C4.3 Functional Analytic Methods for PDEs Lecture 13

Luc Nguyen
luc.nguyen@maths

University of Oxford

MT 2021

In the last lecture

- First existence theorem: Direct method of the calculus of variation.
- Second existence theorem: Fredholm alternative.

This lecture

- Second existence theorem: Fredholm alternative.
- The compactness of the embedding $L^{2}(\Omega) \hookrightarrow H^{-1}(\Omega)$.

The Fredholm alternative

Theorem (Fredholm alternative)

Suppose that Ω is a bounded Lipschitz domain. Suppose that $a, b, c \in L^{\infty}(\Omega)$, a is uniformly elliptic, and $L=-\partial_{i}\left(a_{i j} \partial_{j}\right)+b_{i} \partial_{i}+c$.
(1) The boundary value problem

$$
\left\{\begin{aligned}
L u & =f+\partial_{i} g_{i} & & \text { in } \Omega \\
u & =u_{0} & & \text { on } \partial \Omega
\end{aligned}\right.
$$

is uniquely solvable for each $f \in L^{2}(\Omega), g \in L^{2}(\Omega)$ and $u_{0} \in H^{1}(\Omega)$ if and only if $\left.L\right|_{H_{0}^{1}(\Omega)}$ is injective.
(1) The kernels N of $\left.L\right|_{H_{0}^{1}(\Omega)}$ and N^{*} of $\left.L^{*}\right|_{H_{0}^{1}(\Omega)}$ are finite dimensional, and their dimensions are equal.
(i) If N is non-trivial, $(B V P)$ has a solution if and only if $B\left(u_{0}, v\right)=\langle f, v\rangle-\left\langle g_{i}, \partial_{i} v\right\rangle$ for all $v \in N^{*}$.

A consequence of the Fredholm alternative

Theorem

Suppose that Ω is a bounded Lipschitz domain. Suppose that $a, b, c \in L^{\infty}(\Omega)$, a is uniformly elliptic, and $L=-\partial_{i}\left(a_{i j} \partial_{j}\right)+b_{i} \partial_{i}+c$. If the bilinear form B associated to L is coercive, i.e. there is a constant $C>0$ such that

$$
B(w, w) \geq C\|w\|_{L^{2}(\Omega)}^{2} \text { for all } w \in C_{c}^{\infty}(\Omega),
$$

then the boundary value problem

$$
\left\{\begin{aligned}
L u & =f+\partial_{i} g_{i} & & \text { in } \Omega, \\
u & =u_{0} & & \text { on } \partial \Omega
\end{aligned}\right.
$$

has a unique solution for every $f \in L^{2}(\Omega), g \in L^{2}(\Omega)$ and $u_{0} \in H^{1}(\Omega)$.

A consequence of the Fredholm alternative

Proof

- By density (- fill in the details -), we have

$$
B(w, w) \geq C\|w\|_{L^{2}(\Omega)}^{2} \text { for all } w \in H_{0}^{1}(\Omega)
$$

- By the Fredholm alternative, it suffices to show that if $u \in H_{0}^{1}(\Omega)$ satisfies $L u=0$, then $u=0$.
- By the definition of weak solution, we have $B(u, \varphi)=0$ for all $\varphi \in H_{0}^{1}(\Omega)$. In particular $B(u, u)=0$. By the coercivity of B, we thus have $\|u\|_{L^{2}}=0$ and so $u=0$.

A detour to FA

Definition

Let H be a Hilbert space. An bounded linear operator $K: H \rightarrow H$ is said to be compact if K maps bounded subset of H into pre-compact subsets of H.

Theorem (Fredholm alternative)

Let H be a Hilbert space and $K: H \rightarrow H$ be a compact bounded linear operator. Then we have the dichotomy that either I $-K$ is invertible or $\operatorname{Ker}(I-K)$ is non-trivial.

A detour to FA

Lemma

Let H be a Hilbert space and $K: H \rightarrow H$ be compact. If $\operatorname{Ker}(I-K)=0$, then $V=\operatorname{Im}(I-K)$ is a closed subspace of H.

