-1}) f(x+y \sqrt{-1})
$$

Contour integration

For the case where $f(x+y \sqrt{-1})$ becomes infinite at the point $x=a, y=b$, Cauchy considered the limit

$$
\mathrm{f}:=\lim _{\substack{x \rightarrow a \\ y \rightarrow b}}(x-a+(y-b) \sqrt{-1}) f(x+y \sqrt{-1})
$$

and determined that the difference between the integrals of f along different paths that are infinitely close to each other as well as to (a, b) is $2 \pi f \sqrt{-1}$.

Contour integration

For the case where $f(x+y \sqrt{-1})$ becomes infinite at the point $x=a, y=b$, Cauchy considered the limit

$$
\mathrm{f}:=\lim _{\substack{x \rightarrow a \\ y \rightarrow b}}(x-a+(y-b) \sqrt{-1}) f(x+y \sqrt{-1})
$$

and determined that the difference between the integrals of f along different paths that are infinitely close to each other as well as to (a, b) is $2 \pi \mathrm{f} \sqrt{-1}$.

With a natural extension of this result for multiple and/or higher-order singularities, this became an ancestor of Cauchy's residue theorem - developed as part of Cauchy's calculus of residues in a paper of 1826 ('Sur un nouveau genre de calcul').

Taylor's Theorem for complex analytic functions

In Cours d'analyse (1821), Cauchy had considered the notion of radius of convergence for both real and imaginary power series.

Taylor's Theorem for complex analytic functions

In Cours d'analyse (1821), Cauchy had considered the notion of radius of convergence for both real and imaginary power series.

1831: a complex function has a convergent power series if it is "finite and continuous"

Taylor's Theorem for complex analytic functions

In Cours d'analyse (1821), Cauchy had considered the notion of radius of convergence for both real and imaginary power series.

1831: a complex function has a convergent power series if it is "finite and continuous"

Continued to refine the conditions for the theorem over many years.

Taylor's Theorem for complex analytic functions

In Cours d'analyse (1821), Cauchy had considered the notion of radius of convergence for both real and imaginary power series.

1831: a complex function has a convergent power series if it is "finite and continuous"

Continued to refine the conditions for the theorem over many years.

Cauchy's language is not always satisfactory to modern eyes, but was considerably more rigorous than that of most of his contemporaries.

Taylor's Theorem for complex analytic functions

In Cours d'analyse (1821), Cauchy had considered the notion of radius of convergence for both real and imaginary power series.

1831: a complex function has a convergent power series if it is "finite and continuous"

Continued to refine the conditions for the theorem over many years.

Cauchy's language is not always satisfactory to modern eyes, but was considerably more rigorous than that of most of his contemporaries.

1841: extension to negative powers - Laurent's Theorem.

Cauchy's complex analysis

Cauchy's ideas concerning complex functions developed over many years.

Cauchy's complex analysis

Cauchy's ideas concerning complex functions developed over many years. In the early stages

- did he appreciate the fundamental nature of the concepts and results that he was using and deriving?

Cauchy's complex analysis

Cauchy's ideas concerning complex functions developed over many years. In the early stages

- did he appreciate the fundamental nature of the concepts and results that he was using and deriving?
- did he recognise the subtleties of working with complex numbers rather than simply with pairs of real numbers?

Cauchy's complex analysis

Cauchy's ideas concerning complex functions developed over many years. In the early stages

- did he appreciate the fundamental nature of the concepts and results that he was using and deriving?
- did he recognise the subtleties of working with complex numbers rather than simply with pairs of real numbers?

Have historians of mathematics read too much into the earlier work on the basis of what came later?

Cauchy's complex analysis

Cauchy's ideas concerning complex functions developed over many years. In the early stages

- did he appreciate the fundamental nature of the concepts and results that he was using and deriving?
- did he recognise the subtleties of working with complex numbers rather than simply with pairs of real numbers?

Have historians of mathematics read too much into the earlier work on the basis of what came later?

