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2.4 Itô’s calculus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.4.1 Quadratic processes . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
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Chapter 1

Introduction

Stochastic differential equations become increasingly important not only in applied areas
such as quantitative finance1, mathematical physics2, turbulence3, and etc., but also in
many research areas of pure mathematics like non-linear partial differential equations4,
harmonic analysis5, ergodic theory6, differential geometry7 and etc. There are great names
in modern science history which are associated with the development of the subject. Let
us make a short list which is far from complete of course.

1) The major character in stochastic analysis is, without doubt, Brownian motion.
The physical Brownian motion, which is the name given to the chaotic movements of small
pollen grains of clarkia pulchella suspended in water, was observed and reported first to the
Royal Society by the Scottish botanist Robert Brown in 1828 (he lived from 21 December
1773 to 10 June 1858).

2) Loius Bachelier, around 1900, took a far time-ahead step using Brownian motion
to model stock market in his Ph. D thesis (submitted to the faculty of École Normale
Supérieure Paris). His thesis was published: L. Bachelier: Théorie de la spéculation, in
Ann. Sci. École Norm. Sup. 17, 21 - 86 (1900). L. Bachelier used the fundamental
solution of the heat equation (i.e. the heat kernel, Green’s function or called the source
function) to describe the transition laws of Brownian motion. In a delighted book by
Mark Davis and Alison Etheridge: Louis Bachelier’s Theory of Speculation – the origins

1Steven E. Shreve: Stochastic Calculus for Finance II – Continuous-Time Models, Springer 2004. Also
Robert C. Merton: Continuous-Time Finance, Blackwell 1990.

2Barry Simon: Functional Integration and Quantum Physics, Academic Press 1979.
3Stephen B. Pope: Turbulent Flows, Cambridge University Press 2000.
4Daniel W. Stroock and S.R.S. Varadhan: Multidimensional Diffusion Processes, Springer 1979 and

1997 (reprinted), and also Daniel W. Stroock: Partial Differential Equations for Probabilists, Cambridge
University Press 2008.

5Ross G. Pinsky: Positive Harmonic Functions and Diffusion. Cambridge University Press 1995. For a
discrete case refer to Tullio Ceccherini-Silberstein, Fabio Scarabotti and Filippo Tolli: Harmonic Analysis
on Finite Groups. Cambridge University Press 2008.

6H. P. Mckean, Jr.: Stochastic Integrals, Academic Press 1969. This is the little book beautifully
written which educated a generation of scholars in stochastic analysis. Also his recent very nice exercise
book Henry McKean: Probability – The Classical Limit Theorems. Cambridge University Press 2014.

7Jean-Michel Bismut and Gilles Lebeau: The Hypoelliptic Laplacian and Ray-Singer Metrics, Prince-
ton University Press 2008, and of course Nobuyuki Ikeda and Shinzo Watanabe: Stochastic Differential
Equations and Diffusion Processes, North-Holland 1981.
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2 CHAPTER 1. INTRODUCTION

of Modern Finance, Princeton University Press (2006), one may find a good account about
this in English with detailed explanations, also the Xrox copy of the original print, and a
Forward penned by the first Nobel economics laureate Paul A. Samuelson (May 15, 1915
to December 13, 2009).

3) Albert Einstein (14 March 1879-18 April 1955), well known for his special and
general theories of relativity, in 1905, the year he created his fundamental paper on special
relativity, published his study of Brownian motion [A. Einstein: On the movement of
small particles suspended in a stationary liquid demanded by the molecular-kinetic theory
of heat, Annalen der Physik 17 (1905), 549-560. English translation of the paper may
be found in Einstein’s Miraculous Year – five papers that changed the face of physics,
Princeton University Press (1998)]. Einstein’s Brownian motion paper and related papers
are collected in a small book titled Investigations on the theory of the Brownian movement,
edited by R. Fürth and translated by A. D. Cowper, Dover Publications, INC. (1956). In
the same year A. Einstein published 5 fundamental papers. One is about Special Relativity
[A. Einstein: Zur Elektrodynamik bewegter Körper, Annalen der Physik 17 (1905), 891 –
921. English translation including his fundamental paper on General Theory in 1916 and
other key papers on gravitation may be found in The Principe of Relativity – A collection
of original papers on the special and general theory of relativity by A. Einstein, H. A.
Lorentz, H. Weyl and H. Minkowski (with notes by A. Sommerfeld), Dover Publications,
INC (1952)]. The another work published in the same year by A. Einstein is on the law of
the photoelectric effect, a fundamental quantum hypothesis [A. Einstein: On a heuristic
point of view concerning the production and transformation of light, Annalen der Physik 17
(1905), 132 - 148], which is the work A. Einstein was awarded the Nobel Prize in Physics
in 1921.

4) Norbert Wiener (November 26, 1894 - March 18, 1964) in 1923 [N. Wiener: Differ-
ential space, J. Math. Phys. 2 (1923), 131 - 174] constructed the distribution of Brownian
motion as a probability measure over the space of continuous paths, which is the archetypal
example of a measure over an infinite dimensional space in the Lebesgue sense. This work
marked the start of the research area of stochastic analysis.

5) Paul Lévy (1886 - 1971) was probably the longest ever lived mathematician who
worked by him own and discovered rich and interesting unusual properties of the mathe-
matical model of Brownian motion proposed by L. Bachilier and A. Einstein. His results
were published in a book: Processus stochastiques et mouvement Brownien, Gauthier-
Villars et Fils (1948). He studied a class of stochastic processes (he called them additive
processes, his monograph Théorie de l’addition des variables aléatories was published in
1937) which have important applications, now named after him called Lévy’s processes.

6) Kiyoshi Itô (September 7, 1915 - 10 November 2008) was mainly credited as the
founder of the theory of stochastic differential equations. His foundation papers including
the paper about Itô’s lemma or Itô’s formula which was published around 1942, and his
theory of SDE was, with much delay due to the second war, published in 1951 [K. Itô:
On stochastic differential equations, Mem. Amer. Math. Soc. 4 (1951)]. The reader may
gather more or less a full picture about Itô’s calculus in Nobuyuki Ikeda and Shinzo Watan-
abe: Stochastic Differential Equations and Diffusion Processes, North-Holland/Kodansha
(1981). Itô’s calculus was also explained in a master piece Stochastic Integrals by H. P.
McKean published in 1969 (Academic Press, recently reissued by AMS). K. Itô and H.
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P. McKean also wrote a comprehensive monograph ”Diffusion processes and their sample
paths” (Springer-Verlag, 1965) which gives a path-wise construction of a class of diffusion
models determined by second-order elliptic differential operators on intervals of the real
line. This book has been the aspiring source for mathematicians since then.

7) The general theory of stochastic processes – the stochastic calculus for semi-martingales
which generalizes Itô’s theory to a large class of stochastic processes, was established mainly
by the French School under the leadership of Paul-André Meyer (21 August 1934 - 30 Jan-
uary 2003). Meyer and his co-authors created monumental volumes on semi-martingales,
represented with the 5 volumes written by him and his co-authors [C. Dellacherie, P.A.
Meyer: Probabilités et potentiel. Hermann, Paris, vol. I (1975), vol. II (Chapitres 5 à 8
: Théorie des martingales, 1980), vol III (Chapitres 9 à 11, Théorie discrète du potentiel,
1983), vol. IV (Théorie du potentiel associée à une résolvante, Théorie des processus de
Markov, 1987), vol. V (with one more co-author B. Maisonneuve : Processus de Markov
(fin) : Compléments de calcul stochastique, 1992)].

8) Paul Malliavin (September 10, 1925 - June 3, 2010) developed a calculus of variations
for Wiener functionals. His book Stochastic Analysis (Springer, 1997) soon becomes a
classic. He even wrote a book with Anton Thalmaiera on the applications of his calculus
to quantitative finance titled Stochastic calculus of variations in mathematical finance
(Springer-Verlag, Berlin, 2006). The latter book should be useful for those interested in
the applications of viscosity solutions to PDEs too.

9) There are many excellent books which appeared during 1970’s to 1990’s, such as
(1) D. W. Stroock and S. R. S Varadhan: Multidimensional diffusion processes (Springer-
Verlag 1979), (2) L. C. G. Rogers and D. Williams: Diffusions, Markov processes, and
martingales Vol. 2: Itô Calculus (Wiley, New York, 1987) (reissued by Cambridge Uni-
versity Press), (3) D. Revuz and M. Yor: Continuous martingales and Brownian motion
(Springer-Verlag, Berlin 1991), (4) I. Karatzas and S. E. Shreve: Brownian motion and
stochastic calculus (Springer 1998). This list is still a small sample of books useful for
learning stochastic analysis.

10) On the applied fronts, besides those traditional applications in pure mathematics
and in engineering, Itô’s calculus has been found to be the perfect tool for quantitative
finance. In a paper published in 1971 by Fischer Sheffey Black (January 11, 1938 - August
30, 1995, an economist) and Myron Scholes (born July 1, 1941, and economist who was
awarded the Nobel Memorial Prize in Economic Sciences in 1997) titled The Pricing of op-
tions and corporate liabilities (J. Polit. Economy) in which they derived the famous PDE
now named after them called the Black-Scholes equation, which allow them to obtain an
explicit formula for pricing the European options. Another economist Robert C. Merton
(born July 31, 1944, awarded Nobel Prize in Economic in 1997) made the pioneering con-
tributions to continuous-time finance by using Brownian motion in the ”Theory of rational
option pricing”. Bell Journal of Economics and Management Science (The RAND Cor-
poration) 4 (1),141-183 (1973). Here, after about 70 years of Bachilier’s work, we witness
the rebirth of the subject with modern and matured tools towards the understanding of
financial markets. The reader can learn a lot from the collection of Robert C. Merton:
Continuous-time Finance (Blackwell, Cambridge MA & Oxford UK, 1990).

Finally let me point out that a major problem in science, which is largely still open, is
to describe and to construct laws (equivalently distributions) of random fields which are
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probability measures on certain infinite dimensional spaces of mappings between spaces,
such as spaces of continuous mapping from T to M , where T ⊂ Rd a subset and M ⊆ Rn

(a sub-manifold of Rn). In modern science, fields such as gauge fields in quantum field the-
ories, velocity fields in turbulence, are fundamental objects, and fields appearing in many
applications (such as turbulence, quantum field theory, statistical mechanics, condensed
matter physics and so on) tend to be random. A theory in science should acquires at least
two functions. First it should provide a good description of observed phenomena in terms
of certain language, and second it should have the power of making certain predictions.
Being a successful scientific theory, it is essential to build good mathematical models and
theories of random fields. In this course we develop a general theory for constructing a
special class of random fields, called stochastic processes.



Chapter 2

Martingales, Brownian motion and
Itô calculus

In this chapter we recall the fundamental concepts and results about martingales (in
continuous-time), Brownian motion, and the elements about stochastic integrals (Itô’s
integrals).

2.1 Some notions about stochastic processes

Stochastic processes are mathematical models used to describe random phenomena evolv-
ing in time. Let T denote the range of time-parameter t, which is [0,∞) in these lectures,
though other choices are also allowed. T is thus an ordered set endowed with the usual
topology.

Definition 2.1.1 A stochastic process is a parameterized family X = (Xt)t∈T of random
variables on a probability space (Ω,F ,P) taking values in a topological space S (called the
state space). Unless otherwise specified, in this course, S = R, or Rd.

A stochastic process X = (Xt)t∈T may be considered as a function from T × Ω→ Rd,
which is the reason why a stochastic process is also called a random function.

For each ω ∈ Ω, the mapping t → Xt(ω) from T to S is called a sample path (or a
trajectory, or a sample function). Naturally, a stochastic process X = (Xt)t∈T is continuous
(resp. right-continuous, right-continuous with left-limits) if sample paths t → Xt(ω) are
continuous (resp. right-continuous, right-continuous with left-limits) for almost all ω ∈ Ω.