Proof

- Take $\left(u_{m}\right) \subset H$ such that $v_{m}=(I-K)\left(u_{m}\right) \rightarrow x$. We will show that $x \in V$ by showing that $\left(u_{m}\right)$ has a convergent subsequence.
- It suffices to show that $\left(u_{m}\right)$ is bounded. Indeed, once this is proved, as K is compact, there is a subsequence such that $K u_{m_{j}} \rightarrow z$, and so $u_{m_{j}}=v_{m_{j}}+K u_{m_{j}} \rightarrow x+z$.

A detour to FA

Proof

- Suppose by contradiction that $\left(u_{m}\right)$ is not bounded, i.e. there is a subsequence $\left(u_{m_{j}}\right)$ with $\left\|u_{m_{j}}\right\| \rightarrow \infty$.
- Let $\tilde{u}_{m_{j}}=\frac{u_{m_{j}}}{\left\|u_{m_{j}}\right\|}$ and $\tilde{v}_{m_{j}}=(I-K) \tilde{u}_{m_{j}}=\frac{v_{m_{j}}}{\left\|u_{m_{j}}\right\|}$.
- As $\left(v_{m}\right)$ is convergent, $\tilde{v}_{m_{j}} \rightarrow 0$. We are thus in a similar situation as on the previous slide.
- In the same way, as $\left(\tilde{u}_{m_{j}}\right)$ is bounded and K is compact, we can assume after passing to a subsequence if necessary that $K \tilde{u}_{m_{j}}$ converges to some $y \in H$.
- $\tilde{u}_{m_{j}}=\tilde{v}_{m_{j}}+K \tilde{u}_{m_{j}} \rightarrow y$.
- This amounts to a contradiction to the hypothesis that $\operatorname{Ker}(I-K)=0$: On one hand, as $\left\|\tilde{u}_{m_{j}}\right\|=1$, we must have on $\|y\|=1$. On the other hand, as $(I-K) \tilde{u}_{m_{j}}=\tilde{v}_{m_{j}}$, we have $(I-K) y=0$.

A detour to FA

Theorem (Fredholm alternative)

Let H be a Hilbert space and $K: H \rightarrow H$ be a compact bounded linear operator. Then we have the dichotomy that either I-K is invertible or $\operatorname{Ker}(I-K)$ is non-trivial.

Proof

- Suppose by contradiction that $\operatorname{Ker}(I-K)=0$ but $\operatorname{Im}(I-K)$ is a proper subspace of H.
- Let $V_{0}=H$ and define inductively $V_{m+1}=(I-K)\left(V_{m}\right)$. We claim that V_{m+1} is a closed and proper subspace of V_{m}.
* By the lemma and the contradiction hypothesis, V_{1} is a closed proper subspace of V_{0}.
\star We have $(I-K) V_{1} \subset(I-K) V_{0}=V_{1}$. It follows that $K V_{1} \subset V_{1}$. By the lemma again, $V_{2}=(I-K) V_{1}$ is a closed subspace of V_{1}.

A detour to FA

Proof

- We are proving the claim that V_{m+1} is a closed and proper subspace of V_{m}.
$\star V_{1}$ is a closed proper subspace of V_{0}.
$\star V_{2}$ is a closed subspace of V_{1}.
\star As V_{1} is a proper subspace of V_{0}, we can take $u \in V_{0} \backslash V_{1}$.
\star It is clear that $(I-K) u \in V_{1}$.
\star If $(I-K) u \in V_{2}$, then there is some $(I-K) u=(I-K) w$ for some $w \in V_{1}$, contradicting the fact that $\operatorname{Ker}(I-K)=0$.
\star We thus have $(I-K) u \in V_{1} \backslash V_{2}$. Hence V_{2} is a closed proper subspace of V_{1}.
* The claim follows by induction.