Point to note: Cauchy may be credited with many of the fundamental ideas of complex analysis, but this does not mean that they appeared fully-formed.

Riemann on complex analysis

Doctoral dissertation: Foundations for a General Theory of Functions of a Variable Complex Quantity (1851)

Started from the idea that a complex variable should be treated as a single quantity z

Riemann on complex analysis

Doctoral dissertation: Foundations for a General Theory of Functions of a Variable Complex Quantity (1851)

Started from the idea that a complex variable should be treated as a single quantity z
"The complex variable w is called a function of another complex variable z when its variation is such that the value of the derivative $\frac{d w}{d z}$ is independent of the value of $d z$ "

Riemann on complex analysis

Doctoral dissertation: Foundations for a General Theory of Functions of a Variable Complex Quantity (1851)

Started from the idea that a complex variable should be treated as a single quantity z
"The complex variable w is called a function of another complex variable z when its variation is such that the value of the derivative $\frac{d w}{d z}$ is independent of the value of $d z$ "

That is: $\lim _{\delta \rightarrow 0} \frac{f(z+\delta)-f(z)}{\delta}$ exists

Riemann on complex analysis

-4 -
so erhellt, dass er und zwar nur dann fur je zwei Werthe von $d x$ und $d y$ denselben Werth haben wird, wenn

$$
\frac{d u}{d x}=\frac{d v}{d y} \text { und } \frac{d v}{d x}=-\frac{d u}{d y}
$$

ist. Diese Bedingungen sind also hinreichend und nothwendig, damit $w=u+v i$ eine Function von $z=x+y i$ sei. Fur die einzelnen Glieder dieser Function fliessen aus ihnen die folgenden:

$$
\frac{d^{2} u}{d x^{2}}+\frac{d^{2} u}{d y^{2}}=0, \quad \frac{d^{2} v}{d x^{2}}+\frac{d^{2} v}{d y^{2}}=0,
$$

welche fur die Untersuchung der Eigenschaften, die Einem Gliede einer aolchen Function einzeln betrachtet zukommen, die Grundlage bilden. Wir werden den Beweis fur die wichtiggten dieser Eigenschaften einer eingehenderen Betrachtung der vollstilindigen Function voraufgeben lassen, zuvor aber noch einige Punkte, welche allgemeineren Gebieton angehören, erörtern und featlegen, um uns den Boden fur jene Untersuchungen zu ebenen.

5.

Fur die folgenden Betrachtungen beschralnken wir die Verknderlichkeit der Gröbsen x, y auf ein endliches Gebiet, indem wir als Ort des Punktes 0 nicht mehr die Ebene A selbst, sondern eine tuber dieselbe ausgebreitete Flische T betrachten. Wir whhlen diese Einkleidung, bei der es unanstossig sein wird, von aufainander liegenden Flachen su reden, um die Möglichkeit offen zu lassen, dass der Ort des Punktes 0 tuber denselben Theil der Ebene sich mehrfach erstrecke; setzen jedoch fur einen solchen Fall voraus, dass die auf einander liegenden Flitchentheile nicht llings einer Linie zusammenhalngen, so dass eine Umfaltung der Fluche, oder eine Spaltung in auf einander liegende Theile nicht vorkommt.

Die Anzahl der in jedem Theile der Ebene auf einander liegenden Flichentheile ist alsdann vollkommen bestimmt, wenn die Begrenzung der Lage und dem Sinne nach (d. h. ihre innere und Aussere Seite) gegeben ist; ihr Verlauf kann sich jedoch noch verschieden gestalten.

