Problem Sheet 4

Problem 1. This question provides a condition ensuring that the usual partial derivatives coincide with the distributional partial derivatives. Prove Lemma 5.21 from the lecture notes: If the dimension $n \geq 2$ and $f \in C^1(\mathbb{R}^n \setminus \{0\}) \cap L^1_{loc}(\mathbb{R}^n)$ has usual partial derivatives $\partial_j f \in L^1_{loc}(\mathbb{R}^n)$ for each direction $1 \leq j \leq n$, then also

$$\int_{\mathbb{R}^n} \partial_j f \varphi \, \mathrm{d}x = -\int_{\mathbb{R}^n} f \partial_j \varphi \, \mathrm{d}x$$

holds for all $\varphi \in \mathcal{D}(\mathbb{R}^n)$. Give an example to show that it can fail for dimension n=1. Show that for dimension n=1 we instead have the following: If $f \in C^1(\mathbb{R} \setminus \{0\}) \cap C(\mathbb{R})$ and the usual derivative $f' \in L^1_{loc}(\mathbb{R})$, then

$$\int_{\mathbb{R}} f' \varphi \, \mathrm{d}x = -\int_{\mathbb{R}} f \varphi' \, \mathrm{d}x$$

holds for all $\varphi \in \mathscr{D}(\mathbb{R})$.

Problem 2. Boundary values in the sense of distributions for holomorphic functions.

(a) Prove that for each $n \in \mathbb{N}$,

$$(x + i\varepsilon)^{-n} \to (x + i0)^{-n}$$
 in $\mathscr{D}'(\mathbb{R})$ as $\varepsilon \searrow 0$,

where the distribution $(x + i0)^{-n}$ was defined in Problem 2 on Sheet 3.

A holomorphic function $f \colon \mathbb{H} \to \mathbb{C}$ on the upper half-plane $\mathbb{H} = \{z \in \mathbb{C} : \operatorname{Im}(z) > 0\}$ is said to be of slow growth if for each R > 0 there exist $m = m_R \in \mathbb{N}_0$ and $c = c_R \ge 0$ so

$$|f(z)| \le \frac{c}{\mathrm{Im}(z)^m}$$

holds for all $z \in \mathbb{H}$ with $|\text{Re}(z)| \leq R$ and Im(z) < 2.

(b) Prove that if $f: \mathbb{H} \to \mathbb{C}$ is holomorphic of slow growth, then it has a boundary value in the sense of distributions:

$$\langle f(x+i0), \varphi \rangle := \lim_{\varepsilon \searrow 0} \int_{\mathbb{R}} f(x+i\varepsilon) \varphi(x) dx$$

exists for all $\varphi \in \mathscr{D}(\mathbb{R})$ and defines a distribution. [Hint: Assume first that m=0 above and let $F \colon \mathbb{H} \to \mathbb{C}$ be the holomorphic primitive with F(i)=0. Explain why F has a continuous extension to the closed upper half-plane $\overline{\mathbb{H}}$ and use this to conclude the proof in this special case.]

Problem 3. *Distributions defined by finite parts.*

Recall from Sheet 2 that the distributional derivative of $\log |x|$ is the distribution $\operatorname{pv}\left(\frac{1}{x}\right)$ defined by the principal value integral

$$\langle \operatorname{pv}(\frac{1}{x}), \varphi \rangle := \lim_{\varepsilon \searrow 0} \left(\int_{-\infty}^{-\varepsilon} + \int_{\varepsilon}^{\infty} \right) \frac{\varphi(x)}{x} \, \mathrm{d}x, \quad \varphi \in \mathscr{D}(\mathbb{R}).$$

In order to represent the higher order derivatives one can use finite parts: Let $n \in \mathbb{N}$ with n > 1. We then define $\operatorname{fp}\left(\frac{1}{x^n}\right)$ for each $\varphi \in \mathscr{D}(\mathbb{R})$ by the *finite part integral*

$$\left\langle \text{fp}\left(\frac{1}{x^n}\right), \varphi \right\rangle := \int_{-\infty}^{\infty} \frac{\varphi(x) - \sum_{j=0}^{n-2} \frac{\varphi^{(j)}(0)}{j!} x^j - \frac{\varphi^{(n-1)}(0)}{(n-1)!} x^{n-1} \mathbf{1}_{(-1,1)}(x)}{x^n} \, \mathrm{d}x.$$

(a) Check that hereby $\operatorname{fp}\left(\frac{1}{x^n}\right)$ is a well-defined distribution on \mathbb{R} . Show that

$$\frac{\mathrm{d}}{\mathrm{d}x}\mathrm{pv}\left(\frac{1}{x}\right) = -\mathrm{fp}\left(\frac{1}{x^2}\right)$$
 and $\frac{\mathrm{d}}{\mathrm{d}x}\mathrm{fp}\left(\frac{1}{x^n}\right) = -n\mathrm{fp}\left(\frac{1}{x^{n+1}}\right)$

for all n > 1. Is $fp(\frac{1}{x^n})$ homogeneous? (See Problem 4 on Sheet 2 for the definition of homogeneity.)