A detour to FA

Proof

- $H=V_{0} \supsetneq V_{1} \supsetneq V_{2} \supsetneq \ldots$ is a strict nested sequence of closed spaces.
- We now use the projection theorem to write $V_{m}=V_{m+1} \oplus W_{m+1}$ where W_{m+1} is the orthogonal complement of V_{m+1} within V_{m}.
- Take some $w_{m} \in W_{m+1} \subset V_{m}$ with $\left\|w_{m}\right\|=1$. By the compactness of $K,\left(K w_{m}\right)$ has a convergent subsequence. To reach a contradiction, we show that $\left\|K w_{I}-K w_{m}\right\| \geq 1$ for $m>l$.

A detour to FA

Proof

- ... To reach a contradiction, we show that $\left\|K w_{l}-K w_{m}\right\| \geq 1$ for $m>1$.
* We write

$$
K w_{l}-K w_{m}=\left\{(I-K) w_{m}-(I-K) w_{l}-w_{m}\right\}+w_{l}
$$

and consider the terms in curly braces.
$\star w_{l} \in W_{l+1} \subset V_{l}$ and so $(I-K) w_{l} \subset V_{l+1}$.
$\star w_{m} \in W_{m+1} \subset V_{m} \subset V_{l+1}$.
$\star(I-K) w_{m} \in(I-K)\left(V_{m}\right)=V_{m+1} \subset V_{I+1}$.
\star So the terms in the curly braces belong to V_{I+1}.
\star As $w_{l} \in W_{l+1}$, we thus have by Pythagoras' theorem that $\left\|K w_{l}-K w_{m}\right\| \geq\left\|w_{l}\right\|=1$.
As explained earlier, this gives a contradiction to the compactness of K and thus concludes the proof.

The Fredholm alternative

Theorem (Fredholm alternative)

Suppose that Ω is a bounded Lipschitz domain. Suppose that $a, b, c \in L^{\infty}(\Omega)$, a is uniformly elliptic, and $L=-\partial_{i}\left(a_{i j} \partial_{j}\right)+b_{i} \partial_{i}+c$.
(1) The boundary value problem

$$
\left\{\begin{aligned}
L u & =f+\partial_{i} g_{i} & & \text { in } \Omega \\
u & =u_{0} & & \text { on } \partial \Omega
\end{aligned}\right.
$$

is uniquely solvable for each $f \in L^{2}(\Omega), g \in L^{2}(\Omega)$ and $u_{0} \in H^{1}(\Omega)$ if and only if $\left.L\right|_{H_{0}^{1}(\Omega)}$ is injective.
(1) The kernels N of $\left.L\right|_{H_{0}^{1}(\Omega)}$ and N^{*} of $\left.L^{*}\right|_{H_{0}^{1}(\Omega)}$ are finite dimensional, and their dimensions are equal.
(i) If N is non-trivial, $(B V P)$ has a solution if and only if $B\left(u_{0}, v\right)=\langle f, v\rangle-\left\langle g_{i}, \partial_{i} v\right\rangle$ for all $v \in N^{*}$.

The Fredholm alternative

Theorem (Uniqueness implies existence)

Suppose that Ω is a bounded Lipschitz domain. Suppose that $a, b, c \in L^{\infty}(\Omega)$, a is uniformly elliptic, and $L=-\partial_{i}\left(a_{i j} \partial_{j}\right)+b_{i} \partial_{i}+c$. Then $L: H_{0}^{1}(\Omega) \rightarrow H^{-1}(\Omega)$ is bijective if and only if it is injective.

Proof

- Step 1: Consideration of the top order operator $L_{\text {top }}$ defined by $\overline{L_{\text {top }} u}=-\partial_{i}\left(a_{i j} \partial_{j} u\right)$.
\star We know from our first existence theorem that $L_{\text {top }}$ is a bijection from $X=H_{0}^{1}(\Omega)$ in to X^{*}.
\star Let $A: X^{*} \rightarrow X$ be the inverse of $L_{\text {top }}$. By the inverse mapping theorem, A is bounded linear.
* Let us give a direct proof for the boundedness of A. Suppose that $A T=u$, i.e. $L_{\text {top }} u=T$. Then $B_{\text {top }}(u, \varphi)=T \varphi$ where $B_{\text {top }}$ is the bilinear form associated with $L_{\text {top }}$.