In der That, ziehen wir durch den von der Flische bedeckten Theil der Ebene eine beliebige Linie 1, so undert sich die Anzahl der aber einander liegenden Flschentheile nur beim Ueberschreiten det Begrenzung, und zwar beim Uebertritt von Aussen nach Innen um +1 , im entgegengesetaten Falle um - 1, und ist also thberall bestimmt. Langs des Ufers dieser Linie setzt sich nun jeder angremzende Flichentheil auf ganz bestimmte Art fort, so lange die Linie die Begrenzung nieht trifft, da eine Unbestimmtheit jedenfalls nur in einem einzelnen Punkte und also entweder in einem Punkte der Linie selbst oder in einer endlichen Entfernung von derselben Statt hat; wir können daher, wenn wir unsere Betrachtung auf einen im Innern der Fluche verlaufenden Theil der Linie 1 und zu beiden Seiten auf einen hinreichend kleinen Flachenstreifen beachranken, von bestimmten angrenzenden Flachentheilen reden, deren Anzahl auf jeder Seite gleich ist, und die wir, indem wir der Linie eine beatimmte Richtung beilegen, auf der Linken mit $\mathbf{a}_{1},{ }_{\mathbf{g}}, \ldots \mathbf{a}_{\mathbf{n}}$, auf der Rechten mit $\mathbf{a}_{\mathbf{\prime}}^{\prime}, \mathbf{a}_{\mathbf{q}}^{\prime}, \ldots \mathbf{a}_{\mathbf{a}}^{\prime}$, bezeichnen. Jeder Flachentheil a wird sich dann in einen der Fluchentheile á fortsetzen; dieser wird zwar im Allgemeinen fur den ganzen Lauf der Linie 1 derselbe sein, kann sich jedoch fur besondere Lagen von 1 in einem ihrer Punkte Andern. Nehmen wir an, dass oberhalb eines solchen Panktes σ (d. h.

Cauchy-Riemann equations now taken as fundamental to the theory

Riemann on complex analysis

$-4-$

so erhellt, dass er und zwar nur dann fur je zwei Werthe von $d x$ und dy denselben Werth haben wird, wenn

$$
\frac{d u}{d x}=\frac{d v}{d y} \text { und } \frac{d v}{d x}=-\frac{d u}{d y}
$$

ist. Diese Bedingungen sind also hinreichend und nothwendig, damit $w=u+v i$ eine Function von $z=x+y i$ sei. Fur die einzelnen Glieder dieser Function fliessen aus ihnen die folgenden:

$$
\frac{d^{2} u}{d x^{2}}+\frac{d^{2} u}{d y^{2}}=0, \quad \frac{d^{2} v}{d x^{2}}+\frac{d^{2} v}{d y^{2}}=0,
$$

welche fur die Untersuchung der Eigenschaften, die Einem Gliede einer solchen Function einzeln betrachtet zukommen, die Grundlage bilden. Wir werden den Beweis fur die wichtigsten dieser Eigensehaften einer eingehenderen Betrachtung der vollstatndigen Function voraufgehen lassen, zuvor aber noch einige Punkte, welche allgemeineren Gebieton angehören, erörtern und festlegen, um uns den Boden fur jene Untersuchungen zu ebenen.

5.

Fur die folgenden Betrachtungen beschrakiken wir die Veranderlichkeit der Grobsen x, y auf ein endliches Gebiet, indem wir als Ort des Punktes 0 nicht mehr die Ebene \mathbf{A} selbst, sondern eine uber dieselbe auggebreitete Fliche \mathbf{T} betrachten. Wir whilen diese Einkleidung, bei der es unanstossig sein wird, von aufeinander liegenden Flachen zu reden, um die Mölichkeit offen ru lassen, dass der Ort des Punktes 0 uber denselben Theil der Ebene sich mehrfach erstrecke ; setzen jedoch fur einen solchen Fall voraus, dass die auf einander liegenden Flichentheile nicht lungs einer Linie zusammenhalngen, so dass eine Umfaltung der Fliche, oder eine Spaltang in auf einander liegende Theile nicht vorkommt.

Die Anzahl der in jedem Theile der Ebene auf einander liegenden Flichentheile ist alsdann vollkommen bestimmt, wenn die Begrenzung der Lage und dem Sinne nach (d. h. ihre innere und aussere Seite) gegeben ist; ihr Verlauf kann sich jedoch noch verschieden gestalten.