If X = (Xt)t≥0 is a stochastic process with values in Rd, and 0 ≤ t1 < t2 < · · · < tn,
the joint distribution of random variables (Xt1 , · · · , Xtn) given by

µt1,t2,··· ,tn(dx1, · · · , dxn) = P (Xt1 ∈ dx1, · · · , Xtn ∈ dxn) ,

a probability measure on Rd × · · · × Rd, is called a finite-dimensional distribution of X =
(Xt)t≥0. If d = 1, the measure µt1,t2,··· ,tn may be determined from its distribution function

Ft1,t2,··· ,tn(x1, · · · , xn) = P (Xt1 ≤ x1, · · · , Xtn ≤ xn) .

5
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In order to overcome some technical difficulties arising from measurability, in particular
in dealing with stochastic processes in continuous-time, a common condition, which is good
enough to include a large class of interesting stochastic processes, is that almost all sample
paths X = (Xt)t≥0 are right-continuous.

Exercise 2.1.2 Let (Xt)t≥0 be a stochastic process in Rd on (Ω,F ,P), and B ⊂ Rd be
Borel measurable. If F ⊆ [0,∞) is finite or countable, then {ω : Xt(ω) ∈ B for anyt ∈ F}
and supt∈F |Xt| are measurable.

The main task of stochastic analysis is to study the probability (or distribution) prop-
erties of random functions determined by their families of finite-dimensional distributions.

Definition 2.1.3 Two stochastic processes X = (Xt)t≥0 and Y = (Yt)t≥0 are equivalent
(distinguishable) if P (Xt = Yt) = 1 for every t ≥ 0. In this case, (Yt)t≥0 is called a version
of (Xt)t≥0.

By definition, the family of finite-dimensional distributions of a stochastic process X =
(Xt)t≥0 is unique up to equivalence of processes.

On the other hand, in many practical situations, we are given a collection of compatible
finite dimensional distributions D = {µt1,··· ,tn , for t1 < · · · < tn, tj ∈ T , we would like
to construct a stochastic model (Xt)t∈T on some probability space (Ω,F ,P) so that the
family of finite dimensional distributions determined by (Xt)t∈T coincides with the family
D of distributions. In this case, (Xt)t∈T is called a realization of D.

2.2 Martingales in continuous time

The definition of martingales (super- and sub-martingales) and Doob’s fundamental in-
equalities in discrete-time may be extended to martingales in continuous time, after nec-
essary and obvious modifications. The only new result in the theory of martingales in
continuous time is a regularity result about their sample paths.

Let (Ω,F ,Ft,P) be a filtered probability space. A (Ft)-adapted (real valued) pro-
cess (Xt)t≥0 is called a martingale (resp. super-martingale; resp. sub-martingale), if
E (Xt|Fs) = Xs (resp. E (Xt|Fs) ≤ Xs; resp. E (Xt|Fs) ≥ Xs) almost surely for any
t ≥ s ≥ 0. Similarly, the concept of stopping times can be stated in this setting as well,
namely, a function T : Ω → [0,∞] is an (Ft)-stopping time if for every t ≥ 0, the event
{T ≤ t} belongs to Ft. A new kind of stopping times called predictable times which has
no interest in discrete-time case will play a role if the underlying stochastic processes have
jumps. A stopping time T : Ω → [0,∞] is predictable if there is an increasing sequence
(Tn) of (Ft)-stopping times such that for each n, Tn < T and limn→∞ Tn = T .

If T is a stopping time, then

FT = {A ∈ F : for any t ≥ 0, [T ≤ t] ∩ A ∈ Ft}

is the σ-algebra representing the information available up to the random time T , and

FT− = {A ∈ F : for any t ≥ 0, [T < t] ∩ A ∈ Ft}
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represents information known strictly before time T .
Let Ft+ = ∩s>tFs for every t ≥ 0, and define Ft− = σ{Fs : s < t} for t > 0. Then

(Ft+) is again a filtration and Ft+ ⊇ Ft. If T : Ω→ [0,∞] is an (Ft+)-stopping time then

FT+ = {A ∈ G : for any t ≥ 0, [T ≤ t] ∩ A ∈ Ft+}

is a σ-algebra.
A filtration (Gt) is right-continuous if Gt+ = Gt for each t ≥ 0. Clearly (Ft+) is right-

continuous.

Theorem 2.2.1 If (Xt)t≥0 is a martingale (resp. super-martingale, resp. sub-martingale)
on (Ω,F ,Ft,P) with right-continuous sample paths almost surely, then (Xt)t≥0 is a mar-
tingale (resp. super-martingale, resp. sub-martingale) on (Ω,F ,Ft+,P).

One would ask when a martingale (super-martingale) has right-continuous sample paths
almost surely? The question can be answered via Doob’s convergence theorem for super-
martingales.

Let X = (Xt)t≥0 be a real valued stochastic process, and let a < b. If

F = {0 ≤ t1 < t2 < · · · < tN}

is a finite subset of [0,∞), then U b
a(X,F ) denotes the number of up-crossings by {Xt1 , · · · , XtN},

and if D ⊂ [0,∞), then U b
a(X,D) denotes the superemum of U b

a(X,F ) over F being finite
subset of D. Obviously D → U b

a(X,D) is increasing with respect to the inclusion ⊂. In
particular, if X = (Xt)t≥0 is (Ft)-adapted and if D is a countable subset of [0,∞) then
for every t ≥ 0, U b

a(X,D ∩ [0, t]) is measurable with respect to Ft. We may apply Doob’s
up-crossing number inequality to (Xt)t∈F where F is a finite subset, and therefore establish
the following

Theorem 2.2.2 (Doob’s up-crossing number inequality). If X = (Xt)t≥0 is a super-
martingale, then

E
[
U b
a(X,D)

]
≤ 1

b− a
E (Xt − a)−

for any a < b, t > 0 and any countable subset D of [0, t], where x− = (−x) ∨ 0.

Proof. Let t > 0 be any but fixed. List all elements in D as {t1, t2, · · · }, and for each
n = 1, 2, · · · , Fn = {t1, · · · , tn, t}. Then clearly Fn ↑ D ∩ [0, t], and therefore

U b
a(X,Fn) ↑ U b

a(X,D ∪ {t}).

Each U b
a(X,Fn) is Ft-measurable, and therefore U b

a(X,D ∪ {t}) is Ft-measurable too. By
the same reasoning (dropping t in the definition Fn) U b

a(X,D) is Ft-measurable. By MCT

E
[
U b
a(X,D)

]
≤ U b

a(X,D ∪ {t}) = lim
n→∞

U b
a(X,Fn).

While by Doob’s up-crossing lemma for S-martingales in discrete-time

U b
a(X,Fn) ≤ 1

b− a
E (Xt − a)−

and the claim follows.
It follows thus the following version of the super-martingale convergence theorem.
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Corollary 2.2.3 Let X = (Xt)t≥0 be a super-martingale, and let D be a countable dense
subset of [0,∞). Then for almost all ω ∈ Ω, the right limit of (Xt)t≥0 along the countable
dense set D, lims∈D,s>t,s↓tXs exist at all t ≥ 0, and the left limit along D, lims∈D,s<t,s↑tXs

exist at t > 0.

Here is the proof [also the proof of 1) and 2) in Föllmer’s lemma below] which is quite
typical of this kind of arguments using discrete results. For simplicity, let Dt = D ∩ [0, 2t]
for t > 0. Then, by using the definition of limits, both limits

lim
s∈D,s>t,s↓t

Xs and lim
s∈D,s<t,s↓t

Xs

exist on {
U b
a(X,Dt) <∞ : a < b, a, b ∈ Q

}
=

⋂
a,b∈Q,a<b

{
U b
a(X,Dt) <∞

}
which is F2t-measurable (in particular it is measurable). By Doob’s up-crossing number
lemma

E
[
U b
a(X,D)

]
≤ 1

b− a
E (Xt − a)− <∞

so that
{
U b
a(X,Dt) =∞

}
has probability zero, and therefore

Nt ≡
⋃

a,b∈Q,a<b

{
U b
a(X,Dt) =∞

}
has probability zero for every t. Now observe that Nt is actually increasing in t, so that
N = ∪t>0Nt = limk→∞Nk is measurable, and has probability zero. That is

⋃
t≥0Nt has

probability zero and therefore{
U b
a(X,Dt) <∞ : for all a < b, a, b ∈ Q and t > 0

}
= Ω \N

has probability one. By construction of N , both limits

lim
s∈D,s>t,s↓t

Xs and lim
s∈D,s<t,s↓t

Xs

exist on Ω \N for all t > 0.
The following is the main regularity result, which is called Föllmer’s lemma.

Theorem 2.2.4 Let (Xt)t≥0 be a super-martingale (resp. martingale) on (Ω,F ,Ft,P),
and D ⊆ [0,∞) be countable. Let N be constructed in the previous proof. Then

1. For every ω ∈ Ω \ N , Zt(ω) = lims∈D,s>t,s↓tXs(ω) exists, and Zt is Ft+-measurable
for all t ≥ 0.

2. For every ω ∈ Ω \ N and for all t > 0 the left limit Zt−(ω) = lims<t,s↑ Zs(ω), and
(Zt)t≥0 is a (Ft+)-adapted process with right-continuous sample paths and left limits.

3. For any t ≥ 0, E (Zt|Ft) ≤ Xt (resp. E (Zt|Ft) = Xt) almost surely.

4. (Zt)t≥0 is a super-martingale (resp. martingale) on (Ω,F ,Ft+,P).
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In general however (Zt)t≥0 constructed as above may not be not a version of (Xt)t≥0, and
therefore they may have different distributions. The following is the most useful regularity
result about martingales.

Corollary 2.2.5 Under the same assumptions and notations as in Theorem 2.2.4. As-
sume that (Ft)t≥0 is right-continuous. Then (Zt)t≥0 is a version of (Xt)t≥0, that is, for
each t ≥ 0, Zt = Xt almost surely, if and only if t→ EXt is right-continuous.

Corollary 2.2.6 Under the same assumptions and notations as in Theorem 2.2.4. If
(Ft)t≥0 is right continuous, and if (Xt)t≥0 is a martingale on (Ω,F ,Ft,P), then the process
(Zt)t≥0 defined in 2.2.4 is a version of (Xt)t≥0.

This is because for a martingale (Xt)t≥0, t→ EXt = EX0 is a constant.
From now we will work on a filtered probability space (Ω,F ,Ft,P) which satisfies the

following the usual conditions.

1. (Ω,F ,P) is a complete probability space.

2. The filtration (Ft)t≥0 is right-continuous: Ft = Ft+ ≡ ∩s>tFs for every t ≥ 0.

3. Each Ft contains all null sets in F .

Remark 2.2.7 If X = (Xt)t≥0 is a right-continuous stochastic process on a complete
probability space (Ω,F ,P), then its natural filtration (Ft)t≥0 satisfies the usual conditions.

Theorem 2.2.8 If X = (Xt)t≥0 is a right-continuous stochastic process adapted to (Ft)t≥0

(recall that our filtration (Ft)t≥0 satisfies the usual conditions), and if T : Ω→ [0,∞] is a
stopping time, then the random variable XT1{T<∞} is measurable with respect to σ-algebra
FT , where

XT1{T<∞}(ω) = XT (ω)(ω)1{ω:T (ω)<∞}(ω)

=

{
XT (ω)(ω) ; if T (ω) <∞ ,

0; if T (ω) =∞ .

The following theorem provides us with a class of interesting stopping times.

Theorem 2.2.9 Let X = (Xt)t≥0 be an Rd-valued, adapted stochastic process that is right-
continuous and has left-limits. Then T = inf {t ≥ t0 : Xt ∈ D} is a stopping time, where
D ⊂ Rd is Borel measurable and t0 ≥ 0, with the convention that inf ∅ = ∞. T is called
the hitting time of D by the process X.

Example 2.2.10 If X = (Xt)t≥0 is an adapted, continuous process on (Ω,F ,Ft,P) and
if D ∈ Rd is a bounded closed subset of Rd, then T = inf{t ≥ 0 : Xt ∈ D} is a stopping
time. If X0 ∈ Dc, then XT1{T<∞} ∈ ∂D. In particular, if d = 1 and b is a real number,
then Tb = inf{t ≥ 0 : Xt = b} is a stopping time. supt∈[0,N ] Xt is a random variable (where
N > 0 is any number), {

sup
t∈[0,N ]

Xt < b

}
= {Tb > N}
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and {
sup
t∈[0,N ]

Xt ≥ b

}
= {Tb ≤ N} .

