

C4.3 Functional Analytic Methods for PDEs Lecture 14

Luc Nguyen luc.nguyen@maths

University of Oxford

MT 2021

• First and second existence theorems of weak solutions to linear elliptic equations.

- Third existence theorem: Spectral theory.
- H^2 regularity of weak solutions to linear elliptic equations.

Theorem (Spectrum of an elliptic operator)

Suppose that Ω is a bounded Lipschitz domain. Suppose that $a, b, c \in L^{\infty}(\Omega)$, a is uniformly elliptic, and $L = -\partial_i(a_{ij}\partial_j) + b_i\partial_i + c$. Then there exists an at most countable set $\Sigma \subset \mathbb{R}$ such that the boundary value problem

$$\begin{cases} Lu = \lambda u + f & \text{in } \Omega, \\ u = 0 & \text{on } \partial \Omega \end{cases}$$
(EBVP)

has a unique solution if and only if $\lambda \notin \Sigma$. Furthermore, if Σ is infinite then $\Sigma = \{\lambda_k\}_{k=1}^{\infty}$ with

$$\lambda_1 \leq \lambda_2 \leq \ldots \rightarrow \infty.$$

The set Σ is called the real spectrum of the operator *L*.

Proof

Let B be the bilinear form associated with L. Recall the energy estimate: There exists μ > 0 depending on the L[∞] bounds for a, b, c and the ellipticity constant λ such that

$$\frac{\lambda}{2} \|u\|_{H^1(\Omega)}^2 \leq B(u, u) + \mu \|u\|_{L^2(\Omega)}^2.$$

- If we define $L_{\mu}u = Lu + \mu u$ and let B_{μ} be the bilinear form associated with L_{μ} , then the right hand side above is exactly $B_{\mu}(u, u)$.
- So B_{μ} is coercive. By the Fredholm alternative, the operator $L_{\mu}: H_0^1(\Omega) \to H^{-1}(\Omega)$ is invertible. Denote its inverse by S_{μ} .

Spectra of elliptic operators

Proof

• Define an operator $K: L^2(\Omega) \to L^2(\Omega)$ by:

$$\mathcal{K}: L^2(\Omega) \stackrel{J}{\hookrightarrow} \mathcal{H}^{-1}(\Omega) \stackrel{S_{\mu}}{\to} \mathcal{H}^1_0(\Omega) \stackrel{Id}{\hookrightarrow} L^2(\Omega).$$

The last leg is compact by Rellich-Kondrachov's theorem, hence K is compact.

(We also know that J is compact, but that is a harder statement.)

• Let Σ be the set of $\lambda \in \mathbb{R}$ such that (EBVP) is not always uniquely solvable. By the Fredholm alternative,

$$\lambda \in \Sigma \Leftrightarrow (L - \lambda Id)$$
 is not injective
 $\Leftrightarrow (L_{\mu} - (\lambda + \mu)Id)$ is not injective
 $\Leftrightarrow I - (\lambda + \mu)K$ is not injective
 $\Leftrightarrow \lambda + \mu \neq 0$ and $(\lambda + \mu)^{-1} \in \sigma_p(K)$.

Spectra of elliptic operators

Proof

 ... λ ∈ Σ if and only if λ + μ ≠ 0 and (λ + μ)⁻¹ ∈ σ_p(K). The conclusion follows from a general result for spectra of compact operators, which we take for granted.

Theorem (Spectra of compact operators)

Let H be a Hilbert space of infinite dimension, $K : H \to H$ be a compact bounded linear operator and $\sigma(K)$ be its spectrum (i.e. the set of $\lambda \in \mathbb{C}$ such that $\lambda I - K$ is not invertible). Then

) 0 belongs to
$$\sigma(K)$$
.

•
$$\sigma(K) \setminus \{0\} = \sigma_p(K) \setminus \{0\}$$
, *i.e.* $\lambda I - K$ has non-trivial kernel for $\lambda \in \sigma(K) \setminus \{0\}$.

 $\sigma(K) \setminus \{0\}$ is either finite or an infinite sequence tending to 0.

The question of regularity

In the rest of this course we consider regularity results for solutions to

$$Lu = -\partial_i (a_{ij}\partial_j u) + b_i\partial_i u + cu = f$$
 in a domain Ω

with $f \in L^2(\Omega)$.

• We want to keep in mind the following two motivating examples in 1*d*:

$$-u'' = f \text{ in } (-1,1)$$
 (*)

and

$$-(\mathit{au'})'=f$$
 in $(-1,1)$ where $\mathit{a}=\chi_{(-1,0)}+2\chi_{(0,1)}.$ (**)

- For (*), u belongs to H^2 .
- For (**), au' belongs to H¹. Typically this implies u' is discontinuous and hence u ∉ H². Nevertheless u is continuous.