In der That, ziehen wir durch den von der Fliche bedeckten Theil der Fbene eine beliebige Linie 1, so undert sich die Anzahl der aber einander liegenden Flichentheile nur beim Uebersahreiten det Begrenzung, und zwar beim Uebertritt von Aussen nach Innen um +1 , im entggegngesetzten Falle um - 1, und ist also tiberall bestimmt. Langs des Ufers dieser Linie setzt sich nun jeder angremzende Fluchentheil auf ganz bestimmte Art fort, so lange die Linie die Begrenzung nieht triff, da eine Unbestimmtheit jedenfalls nur in einem einzelnen Punkte und alao entweder in einem Punkte der Linie selbst oder in einer endlichen Entfernung von derselben Statt hat; wir können daher, wenn wir unsere Betrachtung auf einen im Innern der Furche verlanfanden Theil der Lieie 1 und zu beiden Seiten auf einen hinreichend kleinen Fils chenstreifen beschranken, von bestimmten angrenzenden Fluchentheilen roden, deren Anzahl auf jeder Seite gleich ist, und die wir, indem wir der Linie eine bestimmte Richtung beilogen, auf der Linken mit $a_{1}, a_{\mathbf{q}}, \cdots a_{n}$, auf der Rechten mit $a_{1}^{\prime}, a_{\mathbf{q}}^{\prime}, \cdots a_{a^{\prime}}^{\prime}$, bereichnen. Jeder Fluchentheil a wird sich dann in einen der Flluchentheile a' fortsetzen; dieser wird zwar im Allgemeinen fur den ganzen Lauf der Linie 1 derselbe sein, kann sich jedoch fur besondere Lagen von 1 in einem ihrer Punkte andern. Nehmen wir an, dass oberhalb eines solchen Punktes σ (d. h.

> Cauchy-Riemann equations now taken as fundamental to the theory

Other key concepts appear explicitly:

- harmonic functions;

Riemann on complex analysis

$-4-$

so orhellt, dass er und zwar nur dann fur je zwei Werthe von dx und dy denselben Werth haben wird, wenn

$$
\frac{d u}{d x}=\frac{d v}{d y} \text { und } \frac{d v}{d x}=-\frac{d u}{d y}
$$

ist. Diese Bedingungen sind also hinreichend und nothwendig, damit w $=u+v i$ eine Function von $z=x+y i$ sei. Fur die einzelnen Glieder dieser Function fliessen aus ihnen die folgenden:

$$
\frac{d^{2} u}{d x^{2}}+\frac{d^{2} u}{d y^{2}}=0, \quad \frac{d^{2} v}{d x^{2}}+\frac{d^{2} v}{d y^{2}}=0,
$$

welche fur die Untersuchung der Eigenschaften, die Einem Gliede einer solchen Function einzeln betrachtet zukommen, die Grundlage bilden. Wir werden den Beweis fur die wichtigsten dieser Eigenschaften einer eingehenderen Betrachtung der vollstilindigen Function voraufgeben lassen, zuvor aber noch einige Punkte, welche allgemeineren Gebieton angehobren, erörtern und featlegen, um uns den Boden fur jene Untersuchungen zu ebenen.
5.

Fur die folgenden Betrachtangen beschralnken wir die Veranderlichkeit der Grössen x, y auf ein endliches Gebiet, indem wir als Ort des Punktes O nicht mehr die Ebene A selbst, sondern eine uber dieselbe ausgebreitete Fliche T betrachten. Wir whhlen diese Einkleidung, bei der es unanstössig sein wird, von aufeinander liegenden Flachen zu reden, um die Moglichkeit offen zu lassen, dass der Ort des Punktes 0 tuber denselben Theil der Ebene sich mehrfach erstrecke; setzen jedoch fur einen solchen Fall voraus, dass die auf einander liegenden Flichentheile nicht llangs einer Linie zusammenhalngen, so dass eine Umfaltung der Fliche, oder eine Spaltung in anf einander liegende Theile nicht vorkommt.