The concept of stopping times provides us with a means of “localizing” quantities.
Suppose (Xt)t≥0 is a stochastic process, and T is a stopping time, then XT = (Xt∧T )t≥0 is
a stochastic process stopped at (random) time T , where

Xt∧T (ω) =

{
Xt(ω) if t ≤ T (ω) ;
XT (ω)(ω) if t ≥ T (ω) .

Another interesting stopped process at random time T associated with X is the process
X1[0,T ] which is by definition(

X1[0,T ]

)
t
(ω) = Xt1{t≤T}(ω)

=

{
Xt(ω) if t ≤ T (ω) ;

0 if t > T (ω) .

It is obvious that XT
t = Xt1{t≤T}+XT1{t>T}. If (Xt)t≥0 is adapted to the filtration (Ft)t≥0

, so are the process (Xt∧T )t≥0 stopped at stopping time T and Xt1{t≤T}.

Definition 2.2.11 An adapted stochastic process X = (Xt)t≥0 is called a local martingale
if there is an increasing family {Tn} of finite stopping times such that Tn ↑ ∞ as n→∞
and that (Xt∧Tn)t≥0 is a martingale for each n.

Similarly, we may define local super- or sub-martingales etc.

2.3 Brownian motion

Let us begin with the definition of Brownian motion as a continuous stochastic process.
A stochastic process B = (Bt)t≥0 on a probability space (Ω,F ,P) with values in Rd is

called a Brownian motion (BM) in Rd, if

1. (Bt)t≥0 possesses independent increments: for any 0 ≤ t0 < t1 < · · · < tn random
variables

Bt0 , Bt1 −Bt0 , · · · , Btn −Btn−1

are independent,

2. for any t > s ≥ 0, random variable Bt − Bs has a normal distribution N(0, t − s),
that is, Bt −Bs has pdf (probability density function)

p(t− s, x) =
1

(2π(t− s))d/2
e−

|x|2
2(t−s) ; x ∈ Rd .

In other words
P (Bt −Bs ∈ dx) = p(t− s, x)dx ,
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3. almost all sample paths of (Bt)t≥0 are continuous.

If, in addition, P{B0 = x} = 1 where x ∈ Rd, then we say (Bt)t≥0 is a Brownian motion
starting at x. P{B0 = 0} = 1 where 0 is the origin of Rd, then we say (Bt)t≥0 is a standard
Brownian motion.

We will see that the condition 3) is not nontrivial, which ensure that many interesting
functionals of Brownian motion, such as the running maximum B?

t = sups≤tBs, are indeed
random variables. Let p(t, x, y) = p(t, x− y), and define

Ptf(x) =

∫
Rd
f(y)p(t, x, y)dy ∀f ∈ Cb(Rd) .

for every t > 0. Since

p(t+ s, x, y) =

∫
Rd
p(t, x, z)p(s, z, y)dz

therefore (Pt)t≥0 is a semigroup on Cb(Rd). (Pt)t≥0 is called the heat semigroup in Rd: if
f ∈ C2

b (Rd), then u(t, x) = (Ptf)(x) solves the heat equation(
1

2
∆ +

∂

∂t

)
u(t, x) = 0 ; u(0, ·) = f ,

where ∆ =
∑

i
∂2

∂x2i
is the Laplace operator.

The connection between Brownian motion and the Laplace operator ∆ (hence the
harmonic analysis) is demonstrated through the following identity:

E (f(Bt + x)) = (Ptf) (x) =
1

(2πt)d/2

∫
Rd
f(y)e−

|y−x|2
2t dy

where Bt is a standard Brownian motion.

Example 2.3.1 If B = (Bt)t≥0 is a BM in R, then

E|Bt −Bs|p = cp|t− s|p/2 for all s, t ≥ 0 (2.1)

for p ≥ 0, where cp is a constant depending only on p. Indeed

E|Bt −Bs|p =
1√

2π|t− s|

∫
R
|x|p exp

(
− |x|2

2|t− s|

)
dx .

Making change of variable

x√
|t− s|

= y ; dx =
√
|t− s|dy

we thus have

E|Bt −Bs|p =
(
√
|t− s|)p√

2π

∫
R
|x|p exp

(
−|x|

2

2

)
dx

= cp|t− s|p/2
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where

cp =
1√
2π

∫
Rd
|x|p exp

(
−|x|

2

2

)
dx .

(2.1) remains true for BM in Rd with a constant cp depending on p and d.

Remark 2.3.2 If d = 1, then Bt − Bs ∼ N(0, t − s). It is an easy exercise to show that
for every n ∈ Z+

E(Bt −Bs)
2n =

(2n)!

2nn!
|t− s|n .

Let B = (Bt)t≥0 be a standard BM in R. Then B is a centered Gaussian process with
co-variance function C(s, t) = s ∧ t. Indeed, any finite-dimensional distribution of B is
Gaussian [Exercise], so that B is a centered Gaussian process, and its co-variance function
(if s < t)

E(BtBs) = E((Bt −Bs)Bs +B2
s )

= E((Bt −Bs)Bs) + EB2
s

= E(Bt −Bs)EBs + EB2
s

= s .

Theorem 2.3.3 (N. Wiener) There is a standard Brownian motion in Rd.

Let B = (Bt)t≥0 be a standard BM in Rd.
(1) BM B = (Bt)t≥0 is stationary, in the sense that for any fixed time S, B̃t = Bt+S−BS

is again a standard Brownian motion. This statement is true indeed for any finite stopping
time S.

(2) Scaling invariance, self-similarity. For any real number λ 6= 0, Mt ≡ λBt/λ2 is a
standard BM in Rd.

(3) Isotropic property. If U is an d × d orthonormal matrix, then UB = (UBt)t≥0 is
a standard BM in Rd. That is, BM is invariant under the action of orthogonal group of
Rd. This says a little bit more than the usual definition of isotropic property in that the
invariance is valid for all U ∈ O(d), not only for its sub-group SO(d).

(4) Let B = (Bt)t≥0 be a standard BM in R, and define M0 = 0 and Mt = tB1/t for
t > 0, is a standard BM in R.

Brownian motion as a Markov process. Recall that

p(t, x) =
1

(2πt)d/2
e−
|x|2
2t

in Rd, and (Pt)t≥0 the heat semigroup Ptf(x) =
∫
Rd f(y)p(t, x− y)dy for every t > 0.

Let (F0
t )t≥0 denote the filtration generated by a standard Brownian motion (Bt)t≥0,

and F0
∞ = ∪t≥0F0

t .
(5) For any t > s ≥ 0, the increment Bt −Bs is independent of F0

s .
(6) If t > s, then the joint distribution of Bs and Bt is given by

P (Bs ∈ dx, Bt ∈ dy) = p(s, x)p(t− s, y − x)dxdy .
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Indeed, since Bs and Bt−Bs are independent, so that (Bs, Bt−Bs) has a pdf p(s, x1)p(t−
s, x2), thus, for any bounded Borel measurable function f

Ef(Bs, Bt) = Ef(Bs, Bt −Bs +Bs)

=

∫∫
f(x1, x2 + x1)p(s, x1)p(t− s, x2)dx1dx2 .

Making change of variables x1 = x and x2 +x1 = y in the last double integral, the induced
Jacobi is 1 so that dx1dx2 =dxdy (as measures), and therefore

Ef(Bs, Bt) =

∫∫
f(x, y)p(s, x)p(t− s, y − x)dxdy

which implies that the pdf of (Bs, Bt) is p(s, x)p(t− s, y − x).
(7) Let t > s, and f a bounded Borel measurable function. Then

E
(
f(Bt)|F0

s

)
= Pt−sf(Bs) a.s. (2.2)

In particular E (f(Bt)|F0
s ) = E (f(Bt)|Bs) (which is called the simple Markov property).

(8) For any 0 < t1 < t2 < · · · < tn, the (Rn×d-valued) random variable (Bt1 , · · · , Btn)
possesses the following probability density function

p(t1, x1)p(t2 − t1, x2 − x1) · · · p(tn − tn−1, xn − xn−1).

That is, the joint distribution of (Bt1 , · · · , Btn) is given by

P {Bt1 ∈ dx1, · · · , Btn ∈ dxn}
= p(t1, x1)p(t2 − t1, x2 − x1) · · · p(tn − tn−1, xn − xn−1)dx1 · · · dxn . (2.3)

(9) Let Bt = (B1
t , · · · , Bd

t ) be a d-dimensional standard Brownian motion. Then for
each j, Bj

t is a standard BM in R, and (Bj
t )t≥0 (j = 1, · · · , d) are mutually independent.

Therefore a d-dimensional BM is d independent copies of BM in R.
(10) Brownian motion starts afresh at a stopping time, and the Markov property for

Brownian motion remains valid at a stopping time. Therefore Brownian motion possesses
the strong Markov property, a very important property which had been used by Paul Lévy
in the form of the reflection principle, long before the concept of strong Markov property
had been properly defined. We will exhibit this principle by computing the distribution
of the running maximum of a Brownian motion. Let B = (Bt)t≥0 be a standard one
dimensional Brownian motion on (Ω,F ,Ft,P) in R. Let b > 0, b > a and Tb = inf{t >
0 : Bt = b}. Then Tb is a stopping time, and the Brownian motion starts afresh at Tb as a
Brownian motion (starting at b) after hitting the level b, and therefore

P

(
sup
s∈[0,t]

Bs ≥ b, Bt ≤ a

)
= P

(
sup
s∈[0,t]

Bs ≥ b, Bt ≥ 2b− a

)
= P (Bt ≥ 2b− a)

where the first equality follows from the “fact” that the Brownian motion starting at Tb
(in position b): BTb = b, runs afresh like a Brownian motion starting at b, so that it
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moves with equal probability about the line y = b. The second equality follows from
2b− a = b+ (b− a) > b.

The above equation may be written as

P (Tb ≤ t, Bt ≤ a) = P (Tb ≤ t, Bt ≥ 2b− a)

= P (Bt ≥ 2b− a) ,

which can be justified by the Strong Markov Property of Brownian motion, a topic that
will not pursue here. Therefore

P

(
sup
s∈[0,t]

Bs ≥ b, Bt ≤ a

)
=

1√
2πt

∫ +∞

2b−a
e−

x2

2t dx ,

which gives us the joint distribution of a Brownian motion and its maximum at a fixed
time t. By differentiating in a and in b to obtain the pdf of the joint distribution of random
variables (Mt = sups∈[0,t] Bs, Bt):

P (Mt ∈ db, Bt ∈ da) =
2(2b− a)√

2πt3
exp

{
−(2b− a)2

2t

}
dadb

over the region {(b, a) : a ≤ b, b ≥ 0} in R2.
Brownian motion as a martingale.
Let B = (Bi

t)t≥0 (i = 1, · · · , d) be a standard BM in Rd, with its natural filtration
(F0

t )t≥0.
(11) Each Bt is p-th integrable for any p > 0, and for t > s

E(|Bt −Bs|p) = cp,d|t− s|p/2 . (2.4)

(Bt)t≥0 is a continuous, square-integrable martingale, and for each pair i, j, Mt =
Bi
tB

j
t − δijt is a continuous martingale.

(12) Let B = (Bt)t≥0 be a continuous stochastic process in R such that B0 = 0. Then
(Bt)t≥0 is a standard BM in R, if and only if for any ξ ∈ R and t > s

E
{

exp (i〈ξ, Bt −Bs〉) |F0
s

}
= exp

(
−(t− s)|ξ|2

2

)
. (2.5)

(13) Let (Bt) be a standard BM in R. If ξ ∈ R, then Mt ≡ exp
(
i〈ξ, Bt〉+ |ξ|2

2
t
)

is a

martingale.
(14) Let B = (Bt)t≥0 be a standard BM in R. Then Mt ≡ B2

t − t are martingales and
limm(D)→0

∑
l |Btl−Btl−1

|2 = t in L2(Ω,P) for any t, where D runs over all finite partitions
of interval [0, t], and m(D) = maxl |tl − tl−1|. Therefore limm(D)→0

∑
l |Btl − Btl−1

|2 = t in
probability.