The Fredholm alternative

Proof

- Step 1: Consideration of the top order operator $L_{\text {top }}$ defined by $\overline{L_{\text {top }} u=}-\partial_{i}\left(a_{i j} \partial_{j} u\right)$.
\star Using $\varphi=u$ and the ellipticity we have

$$
\lambda\|\nabla u\|_{L^{2}(\Omega)}^{2} \leq \int_{\Omega} a_{i j} \partial_{j} u \partial_{i} u d x=B_{t o p}(u, u)=T u \leq\|T\|\|u\|_{X} .
$$

* Thus, by Friedrichs' inequality, we have

$$
\|u\|_{X}^{2} \leq C\|D u\|_{L^{2}(\Omega)}^{2} \leq C\|T\|\|u\|_{X}
$$

and so $\|A T\|_{x} \leq C\|T\|$, i.e. A is bounded.

The Fredholm alternative

Proof

- Step 2: We recast the equation $L u=T$ as an equation in the form $(I-K) u=A T$ where K is a linear operator from X into itself.
* We have

$$
\begin{aligned}
L u=T & \Leftrightarrow L_{\text {top }} u+b_{i} \partial_{i} u+c u=T \\
& \Leftrightarrow A\left(L_{\text {top }} u+b_{i} \partial_{i} u+c u\right)=A T \\
& \Leftrightarrow u-A\left(-b_{i} \partial_{i} u-c u\right)=A T .
\end{aligned}
$$

* Hence $L u=T$ is equivalent to $(I-K) u=A T$ with $K u=A\left(-b_{i} \partial_{i} u-c u\right)$.
\star We saw earlier in Lecture 11 that the map $u \mapsto-b_{i} \partial_{i} u-c u$ is a bounded linear map from X into X^{*}. Hence $K: X \rightarrow X$ is bounded linear.

The Fredholm alternative

Proof

- Step 3: We conclude using the Fredholm alternative for operators of the form I - Compact.
* To conclude, we need to show that $I-K$ is a bijection.
* Since $L: X \rightarrow X^{*}$ is injective, so is $I-K$. Hence, by the Fredholm alternative for operators of the form I - Compact, it suffices to show that K is compact, i.e. every bounded sequence $\left(u_{m}\right) \subset X$ has a subsequence $u_{m_{j}}$ such that $\left(K u_{m_{j}}\right)$ is convergent.
\star Suppose $\left(u_{m}\right) \subset X$ is bounded. As K is bounded, $\left(K u_{m}\right)$ is also bounded.
\star As X is reflexive, we may assume after passing to a subsequence that $u_{m} \rightharpoonup u$ and $K u_{m} \rightharpoonup w$ in $X=H_{0}^{1}(\Omega)$.
* In addition, by Rellich-Kondrachov's theorem, we may also assume that $u_{m} \rightarrow u$ and $K u_{m} \rightarrow w$ in $L^{2}(\Omega)$.

The Fredholm alternative

Proof

- Step 3: We conclude using the Fredholm alternative...
* Claim: $w=K u$.
\triangleright We have $K u_{m}=A\left(-b_{i} \partial_{i} u_{m}-c u_{m}\right)$ and so

$$
L_{\text {top }}\left(K u_{m}\right)=-b_{i} \partial_{i} u_{m}-c u_{m} .
$$

\triangleright This means

$$
\int_{\Omega} a_{i j} \partial_{j}\left(K u_{m}\right) \partial_{i} \varphi d x=\int_{\Omega}\left(-b_{i} \partial_{i} u_{m}-c u_{m}\right) \varphi d x \text { for all } \varphi \in H_{0}^{1}(\Omega) .
$$

\triangleright Sending $m \rightarrow \infty$ using the fact that $u_{m} \rightharpoonup u$ and $K u_{m} \rightharpoonup w$ in H^{1} we get

$$
\int_{\Omega} a_{i j} \partial_{j} w \partial_{i} \varphi d x=\int_{\Omega}\left(-b_{i} \partial_{i} u-c u\right) \varphi d x \text { for all } \varphi \in H_{0}^{1}(\Omega) .
$$