Die Anzahl der in jedem Theile der Ebene auf einander liegenden Flichentheile ist alsdann vollkommen bestimmt, wenn die Begrenzung der Lage und dem Sinne nach (d. h. ihre innere und Aussere Seite) gegeben ist; ihr Verlauf kann sich jedoch noch verschieden gestalten.

In der That, ziehen wir durch den von der Flische bedeckten Theil der Ebene eine beliebige Linie 1, so tndert sich die Anzahl der tiber einander liegenden Flachentheile nur beim Ueberschreiten det Begrenzung, und zwar beim Uebertritt von Aussen nach Innen um +1 , im entgagengesetaten Falle um - 1, und ist also tuberall bestimmt. Langs des Ufers dieser Linie setzt sich nun jeder angremzende Flichentheil auf ganz bestimmte Art fort, so lange die Linie die Begrenzung nieht trifft, da eine Unbestimmtheit jedenfalls nur in einem einzelnen Punkte und also entweder in einem Punkte der Linie selbst oder in einer endlichen Entfernung von derselben Statt hat; wir können daher, wenn wir unsere Betrachtung auf einen im Innern der Fluche verlaufenden Theil der Linie 1 und zu beiden Seiten auf einen hinreichend kleinen Flachenstreifen bebchranken, von bestimmten angrenzenden Flachentheilen reden, deren Anzahl auf jeder Seite gleich ist, und die wir, indem wir der Linie eine beatimmte Richtung beilegen, auf der Linken mit $\mathbf{a}_{1},{ }_{\mathbf{g}}, \ldots \mathbf{a}_{\mathbf{n}}$, auf der Rechten mit $\mathbf{a}_{\mathbf{\prime}}^{\prime}, \mathbf{a}_{\mathbf{q}}^{\prime}, \ldots \mathbf{a}_{\mathbf{a}}^{\prime}$, bezeichnen. Jeder Flachentheil a wird sich dann in einen der Fluchentheile á fortsetzen; dieser wird zwar im Allgemeinen fur den ganzen Lauf der Linie 1 derselbe sein, kann sich jedoch fur besondere Lagen von 1 in einem ihrer Punkte andern. Nehmen wir an, dass oberhalb eines solchen Panktes σ (d. h.

Cauchy-Riemann equations now taken as fundamental to the theory

Other key concepts appear explicitly:

- harmonic functions;
- conformality (a complex function preserves angles wherever its derivative does not vanish);

Riemann on complex analysis

$-4-$

so erhellt, dass er und zwar nur dann fur je zwei Werthe von $d x$ und $d y$ denselben Werth haben wird, wenn

$$
\frac{d u}{d x}=\frac{d v}{d y} \text { und } \frac{d v}{d x}=-\frac{d u}{d y}
$$

ist. Diese Bedingungen sind also hinreichend und nothwendig, damit w $=u+v i$ eine Function von $z=x+y i$ sei. Fur die einzelnen Glieder dieser Function fliessen aus ihnen die folgenden:

$$
\frac{d^{2} u}{d x^{2}}+\frac{d^{2} u}{d y^{2}}=0, \quad \frac{d^{2} v}{d x^{2}}+\frac{d^{2} v}{d y^{2}}=0,
$$

welche fur die Untersuchung der Eigenschaften, die Einem Gliede einer solchen Function einzeln betrachtet zukommen, die Grundlage bilden. Wir werden den Beweis fur die wichtigsten dieser Eigenschaften einer eingehenderen Betrachtung der vollstilindigen Function voraufgeben lassen, zuvor aber noch einige Punkte, welche allgemeineren Gebieton angehobren, erörtern und featlegen, um uns den Boden fur jene Untersuchungen zu ebenen.
5.