(15) Let (Bt)t≥0 be a standard BM in R. Then for any t > 0 we have

2n∑
j=1

∣∣∣B j
2n
t −B j−1

2n
t

∣∣∣2 → t a.s. (2.6)
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as n→∞.
It can be shown (not easy) that supD

∑
l |Btl−Btl−1

|p <∞ almost surely for any p > 2,
where sup is taken over all finite partitions of [0, 1], and supD

∑
l |Btl−Btl−1

|2 =∞ almost
surely. That is to say, Brownian motion has finite p-variation for any p > 2. Indeed almost
all Brownian motion sample paths are α-Hölder continuous for any α < 1/2 but not for
α = 1/2. It follows that almost all Brownian motion paths are nowhere differentiable. We
will not go into a deep study about the sample paths of BM, which are not needed in order
to develop Itô’s calculus for Brownian motion.

Definition 2.3.4 Let p > 0 be a constant. A path f(t) in Rd [a function on [0, T ] valued
in Rd] is said to have finite p-variation on [0, T ], if

sup
D

∑
l

|f(ti)− f(ti−1)|p <∞

where D runs over all finite partitions of [0, T ]. f(t) in Rd has finite (total) variation if it
has finite 1-variation.

A function with finite variation must be a difference of two increasing functions. It
particular, it has at most countably many discontinuous points.

A stochastic process V = (Vt)t≥0 is called a variational process, if for almost all ω ∈ Ω,
the sample path t → Vt(ω) possesses finite variation on any finite interval. A Brownian
motion is not a variational process.

2.4 Itô’s calculus

In this section we recall the basic definitions and results about Itô’s integrals with respect
to continuous martingales.

2.4.1 Quadratic processes

Let M = (Mt)t≥0 be a continuous, square integrable martingale. Then

〈M〉t = lim
m(D)→0

∑
l

∣∣Mtl −Mtl−1

∣∣2
exists both in probability and in the L2-norm for every t ≥ 0, where the limit takes over
all finite partitions D of the interval [0, t]. 〈M〉 is called the (quadratic) variational process
of (Mt)t≥0, or simply the bracket process of (Mt)t≥0. The quadratic variational process
t→ 〈M〉t is an adapted, continuous, increasing stochastic process [and therefore has finite
variation] with initial zero. The following theorem demonstrates the importance of 〈M〉t.

Theorem 2.4.1 (The quadratic variational process) Let M = (Mt)t≥0 be a contin-
uous, square integrable martingale. Then 〈M〉t is the unique continuous, adapted and
increasing process with initial zero, such that M2

t − 〈M〉t is a martingale.
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The theorem is a special case of the Doob-Meyer decomposition for sub-martingales:
any sub-martingale can be decomposed into a sum of a martingale and a predictable,
increasing process with initial value zero. The decomposition was conjectured by L. Doob,
and proved by P. A. Meyer in the 60’s, which opened the new era of stochastic calculus.

Theorem 2.4.2 Let (Mt)t≥0 and (Nt)t≥0 be two continuous, square integrable martingales,
and

〈M,N〉t =
1

4
(〈M +N〉t − 〈M −N〉t)

called the bracket process of M and N . Then 〈M,N〉t is the unique adapted, continuous,
variational process with initial zero, such that MtNt − 〈M,N〉t is a martingale. Moreover

lim
m(D)→0

n∑
l=1

(Mtl −Mtl−1
)(Ntl −Ntl−1

) = 〈M,N〉t , in prob. (2.7)

where D = {0 = t0 < · · · < tn = t} and m(D) = maxl(tl − tl−1).

Let T > 0 be a fixed but arbitrary number, andM2
0 be the vector space of all continu-

ous, square-integrable martingales up to time T on a probability space (Ω,F , Ft,P) with
initial value zero, equipped with the distance

d(M,N) =
√
E|MT −NT |2 for M,N ∈M2

0 .

By definition, a sequence of square-integrable martingales (M(k)t)t≥0 (k = 1, · · · ,) con-
verges to M in M2

0, if and only if M(k)T → MT in L2(Ω,F ,P) as k →∞. The following
maximal inequality, which is the “martingale version” of the Markov inequality, allows us
to show that (M2

0, d) indeed is complete.

Theorem 2.4.3 (Kolmogorov’s inequality) Let M ∈M2
0. Then for any λ > 0

P
(

sup
0≤t≤T

|Mt| ≥ λ

)
≤ 1

λ2
E
(
M2

T

)
.

Theorem 2.4.4 (M2
0, d) is a complete metric space.

Proof. Let M(k) ∈M2
0 ( k = 1, 2, · · · ) be a Cauchy sequence in M2

0. Then

E|M(k)T −M(l)T |2 → 0 , as k, l→∞ .

According to Kolmogorov’s inequality

P
(

sup
0≤t≤T

|M(k)t −M(l)t| ≥ λ

)
≤ 1

λ2
E|M(k)T −M(l)T |2 ,

so that, M(k) uniformly converges to a limit M on [0, T ] in probability. Therefore there
exists a stochastic process M ≡ (Mt) such that sup0≤t≤T |M(k)t −Mt| → 0 in probability.
Obviously (Mt)t≥0 is a continuous and square -integrable martingale (up to time T ) as the
uniform limit of a sequence of continuous martingales.
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2.4.2 Itô’s integrals

Let us now recall the definition of Itô’s integral
∫ t

0
FsdMs which is again a (local) martin-

gale. This local martingale is also denoted by F ·M , where F is called an integrand.
The definition is divided into three steps.
Step 1. Assume that M is a continuous square integrable martingale, i.e. M is a

continuous martingale on (Ω,F ,Ft,P) such that E(M2
t ) <∞ for every t > 0.

If F = (Ft) is a simple stochastic process if

Ft = ξ01{0}(t) +
∞∑
i=1

ξi1(ti,ti+1](t)

for some partition 0 ≤ t1 < t2 < · · · , where ti →∞, F is adapted so that ξi ∈ Fti , and ξi
is bounded for i = 1, 2, · · · . For such F the Itô’s integral

(F ·M)t =

∫ t

0

FsdMs =
∞∑
i=1

ξi
(
Mti+1∧t −Mti∧t

)
for every t ≥ 0. By definition

(F ·M)t =

∫ t

0

FsdMs = lim
m(D)→0

∑
i

Fsi
(
Msi+1

−Msi

)
for every t > 0, where the limit takes over all finite partitions D : 0 = s0 < s1 < . . . <
sk = t.

F ·M is a continuous square integrable martingale and

〈F ·M〉t =

∫ t

0

|Fs|2d 〈M〉s (2.8)

which yields the Itô’s isometry

E [〈F ·M〉t] = E
[∫ t

0

|Fs|2d 〈M〉s
]

(2.9)

for every t ≥ 0, which allows us to generalize the definition to more general integrands.
An adapted process F = (Ft) is said to be in L2(M) if there is a sequence of simple

adapted processes F (n) (for n = 1, 2, . . .)

E
(∫ T

0

|F (n)t − Ft|2d 〈M〉t
)
→ 0

as n→∞ for every T > 0. The Itô’s isometry implies that

(F ·M)t = lim
n→∞

(Fn ·M)t

in M2
0. F · M is also continuous square martingale and (2.8) holds. Moreover for any

F ∈ L2(M) then

(F ·M)t = lim
m(D)→0

∑
l

Ftl−1

(
Mtl −Mtl−1

)
in probability
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where the limit takes over all finite partitions of [0, t].
By the use of the polarization identity, if M , N ∈ M2

0 and F ∈ L2(M), G ∈ L2(N),
then

〈F.M,G.N〉t =

∫ t

0

FsGsd 〈M,N〉s

and F.(G.M) = (FG).M , as far as these stochastic integrals make sense. That is,∫ t

0

Fsd

(∫ s

0

GudMu

)
s

=

∫ t

0

FsGsdMs .

Step 2. The Itô integration may be extended to local martingales. Let me briefly
describe the idea. Suppose M = (Mt)t≥0 is a continuous, local martingale with initial
zero, then we may choose a sequence (Tn) of stopping times such that Tn ↑ ∞ a.s. and for
each n, MTn = (Mt∧Tn)t≥0 is a continuous, square integrable martingale with initial zero.
In this case we may define 〈M〉t = 〈MTn〉t for t ≤ Tn, which is an adapted, continuous,
increasing process with initial zero such that M2

t − 〈M〉t is a local martingale.
Let F = (Ft)t≥0 be a left-continuous, adapted process such that for each T > 0∫ T

0

F 2
s d〈M〉s <∞ a.s. (2.10)

and define

Sn = inf

{
t ≥ 0 :

∫ t

0

F 2
s d〈M〉s ≥ n

}
∧ n

which is a sequence of stopping times. Condition (2.10) ensures that Sn ↑ ∞. Let T̃n =

Tn ∧ Sn. Then T̃n ↑ ∞ almost surely, and for each n, M T̃n ∈ M2
0. Let F (n)t = Ft1{t≤T̃n}.

Then ∫ ∞
0

F (n)2
sd〈M〉s =

∫ T̃n

0

F 2
s d〈M〉s ≤ n

so that F (n) ∈ L2(M T̃n). We may define

(F.M)t =

∫ t

0

F (n)sd
(
M T̃n

)
s

if t ≤ T̃n ↑ ∞

for n = 1, 2, 3, · · · , called the Itô integral of F with respect to local martingale M . It can
be shown that F.M does not depend on the choice of stopping times Tn. By definition,
both F.M and

(F.M)2
t −

∫ t

0

F 2
s d〈M〉s

are continuous, local martingales with initial zero.
Step 3. Finally let us extend the theory of stochastic integrals to the most useful class

of (continuous) semi-martingales. An adapted, continuous stochastic process X = (Xt)t≥0

is a semi-martingale if X possesses a decomposition Xt = Mt + Vt, where (Mt)t≥0 is a
continuous local martingale, and (Vt)t≥0 is stochastic processes with finite variation on any
finite interval.
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If f(t) is a function on [0, T ] having finite variation:

sup
D

∑
l

|f(tl)− f(tl−1)| < +∞

where D runs over all finite partitions of [0, t] (for any fixed t), then
∫ t

0
g(s)df(s) is under-

stood as the Lebesgue-Stieltjes integral. If in addition s→ f(s) is continuous, then∫ t

0

g(s)df(s) = lim
m(D)→0

∑
l

g(tl−1)(f(tl)− f(tl−1)) .

Therefore, if V = (Vt)t≥0 is a continuous stochastic process with finite variation, then∫ t
0
FsdVs is a stochastic process defined path-wisely as the Lebesgue-Stieltjes integral∫ t

0

FsdVs(ω) ≡
∫ t

0

Fs(ω)dVs(ω)

= lim
m(D)→0

∑
l

Ftl−1
(ω)(Vtl(ω)− Vtl−1

(ω)) .

The definition of stochastic integrals may be extended to any continuous semi-martingale
in an obvious way, namely ∫ t

0

FsdXs =

∫ t

0

FsdMs +

∫ t

0

FsdVs

where, the first term on the right-hand side is the Itô’s integral with respect to local
martingale M defined in probability sense, which is again a local martingale, the second
term is the usual Lebesgue-Stieltjes integral which is defined path-wisely. Moreover∫ t

0

FsdXs = lim
m(D)→0

∑
l

Ftl−1

(
Xtl −Xtl−1

)
in probab.

2.4.3 Itô’s formula

Ito’s formula was established by K. Itô in 1944. Since Itô’s stated it as a lemma in his
seminal paper [ ], Itô’s formula is also refereed in literature as Itô’s Lemma. Itô’s Lemma
is indeed the Fundamental Theorem in stochastic calculus.

We have used in many occasions the following elementary formula

X2
tj
−X2

tj−1
=
(
Xtj −Xtj−1

)2
+ 2Xtj−1

(
Xtj −Xtj−1

)
.