\triangleright This means $L_{\text {top }} w=-b_{i} \partial_{i} u-c u$, i.e.

$$
w=L_{\text {top }}^{-1}\left(-b_{i} \partial_{i} u-c u\right)=K u
$$

The Fredholm alternative

Proof

- Step 3: We conclude using the Fredholm alternative...
\star We thus have u_{m} converges weakly in H^{1} and strongly in L^{2} to u, and $K u_{m}$ converges weakly in H^{1} and strongly in L^{2} to $K u$.
\star We need to upgrade the weak convergence of $K u_{m}$ in H^{1} to strong convergence. By working instead with the sequence
$u_{m}-u$, we may assume at this point that $u=0$.
\star Recall that $L_{\text {top }}\left(K u_{m}\right)=-b_{i} \partial_{i} u_{m}-c u_{m}$ and so
$\int_{\Omega} a_{i j} \partial_{j}\left(K u_{m}\right) \partial_{i} \varphi d x=\int_{\Omega}\left(-b_{i} \partial_{i} u_{m}-c u_{m}\right) \varphi d x$ for all $\varphi \in H_{0}^{1}(\Omega)$.
\star Taking $\varphi=K u_{m}$, and using ellipticity we thus find

$$
\lambda\left\|\nabla K u_{m}\right\|_{L^{2}(\Omega)}^{2} \leq\left\|b_{i} \partial_{i} u_{m}+c u_{m}\right\|_{L^{2}(\Omega)}\left\|K u_{m}\right\|_{L^{2}(\Omega)}
$$

The first factor is bounded and the second factor goes to 0 .

The Fredholm alternative

Proof

- Step 3: We conclude using the Fredholm alternative...
\star So we have proven that $\nabla K u_{m} \rightarrow 0$ in L^{2}. Together with the fact that $K u_{m} \rightarrow 0$ in L^{2}, we have that $K u_{m} \rightarrow 0$ in H^{1}.
\star We conclude that K is compact.
\star As $I-K$ is injective, we conclude that $I-K$ is invertible, and so is L.

Compactness of $L^{2}(\Omega) \hookrightarrow H^{-1}(\Omega)$

Let us make a couple of remarks on the proof.

- One of the ideas in the proof is to write $L u=T$ in the form $(I-K) u=L_{\text {top }}^{-1} \circ T$ where $K: H_{0}^{1}(\Omega) \rightarrow H_{0}^{1}(\Omega)$ is compact.
- The operator K is given by $K u=L_{\text {top }}^{-1}\left(-b_{i} \partial_{i} u-c u\right)$. Hence $K=L_{\text {top }}^{-1} \circ B$ where $B: H_{0}^{1}(\Omega) \rightarrow H^{-1}(\Omega)$ is given by

$$
\begin{aligned}
& B u=-b_{i} \partial_{i} u-c u \\
\text { i.e. } & B u(\varphi)=\int_{\Omega}\left(-b_{i} \partial_{i} u-c u\right) \varphi d x \text { for } \varphi \in H_{0}^{1}(\Omega)
\end{aligned}
$$

- The operator B can be decompose further as $B=J \circ B_{0}$ where $B_{0}: H_{0}^{1}(\Omega) \rightarrow L^{2}(\Omega)$ is given by $B_{0} u=-b_{i} \partial_{i} u-c u$ and $J: L^{2}(\Omega) \rightarrow H^{-1}(\Omega)$ is the natural injection given by

$$
J v(\varphi)=\int_{\Omega} v \varphi d x \text { for } v \in L^{2}(\Omega), \varphi \in H_{0}^{1}(\Omega)
$$

Compactness of $L^{2}(\Omega) \hookrightarrow H^{-1}(\Omega)$

- Altogether we have the chain $K=L_{\text {top }}^{-1} \circ J \circ B_{0}$:

$$
K: H_{0}^{1}(\Omega) \xrightarrow{B_{0}} L^{2}(\Omega) \xrightarrow{J} H^{-1}(\Omega) \xrightarrow{L_{\text {top }}^{-1}} H_{0}^{1}(\Omega) .
$$

- We have the following compactness result for J, which also implies the compactness of K.