Fur die folgenden Betrachtangen beschränken wir die Verknderlichkeit der Gröbsen x, y auf ein endliches Gebiet, indem wir als Ort des Punktes O nicht mehr die Ebene A selbst, sondern eine tuber dieselbe ausgebreitete Flitehe T betrachten. Wir whilen diese Einkleidung, bei der es unanstossig sein wird, von aufainander liegenden Flachen su reden, um die Möglichkeit offen zu lassen, dass der Ort des Punktes 0 tuber denselben Theil der Ebene sich mehrfach erstrecke; setzen jedoch fur einen solchen Fall voraus, dass die auf einander liegenden Flachentheile nicht llangs einer Linie zusammenhalngen, so dass eine Umfaltung der Fliche, oder eine Spaltung in anf einander liegende Theile nicht vorkommt.

Die Anzahl der in jedem Theile der Ebene auf einander liegenden Flichentheile ist alsdann vollkommen bestimmt, wenn die Begrenzung der Lage und dem Sinne nach (d. h. ihre innere und Aussere Seite) gegeben ist; ihr Verlauf kann sich jedoch noch verschieden gestalten.

In der That, ziehen wir durch den von der Flische bedeckten Theil der Ebene eine beliebige Linie 1, so tndert sich die Anzahl der tiber einander liegenden Flachentheile nur beim Ueberschreiten det Begrenzung, und zwar beim Uebertritt von Aussen nach Innen um +1 , im entgegengesetaten Falle um -1 , und ist also tiberall bestimmt. Langs des Ufers dieser Linie setzt sich nun jeder angremzende Flichentheil auf ganz bestimmte Art fort, so lange die Linie die Begrenzung nieht trifft, da eine Unbestimmtheit jedenfalls nur in einem einzelnen Punkte und also entweder in einem Punkte der Linie selbst oder in einer endlichen Entfernung von derselben Statt hat; wir können daher, wenn wir unsere Betrachtung auf einen im Innern der Fluche verlaufenden Theil der Linie 1 und zu beiden Seiten auf einen hinreichend kleinen Flachenstreifen bebchranken, von bestimmten angrenzenden Flachentheilen reden, deren Anzahl auf jeder Seite gleich ist, und die wir, indem wir der Linie eine beatimmte Richtung beilegen, auf der Linken mit $\mathbf{a}_{1},{ }_{\mathbf{g}}, \ldots \mathbf{a}_{\mathbf{n}}$, auf der Rechten mit $\mathbf{a}_{\mathbf{\prime}}^{\prime}, \mathbf{a}_{\mathbf{q}}^{\prime}, \ldots \mathbf{a}_{\mathbf{a}}^{\prime}$, bezeichnen. Jeder Flachentheil a wird sich dann in einen der Fluchentheile á fortsetzen; dieser wird zwar im Allgemeinen fur den ganzen Lauf der Linie 1 derselbe sein, kann sich jedoch fur besondere Lagen von 1 in einem ihrer Punkte andern. Nehmen wir an, dass oberhalb eines solchen Panktes σ (d. h.

Cauchy-Riemann equations now taken as fundamental to the theory

Other key concepts appear explicitly:

- harmonic functions;
- conformality (a complex function preserves angles wherever its derivative does not vanish);

Riemann on complex analysis

-4 -

so erhellt, dass er und zwar nur dann fur je zwei Werthe von $d x$ und dy denselben Werth haben wird, wenn

$$
\frac{d u}{d x}=\frac{d v}{d y} \text { und } \frac{d v}{d x}=-\frac{d u}{d y}
$$

ist. Diese Bedingungen sind also hinreichend und nothwendig, damit $w=u+v i$ eine Function von $z=x+y i$ sei. For die einzelnen Glieder dieser Function fliessen aus ihnen die folgenden:

$$
\frac{d^{2} u}{d x^{2}}+\frac{d^{2} u}{d y^{2}}=0, \quad \frac{d^{2} v}{d x^{2}}+\frac{d^{2} v}{d y^{2}}=0,
$$

welche fur die Untersuchung der Eigenschaften, die Einem Gliede einer solchen Function einzeln betrachtet zukommen, die Grundlage bilden. Wir werden den Beweis fur die wichtigsten dieser Eigenschaften einer eingehenderen Betrachtung der vollstilindigen Function voraufgeben lassen, zuvor aber noch einige Punkte, welche allgemeineren Gebieton angehören, erörtern und featlegen, um uns den Boden fur jene Untersuchungen zu ebenen.
5.