If in addition (Xt)t≥0 is a continuous square integrable martingale, then, by adding up the
above identity over j = 1, · · · , n, where 0 = t0 < t1 < · · · < tn = t is an arbitrary finite
partition, one obtains

X2
t −X2

0 = 2
n∑
j=1

Xtj−1

(
Xtj −Xtj−1

)
+

n∑
j=1

(
Xtj −Xtj−1

)2
.
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Letting m(D)→ 0, we obtain

X2
t −X2

0 = 2

∫ t

0

XsdXs + 〈X〉t .

which is the Itô formula for the martingale (Xt)t≥0 applying to f(x) = x2. By using
polarization and localization, we establish the following integration by parts formula.

Lemma 2.4.5 If X, Y are two continuous semi-martingales: X = M+A and Y = N+B,
where M and N are two continuous local martingales, A and B are two adapted variational
process, then

XtYt −X0Y0 =

∫ t

0

YsdXs +

∫ t

0

XsdYs + 〈M,N〉t .

Corollary 2.4.6 (Integration by parts) Let X = M +A and Y = N +B be a continuous
semi-martingale: M and N are continuous local martingales, and A,B are continuous,
adapted processes with finite variations. Then

XtYt −X0Y0 =

∫ t

0

XsdYs +

∫ t

0

YsdXs + 〈M,N〉t .

The following is the fundamental theorem in stochastic calculus.

Theorem 2.4.7 (Itô’s formula) Let X = (X1
t , · · · , Xd

t ) be a continuous semi-martingale
in Rd with decomposition X i

t = M i
t + Ait: M

1
t , · · · ,Md

t are continuous local martingales,
and A1

t , · · · , Adt are continuous, locally integrable, adapted processes with finite variations.
Let f ∈ C2(Rd,R). Then

f(Xt)− f(X0) =
d∑
i=1

∫ t

0

∂f

∂xi
(Xs)dX i

s

+
1

2

d∑
i,j=1

∫ t

0

∂2f

∂xi∂xj
(Xs)d〈M i,M j〉s . (2.11)

The first term on the right-hand side of (2.11) can be decomposed into

d∑
j=1

∫ t

0

∂f

∂xi
(Xs)dM

j
s +

d∑
j=1

∫ t

0

∂f

∂xi
(Xs)dA

j
s

so that f(Xt)− f(X0) is again a semi-martingale with its martingale part given by

M f
t =

d∑
j=1

∫ t

0

∂f

∂xi
(Xs)dM

j
s .

It follows that

〈M f ,M g〉t =

∫ t

0

d∑
i,j=1

∂f

∂xi
(Xs)

∂g

∂xj
(Xs)d〈M i,M j〉s .
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If B = (B1
t , · · · , Bd

t )t≥0 is Brownian motion in Rd, then, for f ∈ C2(Rd,R)

f(Bt)− f(B0) =

∫ t

0

∇f(Bs).dBs +

∫ t

0

1

2
∆f(Bs)ds .

Let

M
[f ]
t = f(Bt)− f(B0)−

∫ t

0

1

2
∆f(Bs)ds .

Then M [f ] is a local martingale and

〈M [f ],M [g]〉t =

∫ t

0

〈∇f,∇g〉(Bs)ds .
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Chapter 3

Selected applications of Itô’s formula

We present several applications of Itô’s lemma.

3.1 Lévy’s characterization of Brownian motion

Our first application is Lévy’s martingale characterization of Brownian motion. Let (Ω,F ,Ft,P)
be a filtered probability space satisfying the usual condition.

Theorem 3.1.1 Let Mt = (M1
t , · · · ,Md

t ) be an adapted, continuous stochastic process on
(Ω,F ,Ft,P) taking values in Rd with initial zero. Then (Mt)t≥0 is a Brownian motion if
and only if

1. Each M i
t is a continuous square-integrable martingale.

2. M i
tM

j
t − δijt is a martingale, that is, 〈M i,M j〉t = δijt for every pair (i, j).

Proof. We only need to prove the sufficient part. Recall that, under the assumption,
(Mt)t≥0 is a Brownian motion if and only if

E
[
e
√
−1〈ξ,Mt−Ms〉

∣∣∣Fs] = e−
|ξ|2
2

(t−s) (3.1)

for any t > s and ξ = (ξi) ∈ Rd. We thus consider the adapted process

Zt = exp

(
√
−1

d∑
i=1

ξiM
i
t +
|ξ|2

2
t

)

and we show that it is a martingale. To this end, we apply Itô’s formula to f(x) = ex (in
this case f ′ = f ′′ = f) and semi-martingale

Xt =
√
−1

d∑
i=1

ξiM
i
t +
|ξ|2

2
t ,

23
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and obtain

Zt = Z0 +

∫ t

0

Zsd

(
√
−1

d∑
i=1

ξiM
i
s +
|ξ|2

2
s

)

+
1

2

∫ t

0

Zsd〈
√
−1

d∑
i=1

ξiM
i〉s

= 1 +
√
−1

d∑
i=1

ξi

∫ t

0

ZsdM
i
s +
|ξ|2

2

∫ t

0

Zsds

−1

2

∫ t

0

d∑
i,j=1

ξiξjZsd〈M i,M j〉s

= 1 +
√
−1

d∑
i=1

ξi

∫ t

0

ZsdM
i
s

the last equality follows from

1

2

∫ t

0

d∑
i,j=1

ξiξjZsd〈M i,M j〉s =
1

2
|ξ|2

∫ t

0

Zsds .

due to the assumption that 〈M i,M j〉s = δijs. Since |Zs| = e|ξ|
2s/2, so that for any T > 0

E
∫ T

0

|Zs|2ds =

∫ T

0

e|ξ|
2sds < +∞

and therefore (Zt) ∈ L2(M i) for i = 1, · · · , d as 〈M i〉t = t. It follows that
∫ t

0
ZsdM

i
s ∈Mc

2.
That is, Zs is a continuous, square-integrable martingale with initial value 1. (3.1) follows
from the martingale property

E
{
ei〈ξ,Mt〉+ |ξ|

2

2
t

∣∣∣∣Fs} = ei〈ξ,Ms〉+ |ξ|
2

2
s

for t > s.

3.2 Time-changes of Brownian motion

A continuous local martingale is actually a time change of Brownian motion.

Theorem 3.2.1 (Dambis, Dubins, Schwarz) Let M = (Mt)t≥0 be a continuous, local
martingale on (Ω,F ,Ft,P) with initial value zero satisfying 〈M〉∞ =∞, and let

Tt = inf {s : 〈M〉s > t} .

Then Tt is a stopping time for each t ≥ 0, Bt = MTt is an (FTt)-Brownian motion, and
Mt = B〈M〉t.
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Proof. The family T = (Tt)t≥0 is called a time-change, each Tt is a stopping time,
and obviously t → Tt is increasing. The function t → Tt is right-continuous, and is the
right-continuous inverse of t → 〈M〉t, so that 〈M〉Tt = t for all t ≥ 0. Each Tt is finite
P-a.e. because 〈M〉∞ =∞ a.e. By continuity of 〈M〉t we have

〈M〉Tt = t

for every t ≥ 0. Applying Doob’s optional sampling theorem for the square integrable
martingale (Ms∧Tt)s≥0 (which is a square integrable martingale) and stopping times Tt ≥ Ts
(t ≥ s), we obtain that

E (MTt|FTs) = MTs

i.e. Bt is a (FTt)-martingale. By the same argument but to the martingale (M2
s∧Tt −

〈M〉s∧Tt)s≥0 we have

E
(
M2

Tt − 〈M〉Tt |FTs
)

= M2
Ts − 〈M〉Ts .

Hence (B2
t − t) is an (FTt)-martingale. We may verify that t→ Bt is continuous (which is

actually not trivial, see the comment below). Therefore B = (Bt)t≥0 is an (FTt) Brownian
motion according to Lévy’s characterization of Brownian motion

Remark 3.2.2 The continuity of t → Bt can be argued as the following (outline). Since
t → Tt is right continuous, so B is righy continuous at least. Note that t → 〈M〉t is
continuous and increasing, and

〈M〉t = lim
m(D)→0

∑
i

(
Mti −Mti−1

)2

where the limit runs over any finite partitions of [0, t]. Let us assume that the previous
equality holds for every ω ∈ Ω. Let ω ∈ Ω be any but fixed. Now observe that if t is
an increasing point of 〈M〉, that is, there is a ε > 0 such that s → 〈M〉s (ω) is strictly
increasing on (t− ε, t + ε), then by inverse function theorem, s→ Ts(ω) is the inverse of
〈M〉 and therefore is continuous at t. Hence Bs = MTs is continuous at t. On the other
hand, if s1 < s2 such that 〈M〉s1 = 〈M〉s2 at ω, then Ms = Ms1 (at ω) for all s ∈ [s1, s2],
and therefore Bs is continuous on [s1, s2]. Therefore B is continuous.

Exercise 3.2.3 Let f be a continuous increasing function on [0,∞) with f(0) = 0 and
f(∞) =∞. Define

f−1(x) = inf{y : f(y) > x}.

Prove that f(f−1(x)) = x for all x ≥ 0.

3.3 Burkhölder-Davis-Gundy inequality

Recall Doob’s Lp-inequality: if X is a martingale or a non-negative sub-martingale, and
X?
t = sups≤t |Xs|, then for every p > 1 and T > 0 we have

‖X?
T‖p ≤ q ‖XT‖p
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where 1
p

+ 1
q

= 1 (so that q = p
p−1

). In particular if X is a martingale and p = 2 then

‖XT‖2
2 = E 〈X〉T . Hence

E 〈X〉T ≤ E|X?
T |2 ≤ 4E 〈X〉T .

In this section we prove the B-D-G inequality by using Itô’s formula.

Theorem 3.3.1 Let X be a continuous local martingale with X0 = 0, and X?
t = sups≤t |Xs|.

Let T > 0. Then
1) If p > 1

(4p)−pE〈X〉pT ≤ E|X?
T |2p ≤

(
2ep2

)p E〈X〉pT . (3.2)

2) If 0 < p < 1

p2pE〈X〉pT ≤ E|X?
T |2p ≤

(
16

p

)p
E〈X〉pT . (3.3)

3) In the case p = 1
E〈X〉T ≤ E|X?

T |2 ≤ 4E〈X〉T . (3.4)

Proof. The conclusion 3) follows from Kolmogorov’s inequality, so we prove the case
that p 6= 1. By stopping time techniques, we may assume that X is a bounded continuous
martingale. First consider the case that p > 1. In this case, according to Doob’s inequality

E|X?
T |2p ≤

(
2p

2p− 1

)2p

E|XT |2p.

On the other hand, applying Itô’s formula to f(x) = (x2 + ε)p, where ε > 0 is an arbitrary
constant, we have

f ′(x) = 2px(x2 + ε)p−1,

f ′′(x) = 2p
(
(2p− 1)x2 + ε

)
(x2 + ε)p−2

and

(|XT |2 + ε)p = εp +

∫ T

0

f ′(Xt)dXt

+p

∫ T

0

(
(2p− 1)X2

t + ε
)

(X2
t + ε)p−2d〈X〉t.

Integrating both sides then letting ε ↓ 0 one obtains

E|XT |2p = p(2p− 1)E
∫ T

0

X
2(p−1)
t d〈X〉t

and therefore

E|XT |2p ≤ p(2p− 1)E
(
|X?

T |2(p−1)〈X〉T
)

≤ p(2p− 1)
(
E|X?

T |2p
)1− 1

p (E〈X〉pT )1/p .
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Combining with the Doob’s inequality we obtain

E|X?
T |2p ≤

(
1 +

1

2p− 1

)2p−1

2p2
(
E|X?

T |2p
)1− 1

p (E〈X〉pT )1/p

≤ 2ep2
(
E|X?

T |2p
)1− 1

p (E〈X〉pT )1/p

so that

E|X?
T |2p ≤

(
2ep2

)p E〈X〉pT .