Theorem (Interior H^2 regularity)

Suppose that $a \in C^{1}(\Omega)$, $b, c \in L^{\infty}(\Omega)$, a is uniformly elliptic, and $L = -\partial_{i}(a_{ij}\partial_{j}) + b_{i}\partial_{i} + c$. Suppose that $f \in L^{2}(\Omega)$. If $u \in H^{1}(\Omega)$ satisfies Lu = f in Ω in the weak sense then $u \in H^{2}_{loc}(\Omega)$, and for any open ω such that $\overline{\omega} \subset \Omega$ we have

$$||u||_{H^2(\omega)} \leq C(||f||_{L^2(\Omega)} + ||u||_{H^1(\Omega)})$$

where the constant C depends only on $n, \Omega, \omega, a, b, c$.

Theorem (Global H^2 regularity)

Suppose that Ω is a bounded domain and $\partial\Omega$ is C^2 regular. Suppose that $a, b, c \in C^1(\overline{\Omega})$, a is uniformly elliptic, and $L = -\partial_i(a_{ij}\partial_j) + b_i\partial_i + c$. Suppose that $f \in L^2(\Omega)$. If $u \in H^1_0(\Omega)$ satisfies Lu = f in Ω in the weak sense then $u \in H^2(\Omega)$ and

$$||u||_{H^2(\Omega)} \leq C(||f||_{L^2(\Omega)} + ||u||_{H^1(\Omega)})$$

where the constant C depends only on n, Ω, a, b, c .

Remark: If $\partial \Omega$ is C^{∞} , $a, b, c \in C^{\infty}(\overline{\Omega})$, and $f \in C^{\infty}(\Omega)$ then $u \in C^{\infty}(\Omega)$.

To illustrate the idea, we focus in the case *a* is constant, $b \equiv 0$, $c \equiv 0$. The local H^2 regularity result is equivalent to:

Theorem (Interior H^2 regularity for $-\Delta$)

Suppose $f \in L^2(B_2)$ and $u \in H^1(B_2)$. If $-\Delta u = f$ in B_2 in the weak sense, then $u \in H^2(B_1)$ and

$$\|u\|_{H^2(B_1)} \leq C(\|f\|_{L^2(B_2)} + \|u\|_{H^1(B_2)})$$

where the constant C depends only on n.

The start of the proof is the following simple but important lemma:

Lemma

Suppose that $u \in C^{\infty}_{c}(\mathbb{R}^{n})$. Then

$$\|\nabla^2 u\|_{L^2(\mathbb{R}^n)} = \|\Delta u\|_{L^2(\mathbb{R}^n)}.$$

The proof is a computation using integration by parts:

$$\begin{split} \|\nabla^2 u\|_{L^2(\mathbb{R}^n)}^2 &= \int_{\mathbb{R}^n} \partial_i \partial_j u \partial_i \partial_j u \, dx = -\int_{\mathbb{R}^n} \partial_j u \partial_j \partial_i^2 u \, dx \\ &= \int_{\mathbb{R}^n} \partial_j^2 u \partial_i^2 u \, dx = \|\Delta u\|_{L^2(\mathbb{R}^n)}^2. \end{split}$$

The following lemma is a generalisation in the weak setting:

Lemma

Suppose that $f \in L^2(\mathbb{R}^n)$, $u \in H^1(\mathbb{R}^n)$ and u has compact support. Suppose that $-\Delta u = f$ in \mathbb{R}^n in the weak sense. Then $u \in H^2(\mathbb{R}^n)$ and

$$\|\nabla^2 u\|_{L^2(\mathbb{R}^n)} \leq \|f\|_{L^2(\mathbb{R}^n)}.$$

Proof of the lemma

• Take a family of mollifiers (ϱ_{ε}) : Fix a non-negative function $\varrho \in C_{c}^{\infty}(B_{1})$ with $\int_{\mathbb{R}^{n}} \varrho = 1$ and let $\varrho_{\varepsilon}(x) = \varepsilon^{-n} \varrho(x/\varepsilon)$.

• Set
$$u_{\varepsilon} = \varrho_{\varepsilon} * u$$
 and $f_{\varepsilon} = \varrho_{\varepsilon} * f$.
Then $u_{\varepsilon}, f_{\varepsilon} \in C_{c}^{\infty}(\mathbb{R}^{n})$ and $u_{\varepsilon} \to u$ in $H^{1}(\mathbb{R}^{n})$ and $f_{\varepsilon} \to f$ in $L^{2}(\mathbb{R}^{n})$.

Proof of the lemma

• Claim:
$$-\Delta u_{\varepsilon} = f_{\varepsilon}$$
 in \mathbb{R}^n .

- * Fix $v \in C^{\infty}_{c}(\mathbb{R}^{n})$ and consider $\int_{\mathbb{R}^{n}} \nabla u_{\varepsilon} \cdot \nabla v \, dx$.
- * Recall that, as $u \in H^1(\mathbb{R}^n)$, $\nabla u_{\varepsilon} = \varrho_{\varepsilon} * \nabla u$.
- * Hence, by Fubini's theorem,

$$\begin{split} \int_{\mathbb{R}^n} \nabla u_{\varepsilon} \cdot \nabla v \, dx &= \int_{\mathbb{R}^n} \Big[\int_{\mathbb{R}^n} \varrho_{\varepsilon}(x-y) \partial_{y_i} u(y) \, dy \Big] \partial_{x_i} v(x) \, dx \\ &= \int_{\mathbb{R}^n} \partial_{y_i} u(y) \Big[\int_{\mathbb{R}^n} \varrho_{\varepsilon}(x-y) \partial_{x_i} v(x) \, dx \Big] \, dy. \end{split}$$