Fur die folgenden Betrachtangen beschränken wir die Verknderlichkeit der Gröbsen x, y auf ein endliches Gebiet, indem wir als Ort des Punktes O nicht mehr die Ebene A selbst, sondern eine uber dieselbe ausgebreitete Fliche T betrachten. Wir whhlen diese Einkleidung, bei der es unanstossig sein wird, von aufainander liegenden Flachen su reden, um die Möglichkeit offen zu lassen, dass der Ort des Punktes 0 tuber denselben Theil der Ebene sich mehrfach erstrecke; setzen jedoch fur einen solchen Fall voraus, dass die auf einander liegenden Flitchentheile nicht llings einer Linie zusammenhalngen, so dass eine Umfaltung der Fluche, oder eine Spaltung in anf einander liegende Theile nicht vorkommt.

Die Anzahl der in jedem Theile der Ebene auf einander liegenden Flichentheile ist alsdann vollkommen bestimmt, wenn die Begrenzung der Lage und dem Sinne nach (d. h. ihre innere und Aussere Seite) gegeben ist; ihr Verlauf kann sich jedoch noch verschieden gestalten.

In der That, ziehen wir durch den von der Fliche bedeckten Theil der Ebene eine beliebige Linie 1, so tndert sich die Anzahl der tiber einander liegenden Flachentheile nur beim Ueberschreiten det Begrenzung, und zwar beim Uebertritt von Aussen nach Innen um +1 , im entgegengesetaten Falle um -1 , und ist also tiberall bestimmt. Langs des Ufers dieser Linie setzt sich num jeder angremzende Flichentheil auf ganz bestimmte Art fort, so lange die Linie die Begrenzung nicht trift, da eine Unbeatimmtheit jedenfalls nur in einem einzelnen Punkte und also entweder in einem Punkte der Linie selbst oder in einer endlichen Entfernung von darselben Statt hat; wir können daher, wenn wir unsere Betrachtung auf einen im Innern der Fluche verlaufenden Theil der Linie 1 und zu beiden Seiten auf einen hinreichend kleinen Flachenstreifen beschranken, von bestimmten angrenzenden Fla chentheilen raden, deren Anzahl auf jeder Seite gleich ist, und die wir, indem wir der Linie eine beatimmte Richtung beilegen, auf der Linken mit $\mathbf{a}_{\mathbf{1}}, \mathbf{a}_{\mathbf{q}}, \ldots \mathbf{a}_{\mathbf{n}}$, auf der Rechten mit $\mathbf{a}_{\mathbf{1}}^{\prime}, \mathbf{a}_{\mathbf{a}}^{\prime}, \ldots \mathbf{a}_{\mathbf{n}}^{\prime}$, bezeichnen. Jeder Flachentheil a wird sich dann in einen der Fischentheile á fortsetzen; dieser wird zwar im Allgemeinen fur den ganzen Lauf der Linie 1 derselbe sein, kann sich jedoch fur besondere Lagen von in einem ihrer Punkte Andern. Nehmen wir an, dass oberhalb eines solchen Panktes σ (d. h.

Cauchy-Riemann equations now taken as fundamental to the theory

Other key concepts appear explicitly:

- harmonic functions;
- conformality (a complex function preserves angles wherever its derivative does not vanish);

Early impact limited by abstraction and restricted publication

[^0]: \Re
 Tarvarchber Borfeg augaaer bet Epergsmaat, frorban Ditettionten analpo tifi ber betegnes, stler bvertan rette \&inict burbe norroffes, naar of ean refle
 tryp, ber forefilifede baabe ban ubefienbers Eemngbe og bens Direction.