To prove the other direction of the inequality, we begin with

E〈X〉pT = pE
∫ T

0

〈X〉p−1
t d〈X〉t

= pE
(∫ T

0

〈X〉
p−1
2

t dXt

)2

,

and by integration by parts gives∫ T

0

〈X〉
p−1
2

t dXt = XT 〈X〉
p−1
2

T −
∫ T

0

Xtd〈X〉
p−1
2

t

≤ 2X?
T 〈X〉

p−1
2

T

we thus obtain

E〈X〉pT ≤ 4pE
[
(X?

T )2 〈X〉p−1
T

]
≤ 4p

(
E (X?

T )2p) 1
p (E〈X〉pT )1− 1

p

which implies that

E (X?
T )2p ≥ (4p)−pE〈X〉pT

and therefore (3.2).

Next we assume that 0 < p < 1. Let Mt =
∫ t

0
〈X〉

p−1
2

s dXs, which is a continuous local
martingale with bracket process

〈M〉t =

∫ t

0

〈X〉p−1
s d〈X〉s =

1

p
〈X〉pt .

In terms of M we may recover X by formula

Xt =

∫ t

0

〈X〉−
p−1
2

s dMs =

∫ t

0

〈X〉
1−p
2

s dMs

= Mt〈X〉
1−p
2

t −
∫ t

0

Msd〈X〉
1−p
2

s

≤ 2M∗
t 〈X〉

1−p
2

t
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where the third equality follows from the integration by parts, so that

X∗T ≤ 2M∗
T 〈X〉

1−p
2

T

and therefore

E|X∗T |2p ≤ 22pE
[
(M∗

T )2p 〈X〉p(1−p)T

]
≤ 22p

(
E (M∗

T )2)p (E〈X〉pT )1−p

where the second inequality follows from the Hölder inequality as 0 < p < 1. Since

E|M∗
T |2 ≤ 4E|MT |2 = 4E〈M〉T

=
4

p
E〈X〉pT

thus we have

E|X∗T |2p ≤ 4p
(

4

p
E〈X〉pT

)p
(E〈X〉pT )1−p

=

(
16

p

)p
E〈X〉pT .

To prove the other direction, we consider the continuous martingale

Zt =

∫ t

0

1

(ε+X∗s )1−pdXs

where ε > 0 is a constant, whose bracket process

〈Z〉t =

∫ t

0

1

(ε+X∗s )2(1−p)d〈X〉s.

Since p < 1 so that

〈Z〉t ≥
1

(ε+X∗t )2(1−p) 〈X〉t.

On the other hand, by integration by parts we have

Zt =
Xt

(ε+X∗t )1−p −
∫ t

0

Xsd(ε+X∗s )p−1

=
Xt

(ε+X∗t )1−p + (1− p)
∫ t

0

Xs

(ε+X∗s )2−pdX
∗
s
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and therefore

|Zt| ≤
X∗t

(ε+X∗t )1−p + (1− p)
∫ t

0

X∗s
(ε+X∗s )2−pdX

∗
s

=
X∗t

(ε+X∗t )1−p + (1− p)
∫ t

0

d(X∗s + ε)

(ε+X∗s )1−p

−(1− p)ε
∫ t

0

d(X∗s + ε)

(ε+X∗s )2−p

=
X∗t

(ε+X∗t )1−p +
1− p
p

((ε+X∗t )p − εp)

−ε
(

1

(ε+X∗t )1−p − ε
p−1

)
≤ 1

p
(ε+X∗t )p − 2ε(ε+X∗t )p−1 +

(
2− 1

p

)
εp

≤ 1

p
(ε+X∗t )p + εp

for every ε > 0. Hence

E
〈X〉T

(ε+X∗T )2(1−p) ≤ E〈Z〉T

= EZ2
T

≤ E
[

1

p
(ε+X∗T )p + εp

]2

.

On the other hand

E〈X〉pT = E
[(

〈X〉T
(ε+X∗T )2(1−p)

)p (
(ε+X∗T )2p

)1−p
]

=

[
E
(

〈X〉T
(ε+X∗T )2(1−p)

)]p {
E(ε+X∗T )2p

}1−p

together with the previous inequality we obtain

E〈X〉pT ≤

{
E
[

1

p
(ε+X∗T )p + εp

]2
}p {

E(ε+X∗T )2p
}1−p

for every ε > 0. Letting ε ↓ one obtains

E〈X〉pT ≤
1

p2p
E|X∗T |2p.
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3.4 Stochastic exponentials

In this section we consider a simple stochastic differential equation

dZt = ZtdXt , Z0 = 1 (3.5)

where Xt = Mt + At is a continuous semi-martingale. The solution of (3.5) is called
the stochastic exponential of X. The equation (3.5) should be understood as an integral
equation

Zt = 1 +

∫ t

0

ZsdXs (3.6)

where the integral is taken as Itô’s integral. To find the solution to (3.6) we may try
Zt = exp(Xt+Vt), where (Vt)t≥0 to be determined as a “correction” term (which has finite
variation) due to the Itô’s integration. Applying Itô’s formula we obtain

Zt = 1 +

∫ t

0

Zsd(Xs + Vs) +
1

2

∫ t

0

Zsd〈M〉s

and therefore, in order to match the equation (3.6) we must choose Vt = −1
2
〈M〉t.

Lemma 3.4.1 Let Xt = Mt + At (where M is a continuous local martingale, A is an
adapted continuous process with finite total variation) with X0 = 0. Then

E(X)t = exp

(
Xt −

1

2
〈M〉t

)
is the solution to (3.6).

E(X) is called the stochastic exponential of X = (Xt)t≥0.

Proposition 3.4.2 Let (Mt)t≥0 be a continuous local martingale with M0 = 0. Then the
stochastic exponential E(M) is a continuous, non-negative local martingale.

Remark 3.4.3 According to definition of Itô’s integrals, if T > 0 such that

E
∫ T

0

e2Mt−〈M〉td〈M〉t < +∞ (3.7)

then the stochastic exponential

E(M)t = exp

(
Mt −

1

2
〈M〉t

)
is a non-negative, continuous martingale. For n = 1, 2, · · · , define

Tn = inf {t ≥ 0 : Mt > n or 〈M〉t > n} .

Then every Tn is a stopping time and Tn ↑ ∞. Moreover

E
∫ T

0

e2Mt∧Tn−〈M〉t∧Tnd〈M〉t ≤ e2nn <∞

so that E(M)t∧Tn is a martingale, and therefore E(M) is a non-negative local martingale.



3.4. STOCHASTIC EXPONENTIALS 31

The remarkable fact is that, although E(M) may fail to be a martingale, but it is
nevertheless a super-martingale.

Lemma 3.4.4 Let X = (Xt)t≥0 be a non-negative, continuous local martingale. Then
X = (Xt)t≥0 is a super-martingale: E(Xt|Fs) ≤ Xs for any t < s. In particular t → EXt

is decreasing, and therefore EXt ≤ EX0 for any t > 0.

Proof. Recall Fatou’s lemma: if {fn} is a sequence of non-negative, integrable func-
tions on a probability space (Ω,F ,P), such that limn→∞E (fn) < ∞, then limn→∞fn is
integrable and

E (limn→∞fn|G) ≤ limn→∞E (fn|G)

for any sub σ-algebra G (see page 88, D. Williams: Probability with Martingales).
By definition, there is a sequence of finite stopping times Tn ↑ +∞ P -a.e. such that

XTn = (Xt∧Tn)t≥0 is a martingale for each n. Hence

E (Xt∧Tn|Fs) = Xs∧Tn , ∀t ≥ s, n = 1, 2, · · · .

In particular E (Xt∧Tn) = EX0, so that, by Fatou’s lemma, Xt = limn→∞Xt∧Tn is inte-
grable. Applying Fatou’s lemma to Xt∧Tn and G = Fs for t > s we have

E(Xt|Fs) = E
[

lim
n→∞

Xt∧Tn|Fs
]
≤ limn→∞E(Xt∧Tn|Fs)

= limn→∞Xs∧Tn = Xs

According to definition, X = (Xt)t≥0 is a super-martingale.

Corollary 3.4.5 Let M = (Mt)t≥0 be a continuous, local martingale with M0 = 0. Then
E(M) is a super-martingale. In particular,

E exp

(
Mt −

1

2
〈M〉t

)
≤ 1 for all t ≥ 0 .

Clearly, a continuous super-martingale X = (Xt)t≥0 is a martingale if and only if its
expectation t→ E(Xt) is constant. Therefore

Corollary 3.4.6 Let M = (Mt)t≥0 be a continuous, local martingale with M0 = 0. Then
E(M) is a martingale up to time T , if and only if

E exp

(
MT −

1

2
〈M〉T

)
= 1 . (3.8)

Stochastic exponentials of local martingales play an important rôle in probability trans-
formations. It is vital in many applications to know whether the stochastic exponential
of a given martingale M = (Mt)t≥0 is indeed a martingale. A simple sufficient condition
to ensure (3.8) is the so-called Novikov’s condition stated in Theorem 3.4.7 below (A.
A. Novikov: On moment inequalities and identities for stochastic integrals, Proc. second
Japan-USSR Symp. Prob. Theor., Lecture Notes in Math., 330, 333-339, Springer-Verlag,
Berlin 1973).
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Theorem 3.4.7 (A. A. Novikov 1973) Let M = (Mt)t≥0 be a continuous local martingale
with M0 = 0. If

E exp

(
1

2
〈M〉T

)
<∞ , (3.9)

then E(M) is a martingale up to time T .

To prove this, we need the following fact about uniform integrability.

Lemma 3.4.8 Suppose A be a family of integrable random variables on (Ω,F ,P) and
suppose there is an integrable random variable η such that E [1D|ξ|] ≤ E [1D|η|] for any
D ∈ F and ξ ∈ A. Then A is uniformly integrable.

Proof. of Theorem 3.4.7. (The following proof is due to J. A. Yan: Critères d’intégrabilité
uniforme des martingales exponentielles, Acta. Math. Sinica 23, 311-318 (1980).) The
idea is the following, first show that, under the Novikov condition (3.9), for any 0 < α < 1

E(αM)t ≡ exp

(
αMt −

1

2
α2 〈M〉t

)
is a uniformly integrable martingale up to time T . By Corollary (3.4.5), E (E(αM)t) ≤ 1
for every α. While

E(αM)t ≡ exp

{
α

(
Mt −

1

2
〈M〉t

)
− 1

2
α (α− 1) 〈M〉t

}
= (E(M)t)

α exp

{
1

2
α (1− α) 〈M〉t

}
,

so that for every t ≤ T and for every A ∈ FT

E (1AE(αM)t) = E
{

1A (E(M)t)
α exp

[
1

2
α (1− α) 〈M〉t

]}
. (3.10)

If α ∈ (0, 1), by using Hölder’s inequality with p = 1
α
> 1 and q = 1

1−α in (3.10) one obtains

E {1AE(αM)t} = E
{

(E(M)t)
α exp

[
1

2
α (1− α) 〈M〉t

]}
≤ {E (E(M)t)}α

{
E
[
1A exp

(
1

2
α 〈M〉t

)]}1−α

≤ {E (E(M)t)}α
{
E
[
1A exp

(
1

2
α 〈M〉t

)]}1−α

≤
{
E
[
1A exp

(
1

2
α 〈M〉T

)]}1−α

≤ E
{

1A exp

(
1

2
〈M〉T

)}
. (3.11)
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Therefore by Lemma (3.4.8) we deduce that (E(αM)t)t≤T is, up to time T , uniformly
integrable local martingale, and therefore E(αM) must be a martingale on [0, T ]. In
particular

E (E(αM)T ) = E (E(αM)0) = 1, ∀α ∈ (0, 1).

Set A = Ω in (3.11), the first inequality of (3.11) becomes

1 = E (E(αM)t)

≤ (E (E(M)t))
α

{
E
(

exp

(
1

2
〈M〉T

))}1−α

for every α ∈ (0, 1). Letting α ↑ 1 we thus obtain that E (E(M)t) ≥ 1 for every t ≤ T , so
that E (E(M)t) = 1 for any t ≤ T . Hence E(M)t is a martingale up to T .