Theorem

Suppose that Ω is a bounded Lipschitz domain. Then the natural injection $J: L^{2}(\Omega) \rightarrow H^{-1}(\Omega)$ defined by

$$
J v(\varphi)=\int_{\Omega} v \varphi d x \text { for } v \in L^{2}(\Omega) \text { and } \varphi \in H_{0}^{1}(\Omega)
$$

is compact, i.e. if $\left(v_{m}\right)$ is bounded in $L^{2}(\Omega)$, then there is a subsequence $\left(v_{m_{j}}\right)$ such that $\left(J v_{m_{j}}\right)$ is convergent in $H^{-1}(\Omega)$.

Compactness of $L^{2}(\Omega) \hookrightarrow H^{-1}(\Omega)$

Proof

- Suppose $\left(v_{m}\right)$ is bounded in $L^{2}(\Omega)$.

Then there is a subsequence $\left(v_{m_{j}}\right)$ which converges weakly in L^{2} to some limit $v \in L^{2}(\Omega)$.

- We aim to show that $\left(J v_{m_{j}}\right)$ converges in H^{-1} to $J v$.
- By working with $v_{m_{j}}-v$ instead of $v_{m_{j}}$, we may assume that $v=0$.
- Suppose by contradiction that $J v_{m_{j}} \nrightarrow 0$. Passing to a subsequence, we may assume that

$$
\left\|J v_{m_{j}}\right\|_{H^{-1}}>\delta>0 .
$$

- Let w_{j} be the solution to

$$
\left\{\begin{array}{rll}
-\Delta w_{j}+w_{j} & =v_{m_{j}} & \text { in } \Omega, \\
w_{j} & =0 & \text { on } \partial \Omega .
\end{array}\right.
$$

Compactness of $L^{2}(\Omega) \hookrightarrow H^{-1}(\Omega)$

Proof

- As $J v_{m_{j}} \neq 0$, we have that $w_{j} \neq 0$. Also, by definition of weak solution, we have

$$
\int_{\Omega} v_{m_{j}} \varphi d x=\int_{\Omega}\left[\nabla w_{j} \cdot \nabla \varphi+w_{j} \varphi\right] d x \text { for all } \varphi \in H_{0}^{1}(\Omega)
$$

This means

$$
J v_{m_{j}}(\varphi)=\left\langle w_{j}, \varphi\right\rangle_{H^{1}} \text { for all } \varphi \in H_{0}^{1}(\Omega)
$$

- Observe that if we take supremum over $\varphi \in H_{0}^{1}(\Omega)$ with $\|\varphi\|_{H_{0}^{1}(\Omega)} \leq 1$, then the supremum of the right hand side is attained exactly at $\varphi_{j}:=\frac{w_{j}}{\left\|w_{j}\right\|_{H^{1}}}$.

Compactness of $L^{2}(\Omega) \hookrightarrow H^{-1}(\Omega)$

Proof

- We thus have, for $\varphi_{j}=\frac{w_{j}}{\left\|w_{j}\right\|_{H^{1}}}$,

$$
\left\|J v_{m_{j}}\right\|_{H^{-1}}=J v_{m_{j}}\left(\varphi_{j}\right)=\int_{\Omega} v_{m_{j}} \varphi_{j} d x
$$

- The sequence $\left(\varphi_{j}\right)$ is bounded in $H^{1}(\Omega)$. By

Rellich-Kondrachov's theorem, we may assume after passing to a subsequence, that φ_{j} converges strongly in L^{2} to some $\varphi_{*} \in L^{2}(\Omega)$.

- Now as $v_{m_{j}}$ converges weakly to $v=0$ in $L^{2}(\Omega)$, we arrive at

$$
\lim _{j \rightarrow \infty}\left\|J v_{m_{j}}\right\|_{H^{-1}}=\lim _{j \rightarrow \infty} \int_{\Omega} v_{m_{j}} \varphi_{j} d x=\int_{\Omega} 0 \varphi_{*} d x=0
$$

contradicting the statement that $\left\|J v_{m_{j}}\right\|_{H^{-1}}>\delta>0$.