 Bot nogentioes at funne befoare bette Grargomaot, leager jeg til Gruntor volo to Eatninger, oct fours mig unegretige. Den forfe ers: ot Den Ditect tiemens Jocandring, Der wed elgebtaiffe Dperationer fan fismbringes, oqfaa ber wio beres Zegu at forefiliter. Den anbern: at Direction er ingen Biems flanb for Wilgebra, wben for faavibt ben weo algebtaiffe Dperationer fan fors anberes. Wien da ben weo dilie ci tan foranderes (i bet minofle eftur oce fabvanlige Bortlaring), ubea tit oca modfatce, cller fra pofitie til privativ, os

 DOO 2

[^1]: \Re
 Tarvarchbr Borfeg angaatr bet Epergsmaat, fyorban Ditectiontn anafotifi ber betegnes, stler bvertan rette \&inict burbe norroffes, naar of ean refle
 tryp, ber forefilifede baabe ben nbefienbers Eemgber og bens Direction.

 Bot nogentioes at funne befoare bette Grargomaot, leager jeg til Gruntor volo to Eatninger, oct fours mig unegretige. Den forfe ers: ot Den Ditect tiemens Jocandring, Der wed elgebtaiffe Dperationer fan fismbringes, oqfaa ber wio beres Zegu at forefiliter. Den anbern: at Direction er ingen Biems flanb for Wilgebra, wben for faavibt ben weo algebtaiffe Dperationer fan fors anberes. Wien da ben weo dilie ci tan foranderes (i bet minofle eftur oce fabvanlige Bortlaring), ubea tit oca modfatce, cller fra pofitie til privativ, os ombentr: faa ffube ziffe to Ditretioner alene funne betegnes paa Den befictiote
 DOO 2

[^2]: ケ
 Tarvarchbe Borfeg augaatr bet Epergsmaot, fyorban Ditettionte anafotiff ber betegnes, cller bvorban rette Sinict burbe ubernffes, naar af ech enefle
 tryp, ber forefilifede baabe ban ubefienbers Emngbe og bens Direccien.

 Bot nogentioes at funne befoare bette Grargomaot, leager jeg til Gruntor voto to Eatninger, bet fours mig unegetige. Den forpe ers: ot Den Ditrce tiemeno Jocanbring, Der veb elgebtaiffe Dperationer fan fismbringes, eqfaa ber wio beres Zegu at foreflilter. Den anbern: at Direction er ingen Biens flanb for Wiggeba, uben for faavibt ben weo algebraiffe Dperatienter fan fors anberes. Wien da ben weo dilie ci tan foranores (i bet minofle eftur oce fabvanlige Borflaring), ubea tit oca modfatce, cller fra pofitie til privativ, os omvener: Faa ffulbe Eiffe to Ditretioner ateue funne betegnes paa ben beficmbre
 DOO =

[^3]: ケ
 7) arvarchber Borfeg angaaer bet Epergsmaat, fvorban Dietetionen anafor tifi ber betegnes, cller bvertan rette \&inict burbe norroffes, naar of ean refle
 tryp, ber forefilifede baabe ban ubefienbers Emngbe og bens Direction.

 Bor nogentites at funne befoart bette Evargomaot, leager jeg til Srunbor volo to Eatninger, oct fours mig unegretige. Den forfe er: ot Den Ditect tiemeno Jocanotring, Der web elgebtaiffe Dperationer fan frsmbringes, oqfaa ber wio beres Zegu at forefilters. Den anbern: at Direction er ingen Biems flanb for Wilgebra, uben for faavibt ben weo algebtaiffe Dperationer fan fors onberes. Wen ba ben weo difie ci tan foranberes (i bet minble efter oen fabvatlige Borflaring), ubea tit oca mobfatte, clles fra pofitio til privatio, os omernet: Faa ffulbe Eiffe to Ditretioner ateue funne betegnes paa ben beficmbre

