
Distribution Theory MT21
Problem Sheet 4

Problem 1. This question provides a condition ensuring that the usual partial derivatives coin-
cide with the distributional partial derivatives. Prove Lemma 5.21 from the lecture notes: If the
dimension n ≥ 2 and f ∈ C1(Rn \{0})∩L1

loc(Rn) has usual partial derivatives ∂jf ∈ L1
loc(Rn)

for each direction 1 ≤ j ≤ n, then also∫
Rn

∂jfφ dx = −
∫
Rn

f∂jφ dx

holds for all φ ∈ D(Rn). Give an example to show that it can fail for dimension n = 1. Show
that for dimension n = 1 we instead have the following: If f ∈ C1(R \ {0}) ∩ C(R) and the
usual derivative f ′ ∈ L1

loc(R), then ∫
R
f ′φ dx = −

∫
R
fφ′ dx

holds for all φ ∈ D(R).

Problem 2. Boundary values in the sense of distributions for holomorphic functions.
(a) Prove that for each n ∈ N,(

x+ iε
)−n →

(
x+ i0

)−n in D ′(R) as ε ↘ 0,

where the distribution
(
x+ i0

)−n was defined in Problem 2 on Sheet 3.

A holomorphic function f : H → C on the upper half-plane H =
{
z ∈ C : Im(z) > 0

}
is said

to be of slow growth if for each R > 0 there exist m = mR ∈ N0 and c = cR ≥ 0 so

|f(z)| ≤ c

Im(z)m

holds for all z ∈ H with
∣∣Re(z)∣∣ ≤ R and Im(z) < 2.

(b) Prove that if f : H → C is holomorphic of slow growth, then it has a boundary value in the
sense of distributions: ⟨

f(x+ i0), φ
⟩
:= lim

ε↘0

∫
R
f(x+ iε)φ(x) dx

exists for all φ ∈ D(R) and defines a distribution. [Hint: Assume first that m = 0 above and
let F : H → C be the holomorphic primitive with F (i) = 0. Explain why F has a continuous
extension to the closed upper half-plane H and use this to conclude the proof in this special
case.]
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Problem 3. Distributions defined by finite parts.
Recall from Sheet 2 that the distributional derivative of log |x| is the distribution pv

(
1
x

)
defined

by the principal value integral⟨
pv

(
1
x

)
, φ

⟩
:= lim

ε↘0

(∫ −ε

−∞
+

∫ ∞

ε

)
φ(x)

x
dx , φ ∈ D(R).

In order to represent the higher order derivatives one can use finite parts: Let n ∈ N with n > 1.
We then define fp

(
1
xn

)
for each φ ∈ D(R) by the finite part integral

⟨
fp
(

1
xn

)
, φ

⟩
:=

∫ ∞

−∞

φ(x)−
∑n−2

j=0
φ(j)(0)

j!
xj − φ(n−1)(0)

(n−1)!
xn−11(−1,1)(x)

xn
dx.

(a) Check that hereby fp
(

1
xn

)
is a well-defined distribution on R. Show that

d

dx
pv

(
1
x

)
= −fp

(
1
x2

)
and

d

dx
fp
(

1
xn

)
= −nfp

(
1

xn+1

)
for all n > 1. Is fp

(
1
xn

)
homogeneous? (See Problem 4 on Sheet 2 for the definition of

homogeneity.)
(b) Show that for n > 1 we have xnfp

(
1
xn

)
= 1 and find the general solution to the equation

xnu = 1 in D ′(R). What is the general solution to the equation (x− a)nv = 1 in D ′(R) when
a ∈ R \ {0}?
(c) Optional. Let p(x) ∈ C[x] \ {0} be a nontrivial polynomial. Describe the general solution
w ∈ D ′(R) to the equation

p(x)w = 1 in D ′(R).

Problem 4. A function f : R → R is convex if for all x0, x1 ∈ R and λ ∈ (0, 1) we have

f
(
λx1 + (1− λ)x0

)
≤ λf

(
x1

)
+ (1− λ)f

(
x0

)
. (1)

A function a : R → R satisfying (1) with equality everywhere is called an affine function.
(a) Show that an affine function must have the form a(x) = a1x + a0 for some constants a0,
a1 ∈ R. Show also that a function f : R → R is convex if and only if it for each compact
interval [α, β] ⊂ R has the property:

when a is affine and f(x) ≤ a(x) for x ∈ {α, β}, then f ≤ a on [α, β]

(b) Show that a convex function f : R → R satisfies the 3 slope inequality:

f(x2)− f(x1)

x2 − x1

≤ f(x3)− f(x1)

x3 − x1

≤ f(x3)− f(x2)

x3 − x2

holds for all triples x1 < x2 < x3. Deduce that a convex function must be continuous and that
it is differentiable except for in at most countably many points.

2



Optional: Show that a convex function must be locally Lipschitz continuous: for each r > 0
there exists L = Lr ≥ 0 so |f(x)− f(y)| ≤ L|x− y| holds for all x, y ∈ [−r, r].
(c) Assume that f : R → R is twice differentiable. Show that f is convex if and only if

f ′′(x) ≥ 0

holds for all x ∈ R.
(d) Let u ∈ D ′(R) and assume that u′′ ≥ 0 in D ′(R). Show that u is represented by a convex
function.

Problem 5. More practice on order of distributions, positive distributions and mollification.
In this question all functions and distributions are assumed real-valued.
(a) What does it mean to say that a distribution u ∈ D ′(Rn) has order m ∈ N0? Show that a
positive distribution v ∈ D ′(Rn) has order 0 and explain in what sense it is a measure.
If u, v ∈ D ′(Rn) are two distributions we write u ≤ v when v − u ≥ 0, that is, when v − u is
a positive distribution. Show that if u ≤ v, then u has order m ∈ N0 if and only if v has order
m ∈ N0.
What can you say about a distribution w ∈ D ′(R) that satisfies w′ ≥ 0?
(b) In each of the following cases find all the distributions u ∈ D ′(R) that satisfies the given
differential inequality:

(1) u′ ≥ 1

(2) u′ ≥ u

(3) u′′ ≥ u

(c) Denote sgn(t) = t/|t| for t ∈ R \ {0} and sgn(0) = 0. Define for each t > 0 the function

Tt(y) =
√

y2 + t, y ∈ R.

(i) Assume f ∈ C∞(Rn). Calculate Tt(f)∂jTt(f) for each j and deduce the formula∣∣∇Tt(f)
∣∣2 + Tt(f)∆Tt(f) =

∣∣∇f
∣∣2 + f∆f.

Use this to conclude that
∆Tt(f) ≥

f

Tt(f)
∆f

holds on Rn.
(ii) Assume u ∈ L1

loc(Rn) and that ∆u ∈ L1
loc(Rn). Prove, for instance using mollifiers, that

∆|u| ≥ sgn(u)∆u in D ′(Rn).
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