- (b) Show that for n > 1 we have $x^n \operatorname{fp}\left(\frac{1}{x^n}\right) = 1$ and find the general solution to the equation $x^n u = 1$ in $\mathscr{D}'(\mathbb{R})$. What is the general solution to the equation $(x a)^n v = 1$ in $\mathscr{D}'(\mathbb{R})$ when $a \in \mathbb{R} \setminus \{0\}$?
- (c) Optional. Let $p(x) \in \mathbb{C}[x] \setminus \{0\}$ be a nontrivial polynomial. Describe the general solution $w \in \mathcal{D}'(\mathbb{R})$ to the equation

$$p(x)w = 1$$
 in $\mathscr{D}'(\mathbb{R})$.

Problem 4. A function $f: \mathbb{R} \to \mathbb{R}$ is *convex* if for all $x_0, x_1 \in \mathbb{R}$ and $\lambda \in (0, 1)$ we have

$$f(\lambda x_1 + (1 - \lambda)x_0) \le \lambda f(x_1) + (1 - \lambda)f(x_0). \tag{1}$$

A function $a: \mathbb{R} \to \mathbb{R}$ satisfying (1) with equality everywhere is called an *affine function*.

(a) Show that an affine function must have the form $a(x) = a_1x + a_0$ for some constants a_0 , $a_1 \in \mathbb{R}$. Show also that a function $f \colon \mathbb{R} \to \mathbb{R}$ is convex if and only if it for each compact interval $[\alpha, \beta] \subset \mathbb{R}$ has the property:

when a is affine and
$$f(x) \le a(x)$$
 for $x \in \{\alpha, \beta\}$, then $f \le a$ on $[\alpha, \beta]$

(b) Show that a convex function $f: \mathbb{R} \to \mathbb{R}$ satisfies the 3 slope inequality:

$$\frac{f(x_2) - f(x_1)}{x_2 - x_1} \le \frac{f(x_3) - f(x_1)}{x_3 - x_1} \le \frac{f(x_3) - f(x_2)}{x_3 - x_2}$$

holds for all triples $x_1 < x_2 < x_3$. Deduce that a convex function must be continuous and that it is differentiable except for in at most countably many points.

Optional: Show that a convex function must be locally Lipschitz continuous: for each r > 0 there exists $L = L_r \ge 0$ so $|f(x) - f(y)| \le L|x - y|$ holds for all $x, y \in [-r, r]$.

(c) Assume that $f: \mathbb{R} \to \mathbb{R}$ is twice differentiable. Show that f is convex if and only if

$$f''(x) \ge 0$$

holds for all $x \in \mathbb{R}$.

(d) Let $u \in \mathscr{D}'(\mathbb{R})$ and assume that $u'' \geq 0$ in $\mathscr{D}'(\mathbb{R})$. Show that u is represented by a convex function.

Problem 5. *More practice on order of distributions, positive distributions and mollification.* In this question all functions and distributions are assumed real-valued.

(a) What does it mean to say that a distribution $u \in \mathscr{D}'(\mathbb{R}^n)$ has order $m \in \mathbb{N}_0$? Show that a positive distribution $v \in \mathscr{D}'(\mathbb{R}^n)$ has order 0 and explain in what sense it is a measure.

If $u, v \in \mathscr{D}'(\mathbb{R}^n)$ are two distributions we write $u \leq v$ when $v - u \geq 0$, that is, when v - u is a positive distribution. Show that if $u \leq v$, then u has order $m \in \mathbb{N}_0$ if and only if v has order $m \in \mathbb{N}_0$.

What can you say about a distribution $w \in \mathcal{D}'(\mathbb{R})$ that satisfies $w' \geq 0$?

- (b) In each of the following cases find all the distributions $u \in \mathscr{D}'(\mathbb{R})$ that satisfies the given differential inequality:
 - (1) $u' \ge 1$
 - (2) u' > u
 - (3) u'' > u
- (c) Denote $\operatorname{sgn}(t) = t/|t|$ for $t \in \mathbb{R} \setminus \{0\}$ and $\operatorname{sgn}(0) = 0$. Define for each t > 0 the function

$$T_t(y) = \sqrt{y^2 + t}, \quad y \in \mathbb{R}.$$

(i) Assume $f \in C^{\infty}(\mathbb{R}^n)$. Calculate $T_t(f)\partial_j T_t(f)$ for each j and deduce the formula

$$\left|\nabla T_t(f)\right|^2 + T_t(f)\Delta T_t(f) = \left|\nabla f\right|^2 + f\Delta f.$$

Use this to conclude that

$$\Delta T_t(f) \ge \frac{f}{T_t(f)} \Delta f$$

holds on \mathbb{R}^n .

(ii) Assume $u \in L^1_{loc}(\mathbb{R}^n)$ and that $\Delta u \in L^1_{loc}(\mathbb{R}^n)$. Prove, for instance using mollifiers, that

$$\Delta |u| \ge \operatorname{sgn}(u) \Delta u \quad \text{ in } \mathscr{D}'(\mathbb{R}^n).$$