 $\star\,$ Integrating by parts in the inner integral we get

$$\int_{\mathbb{R}^n} \nabla u_{\varepsilon} \cdot \nabla v \, dx = - \int_{\mathbb{R}^n} \partial_{y_i} u(y) \Big[\int_{\mathbb{R}^n} \partial_{x_i} \varrho_{\varepsilon}(x-y) v(x) \, dx \Big] \, dy.$$

Proof of the lemma

• Claim:
$$-\Delta u_{\varepsilon} = f_{\varepsilon}$$
 in \mathbb{R}^{n} .
* $\int_{\mathbb{R}^{n}} \nabla u_{\varepsilon} \cdot \nabla v \, dx = -\int_{\mathbb{R}^{n}} \partial_{y_{i}} u(y) \Big[\int_{\mathbb{R}^{n}} \partial_{x_{i}} \varrho_{\varepsilon}(x-y) v(x) \, dx \Big] \, dy$.
* Now observe that $\partial_{x_{i}} \varrho_{\varepsilon}(x-y) = -\partial_{y_{i}} \varrho_{\varepsilon}(x-y)$.
* We thus have, by Fubini's theorem again,
 $\int_{\mathbb{R}^{n}} \nabla u_{\varepsilon} \cdot \nabla v \, dx = \int_{\mathbb{R}^{n}} \partial_{y_{i}} u(y) \Big[\int_{\mathbb{R}^{n}} \partial_{y_{i}} \varrho_{\varepsilon}(x-y) v(x) \, dx \Big] \, dy$
 $= \int_{\mathbb{R}^{n}} \Big[\int_{\mathbb{R}^{n}} \partial_{y_{i}} u(y) \partial_{y_{i}} \varrho_{\varepsilon}(x-y) \, dy \Big] v(x) \, dx.$
* As $-\Delta u = f$ in the weak sense, the inner integral is equal to
 $\int_{\mathbb{R}^{n}} f(y) \, \varrho_{\varepsilon}(x-y) \, dy$, which is $f_{\varepsilon}(x)$.
* We deduce that

$$\int_{\mathbb{R}^n} \nabla u_{\varepsilon} \cdot \nabla v \, dx = \int_{\mathbb{R}^n} f_{\varepsilon}(x) v(x) \, dx.$$

Proof of the lemma

• Claim:
$$-\Delta u_{\varepsilon} = f_{\varepsilon}$$
 in \mathbb{R}^n .

- * As v was picked arbitrarily in $C_c^{\infty}(\mathbb{R}^n)$, we have that $-\Delta u_{\varepsilon} = f_{\varepsilon}$ in \mathbb{R}^n in the weak sense.
- * As u_{ε} and f_{ε} are smooth, this equation also holds in the classical sense. (Check this!)
- Now, by the previous lemma, we have

$$\|\nabla^2 u_{\varepsilon}\|_{L^2(\mathbb{R}^n)} = \|\Delta u_{\varepsilon}\|_{L^2(\mathbb{R}^n)} = \|f_{\varepsilon}\|_{L^2(\mathbb{R}^n)}.$$

- Young's convolution inequality gives $\|f_{\varepsilon}\|_{L^{2}(\mathbb{R}^{n})} \leq \|f\|_{L^{2}(\mathbb{R}^{n})} \|\varrho_{\varepsilon}\|_{L^{1}(\mathbb{R}^{n})} = \|f\|_{L^{2}(\mathbb{R}^{n})} \text{ , and so}$ $\|\nabla^{2}u_{\varepsilon}\|_{L^{2}(\mathbb{R}^{n})} \leq \|f\|_{L^{2}(B_{2})}.$
- Therefore, along a subsequence, (∇²u_ε) converges weakly to some A ∈ L²(ℝⁿ; ℝ^{n×n}) with ||A||_{L²(ℝⁿ)} ≤ ||f||_{L²(B₂)}.

Proof of the lemma

- Putting things together we have $u_{\varepsilon} \to u$ in $H^1(\mathbb{R}^n)$, $\nabla^2 u_{\varepsilon} \rightharpoonup A$ in $L^2(\mathbb{R}^n)$ and $||A||_{L^2(\mathbb{R}^n)} \leq ||f||_{L^2(\mathbb{R}^n)}$.
- Claim: A is the weak second derivatives of u.
 Indeed, this follows by passing ε → 0 in the identity

$$\int_{\mathbb{R}^n} u_{\varepsilon} \partial_i \partial_j v = \int_{\mathbb{R}^n} \partial_i \partial_j u_{\varepsilon} v \text{ for all } v \in C^{\infty}_c(\mathbb{R}^n).$$

• We have thus shown that $u \in H^2(\mathbb{R}^n)$ and $\|\nabla^2 u\|_{L^2(\mathbb{R}^n)} = \|A\|_{L^2(\mathbb{R}^n)} \le \|f\|_{L^2(B_2)}.$