Consider a standard Brownian motionB = (Bt), and F = (Ft)t≥0 ∈ L2. If E exp
[

1
2

∫ T
0
F 2
t dt
]
<

∞ then

Xt = exp

{∫ t

0

FsdBs −
1

2

∫ t

0

F 2
s ds

}
(3.12)

is a positive martingale on [0, T ]. For example, for any bounded process F = (Ft)t≥0 ∈ L2:
|Ft(ω)| ≤ C (for all t ≤ T and ω ∈ Ω), where C is a constant, then

E
{

exp

(
1

2

∫ T

0

F 2
t dt

)}
≤ exp

(
1

2
C2T

)
<∞

so that, in this case, X = (Xt) defined by (3.12) is a martingale up to time T .
Novikov’s condition is very nice, it is however not easy to verify in many interesting

cases. For example, consider the stochastic exponential of the martingale
∫ t

0
BsdBs, the

Novikov condition requires to estimate the integral E
{

exp
[

1
2

∫ T
0
B2
t dt
]}

, which is already

not an easy task.

3.5 Exponential inequality

We are going to present three significant applications of stochastic exponentials: a sharp
improvement of Doob’s maximal inequality for martingales, Girsanov’s theorem, and the
martingale representation theorem (in the next section). Additional applications will be
discussed in the next chapter.

Recall that, according to Doob’s maximal inequality, if (Xt)t≥0 is a continuous super-
martingale on [0, T ], then for any λ > 0

P

{
sup
t∈[0,T ]

|Xt| ≥ λ

}
≤ 1

λ

(
E(X0) + 2E(X−T )

)
where x− = −x if x < 0 and = 0 if x ≥ 0. In particular, if (Xt)t≥0 is a non-negative,
continuous super-martingale on [0, T ], then

P

{
sup
t∈[0,T ]

Xt ≥ λ

}
≤ 1

λ
E(X0) . (3.13)

This inequality has a significant improvement stated as follows.
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Theorem 3.5.1 Let M = (Mt)t≥0 be a continuous square integrable martingale with M0 =
0. Suppose there is a (deterministic) continuous, increasing function a = a(t) such that
a(0) = 0, 〈M〉t ≤ a(t) for all t ∈ [0, T ]. Then

P

{
sup
t∈[0,T ]

Mt ≥ λa(T )

}
≤ e−

λ2

2
a(T ) . (3.14)

Proof. For every α > 0 and t ≤ T

αMt −
α2

2
〈M〉t ≥ αMt −

α2

2
〈M〉T

≥ αMt −
α2

2
a(T )

so that

E(αM)t ≥ eαMt−α
2

2
a(T ) for α > 0 .

Hence, by applying Doob’s maximal inequality to the non-negative super-martingale E(αM)
we obtain

P

{
sup
t∈[0,T ]

Mt ≥ λa(T )

}
≤ P

{
sup
t∈[0,T ]

E(αM)t ≥ eαλa(T )−α
2

2
a(T )

}
≤ e−αλa(T )+α2

2
a(T )E {E(αM)0}

= e−αλa(T )+α2

2
a(T )

for any α > 0. The exponential inequality follows by setting α = λ.
In particular, by applying the exponential inequality to a standard Brownian motion

B = (Bt)t≥0,

P

{
sup
t∈[0,T ]

Bt ≥ λT

}
≤ e−

λ2

2
T . (3.15)

3.6 Girsanov’s theorem

This is an important tool in stochastic analysis. To state it let us introduce several notions
and notations.

Let (Ω,F ,P) be a probability space. If G ⊂ F is a sub σ-algebra, and ξ is an non-
negative, integrable and G-measurable with E [ξ] = 1, then define a probability measure Q
on (Ω,F) by

Q(A) = E [ξ1A] =

∫
A

ξdP

for every A. Of course Q restricted on (Ω,G) is also a probability measure. In this case
we use the notation that

dQ
dP

∣∣∣∣
G

= ξ
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to represent the Radon-Nikodym derivative of Q with respect to P as measures on (Ω,G).
Let us work with a filtered probability space (Ω,F ,Ft,P). Let T > 0, and Q be a

probability measure on (Ω,FT ) such that

dQ
dP

∣∣∣∣
FT

= ξ

for some non-negative random variable ξ ∈ L1(Ω,FT ,P). By definition, for any bounded
FT -measurable random variable X∫

Ω

X(ω)Q(dω) =

∫
Ω

X(ω)ξ(ω)P(dω)

or simply written as EQ(X) = EP(ξX). If, however, X is Ft-measurable, t ≤ T , then

EQ(X) = EP(EP (ξX|Ft)) = EP(EP (ξ|Ft)X) .

That is, for every t ≤ T
dQ
dP

∣∣∣∣
Ft

= EP (ξ|Ft)

which is a non-negative martingale up to T under the probability P.
Conversely, if T > 0 and Z = (Zt)t≥0 is a continuous, positive martingale up to time

T , with Z0 = 1, on a filtered probability space (Ω,F ,Ft,P). We define a measure Q on
(Ω,FT ) by

Q(A) = P (ZTA) if A ∈ FT . (3.16)

That is, dQ
dP

∣∣
FT

= ZT . Q is a probability measure on (Ω,FT ) as E (ZT ) = 1. Since (Zt)t≤T

is a martingale up to time T , so that dQ
dP

∣∣
Ft

= Zt for all t ≤ T .

If (Zt)t≥0 is a positive martingale with Z0 = 1, then there is a probability measure Q
on (Ω,F∞), where F∞ ≡ σ{Ft : t ≥ 0}, such that dQ

dP

∣∣
Ft

= Zt for all t ≥ 0.
We are now in a position to prove Girsanov’s theorem.

Theorem 3.6.1 (Girsanov’s theorem) Let (Mt)t≥0 be a continuous local martingale on
(Ω,F ,Ft,P) up to time T . Then

Xt = Mt −
∫ t

0

1

Zs
d 〈M,Z〉s

is a continuous local martingale on (Ω,F ,Ft,Q) up to time T .

Proof. Using localization technique, we may assume that M,Z, 1/Z are all bounded.
In this case M,Z are bounded martingales. We want to prove that X is a martingale
under the probability Q:

EQ {Xt|Fs} = Xs for all s < t ≤ T ,

that is,
EQ {1A (Xt −Xs)} = 0 for all s < t ≤ T , A ∈ Fs .
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By definition
EQ {1A (Xt −Xs)} = EP {(ZtXt − ZsXs)1A}

thus we only need to show that (ZtXt) is a martingale up to time T under probability
measure P. By use of integration by parts, we have

ZtXt = Z0X0 +

∫ t

0

ZsdXs +

∫ t

0

XsdZs + 〈Z,X〉t

= Z0X0 +

∫ t

0

Zs

(
dMs −

1

Zs
d 〈M,Z〉s

)
+

∫ t

0

XsdZs + 〈Z,X〉t

= Z0X0 +

∫ t

0

ZsdMs +

∫ t

0

XsdZs

which is a local martingale.
Since Zt > 0 is a positive martingale up to time T , we may apply the Itô formula to

logZt, to obtain

logZt − logZ0 =

∫ t

0

1

Zs
dZs −

∫ t

0

1

Z2
s

d〈Z〉s ,

that is, Zt = E(N)t with Nt =
∫ t

0
1
Zs

dZs is a continuous local martingale. Hence Zt = E(N)t
solves the Itô integral equation

Zt = 1 +

∫ t

0

ZsdNs ,

and therefore

〈M,Z〉t = 〈
∫ t

0

dMs,

∫ t

0

ZsdNs〉 =

∫ t

0

Zsd〈N,M〉s .

It follows thus that ∫ t

0

1

Zs
d 〈M,Z〉s = 〈N,M〉t .

Corollary 3.6.2 Let Nt be a continuous local martingale on (Ω,F ,Ft,P), N0 = 0, such
that its stochastic exponential E(N)t is a continuous martingale up to T . Define a proba-
bility measure Q on the measurable space (Ω,FT ) by

dQ
dP

∣∣∣∣
Ft

= E(N)t for all t ≤ T .

If M = (Mt)t≥0 is a continuous local martingale under the probability P , then Xt =
Mt−〈N,M〉t is a continuous, local martingale under Q up to time T . (You should carefully
define the concept of a local martingale up to time T ).

3.7 The martingale representation theorem

The martingale representation theorem is a deep result about Brownian motion. There is
a natural version for multi-dimensional Brownian motion, for simplicity of notations, we
however concentrate on one-dimensional Brownian motion.
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Let B = (Bt)t≥0 be a standard Brownian motion in R on a complete probability
space (Ω,F ,P), and (F0

t )t≥0 (together with F0
∞ = ∪F0

t ) be the filtration generated by
the Brownian motion (Bt)t≥0. Let Ft be the completion of F0

t , and F∞ = σ (∪Ft). As a
matter of fact, (Ft)t≥0 is continuous.

Theorem 3.7.1 Let M = (Mt)t≥0 be a square-integrable martingale on (Ω,F ,Ft,P).
Then there is a stochastic process F = (Ft)t≥0 in L2, such that

Mt = EM0 +

∫ t

0

FsdBs a.s.

for any t ≥ 0. In particular, any martingale with respect to the Brownian filtration (Ft)t≥0

has a continuous version.

The proof of this theorem relies on the following several lemmas. There are several
facts from analysis we are going to use, which we state them here.

1. For p ∈ [1,∞], Lp(Rd, µ) denotes the Lp-space on the measure space (Rd,B(Rd), µ)
where µ is a measure which is absolutely continuous with respect to the Lebesgue mea-
sure. Then C∞0 (Rd) is dense in Lp(Rd, µ), where C∞0 (Rd) denotes the space of all smooth
functions on Rd with compact supports.

2. If φ ∈ C∞0 (Rd) then its Fourier transform φ̂ is defined to be

φ̂(x) =
1

(2π)n/2

∫
Rn
φ(x)e−i〈z,x〉dx

which is smooth too (while its support may be not compact) and f is recovered by the
inverse Fourier transform:

φ(x) =
1

(2π)n/2

∫
Rn
φ̂(z)ei〈z,x〉dz.

3. This is a theorem from Functional Analysis. Suppose H is a Hilbert space (i.e. a
complete metric space whose metric is induced by the inner product 〈·, ·〉). Let X ⊂ H be
a subset of H and spanX be the linear subspace generated by X, that is the linear span
of X, i.e. the linear space of all finite linear combinations of elements in X. Then spanX
is dense in H if and only if the only element h ∈ H satisfying the condition 〈x, h〉 = 0 for
all x ∈ X is the zero element.

Let T > 0 be any fixed time.

Lemma 3.7.2 The following collection of random variables on (Ω,FT ,P){
φ(Bt1 , · · · , Btk) : ∀k ∈ Z+, tj ∈ [0, T ] and φ ∈ C∞0 (Rk)

}
is dense in L2(Ω,FT ,P).

Proof. If X ∈ L2(Ω,FT ,P), then, by definition, there is an F0
T -measurable function

which equals X almost surely. Therefore, without losing generality, we may assume that
X ∈ L2(Ω,F0

T ,P). According to definition, F0
T = σ{Bt : t ≤ T}. Let D = Q∩ [0, T ] the set
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of all rational numbers in the interval [0, T ]. Since D is dense in [0, T ], so that F0
T = σ{Bt :

t ∈ D}. Moreover D countable, so that we may write D = {t1, · · · , tn, · · · }. Let Dn =
{t1, · · · , tn} for each n, and Gn = σ {Bt1 , · · · , Btn}. Then {Gn} is increasing, and Gn ↑ F0

T .
Let Xn = E (X|Gn). Then (Xn)n≥1 is square integrable martingale, thus, according to
the martingale convergence theorem Xn → X almost surely. Moreover Xn → X in L2.
While, for each n, Xn is measurable with respect to Gn, so that Xn = fn(Bt1 , · · · , Btn)
for some Borel measurable function fn : Rn → R. Since Xn ∈ L2, so that fn ∈ L2(Rn, µ)
where µ is a Gaussian measure such that EX2

n =
∫
Rn fn(x)2µ(dx). Since C∞0 (Rn) is dense

in L2(Rn, µ), for each n, there is a sequence {φnk} in C∞0 (Rn) such that φnk → fn in
L2(Rn, µ). It follows that φnn(Bt1 , · · · , Btn)→ X in L2.

If I ⊂ R is an interval, then we use L2(I) to denote the Hilbert space of all functions
h on I which are square integrable.

Lemma 3.7.3 Let T > 0. For any h ∈ L2([0, T ]), we associate with an exponential
martingale up to time T :

M(h)t = exp

{∫ t

0

h(s)dBs −
1

2

∫ t

0

h(s)2ds

}
; t ∈ [0, T ]. (3.17)

Then L =span{M(h)T : h ∈ L2([0, T ])} is dense in L2(Ω,FT ,P).

Proof. For any 0 = t0 < t1 < · · · < tn = T and ci ∈ R, consider a step function
h(t) = ci for t ∈ (ti, ti+1]. Then

M(h)T = exp

{∑
i

ci(Bti+1
−Bti)−

1

2

∑
i

c2
i (ti+1 − ti)

}
.

Suppose that H ∈ L2 such that
∫

Ω
HΦdP = 0 for any Φ ∈ L, then∫

Ω

H exp

{∑
i

ci(Bti+1
−Bti)−

1

2

∑
i

c2
i (ti+1 − ti)

}
dP = 0 .

The deterministic, positive term e−
1
2

∑
i c

2
i (ti+1−ti) can be removed from the integrand, and

it follows therefore that ∫
Ω

H exp

{∑
i

ci(Bti+1
−Bti)

}
dP = 0 .

Since ci are arbitrary numbers, hence∫
Ω

H exp

{∑
i

ciBti

}
dP = 0

for any ci and ti ∈ [0, T ]. Since the left-hand is analytic in ci, so that the equality remains
true for any complex numbers ci. If φ ∈ C∞0 (Rn), then

φ(x) =
1

(2π)n/2

∫
Rn
φ̂(z)ei〈z,x〉dz
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where

φ̂(z) =
1

(2π)n/2

∫
Rn
φ(x)e−i〈z,x〉dx

is the Fourier transform of φ. Hence∫
Ω

Hφ(Bt1 , · · · , Btn)dP =
1

(2π)n/2

∫
Ω

{
H

∫
Rn
φ̂(z) exp

(
i
∑
j

zjBtj

)}
dzdP

=
1

(2π)n/2

∫
Rn

{
φ̂(z)

∫
Ω

H exp

(
i
∑
i

ziBti

)
dP

}
dz

= 0 .

Therefore, for any φ ∈ C∞0 (Rn),∫
Ω

Hφ(Bt1 , · · · , Btn)dP = 0 . (3.18)

By Lemma 3.7.2, the collection of all functions like φ(Bt1 , · · · , Btn) is dense in L2(Ω,FT ,P),
so that ∫

Ω

HGdP = 0 for any G ∈ L2(Ω,FT ,P) .

In particular,
∫

Ω
H2dP = 0 so that H = 0.

Theorem 3.7.4 (Itô’s representation theorem) Let ξ ∈ L2(Ω,FT ,P). Then there is a
F = (Ft)t≥0 ∈ L2, such that

ξ = Eξ +

∫ T

0

FtdBt .

Proof. By Lemma 3.7.3 we only need to show this lemma for ξ = X(h)T (where
h ∈ L2([0, T ])) defined by (3.17). While, X(h)t is an exponential martingale so that it
must satisfy the following integral equation

X(h)T = 1 +

∫ T

0

X(h)td

(∫ t

0

h(s)dBs

)
= E(X(h)T ) +

∫ T

0

X(h)th(t)dBt .

Therefore Ft = X(h)th(t) will do.



40 CHAPTER 3. SELECTED APPLICATIONS OF ITÔ’S FORMULA



Chapter 4

Stochastic differential equations

The main goal of the chapter is to establish the basic existence and uniqueness theorem
for a class of stochastic differential equations which are important in applications.

4.1 Introduction

Stochastic differential equations (SDE) are ordinary differential equations perturbed by
noises. We will consider a simple class of noises modeled by Brownian motion. Thus we
consider the following type of equation

dXj
t =

n∑
i=1

f ji (t,Xt)dB
i
t + f j0 (t,Xt)dt , j = 1, · · · , N (4.1)

where Bt = (B1
t , · · · , Bn

t )t≥0 is a standard Brownian motion in Rn on a filtered probability
space (Ω,F ,Ft,P), and

f ji : [0,∞)× RN → RN

are Borel measurable functions. Of course, differential equation (4.1) should be interpreted
as an integral equation in terms of Itô’s integration. More precisely, an adapted, continuous,
RN -valued stochastic process Xt ≡ (X1

t , · · · , XN
t ) is a solution of (4.1), if

Xj
t = Xj

0 +
n∑
k=1

∫ t

0

f jk(s,Xs)dB
k
s +

∫ t

0

f j0 (s,Xs)ds (4.2)

for j = 1, · · · , N . Since we are concerned only with the distribution determined by the
solution (Xt)t≥0 of (4.1), we therefore expect that any solution of SDE (4.1) should have the
same distribution for any Brownian motion B = (Bt)t≥0. It thus leads to different concepts
of solutions and uniqueness: strong solutions and weak solutions, path-wise uniqueness and
uniqueness in law.

Definition 4.1.1 1) An adapted, continuous, RN -valued stochastic process X = (Xt)t≥0

on (Ω,F ,Ft,P) is a (weak) solution of (4.1), if there is a Brownian motion W = (Wt)t≥0

in Rn, adapted to the filtration (Ft), such that

Xj
t −X

j
0 =

n∑
l=1

∫ t

0

f jl (s,Xs)dW
l
s +

∫ t

0

f j0 (s,Xs)ds, j = 1, · · · , N .

41
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In this case we also call the pair (X,W ) a (weak) solution of (4.1).
2) Given a standard Brownian motion B = (Bt)t≥0 in Rn on (Ω,F ,P) with its natural

filtration (Ft)t≥0, an adapted, continuous stochastic process X = (Xt)t≥0 on (Ω,F ,Ft,P)
is a strong solution of (4.1), if

Xj
t −X

j
0 =

n∑
i=1

∫ t

0

f ji (s,Xs)dB
i
s +

∫ t

0

f j0 (s,Xs)ds .

We also have different concepts of uniqueness.

Definition 4.1.2 Consider SDE (4.1).

1. We say that the path-wise uniqueness holds for (4.1), if whenever (X,B) and

(X̃, B) are two solutions defined on the same filtered space and the same Brownian

motion B, and X0 = X̃0, then X = X̃.

2. It is said that uniqueness in law holds for (4.1), if (X,B) and (X̃, B̃) are two

solutions (with possibly different Brownian motions B and B̃, even can be on different

probability spaces), and X0 and X̃0 possess the same distribution, then X and X̃ have
same distribution.

Theorem 4.1.3 (Yamada-Watanabe) Path-wise uniqueness implies uniqueness in law.

The following is a simple example of SDE for which has no strong solution, but possesses
weak solutions and uniqueness in law holds.

Example 4.1.4 (H. Tanaka) Consider 1-dimensional stochastic differential equation:

Xt =

∫ t

0

sgn(Xs)dBs , 0 ≤ t <∞

where sgn(x) = 1 if x ≥ 0, and equals −1 for negative value of x.

1. Uniqueness in law holds, since X is a standard Brownian motion (Lévy’s Theorem).

2. There is a weak solution. Let Wt be a one-dimensional Brownian motion, and Bt =∫ t
0
sgn(Ws)dWs. Then B is a one-dimensional Brownian motion, and

Wt =

∫ t

0

sgn(Ws)dBs ,

so that (W,B) is a solution.

3. Path-wise uniqueness does not hold.

4. There is no any strong solution.
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4.2 Several examples

4.2.1 Linear-Gaussian diffusions

Linear stochastic differential equations can be solved explicitly. Consider

dXj
t =

n∑
i=1

σji dB
i
t +

N∑
k=1

βjkX
k
t dt (4.3)

(j = 1, · · · , N), where B is a Brownian motion in Rn, σ = (σji ) a constant N × n matrix,
and β = (βjk) a constant N ×N matrix. (4.3) may be written as

dXt = σdBt + βXtdt .

Let

eβt =
∞∑
k=0

tk

k!
βk

be the exponential of the square matrix β. Using Itô’s formula, we have

e−βtXt −X0 =

∫ t

0

e−βsdXs −
∫ t

0

e−βsβXsds

=

∫ t

0

e−βs(dXs − βXsds)

=

∫ t

0

e−βsσdBs

so that

Xt = eβtX0 +

∫ t

0

eβ(t−s)σdBs .

In particular, if X0 = x, then Xt has a normal distribution with mean eβtx. For example,
if n = N = 1, then

Xt ∼ N(eβtx,
σ2

2β

(
e2βt − 1

)
) .

It can be shown that (Xt) is a diffusion process, and its distribution can be described by
its transition probability Pt(x, dz). According to definition

(Ptf)(x) ≡
∫
RN
f(z)Pt(x, dz) = E (f(Xt)|X0 = x) ,

thus

(Ptf)(x) = E (f(Xt)|X0 = x)

=

∫
R
f(z)

1√
2π σ

2

2
(e2βt − 1)

exp

(
− |z − e

βtx|2
σ2

2
(e2βt − 1)

)
dz

=

∫
R
f(eβtx+

√
σ2

2
(e2βt − 1)z)

1√
2π

exp

(
−|z|

2

2

)
dz

= Ef(eβtx+

√
σ2

2
(e2βt − 1)ξ)
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where ξ has the standard normal distribution N(0, 1). From the second line of the above
formula, and compare to the definition of Pt(x, dz), we may conclude that Pt(x, dz) =
p(t, x, z)dz with

p(t, x, z) =
1√

2π σ
2

2
(e2βt − 1)

exp

(
− |z − e

βtx|2
σ2

2
(e2βt − 1)

)
.

p(t, x, z) is called the transition density of the diffusion process (Xt)t≥0. We thus, again
following from the above formula, have a probability representation

(Ptf)(x) = Ef(eβtx+

√
σ2

2
(e2βt − 1)ξ)

which is quite useful in some computations.

Remark 4.2.1 It is easy to see from the above representation that

d

dx
(Ptf) = eβtPt

(
d

dx
f

)
.

The distribution of (Xt) is determined by the transition density p(t, x, z). Indeed, for
any 0 < t1 < · · · < tk, the joint distribution of (Xt1 , · · · , Xtk) is Gaussian, and indeed its
pdf is

p(t1, x, z1)p(t2 − t1, z1, z2) · · · p(tk − tk−1, zk−1, zk) .

If B = (B1
t , · · · , Bn

t )t≥0 is a Brownian motion in Rn, then the solution Xt of the SDE:

dXt = dBt − (AXt) dt

is called the Ornstein-Uhlenbeck process, where A ≥ 0 is a d × d matrix called the drift
matrix. Hence we have

Xt = e−AtX0 +

∫ t

0

e−(t−s)AdBs .

Exercise 4.2.2 If X0 = x ∈ Rn, compute Ef(Xt), where Xt is the Ornstein-Uhlenbeck
process with drift matrix A.

4.2.2 Geometric Brownian motion

The Black-Scholes model is the stochastic differential equation

dSt = St (µdt+ σdBt) (4.4)

whose solution to (4.4) is the stochastic exponential of∫ t

0

µds+

∫ t

0

σdBs .
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Hence

St = S0 exp

(∫ t

0

σdBs +

∫ t

0

(
µ− 1

2
σ2

)
ds

)
.

In the case σ and µ are constants, then

St = S0 exp

(
σBt +

(
µ− 1

2
σ2

)
t

)
which is called the geometric Brownian motion. If S0 = x > 0, then St remains positive,
and

logSt = log x+ σBt +

(
µ− 1

2
σ2

)
t

has a normal distribution with mean log x +
(
µ− 1

2
σ2
)
t and variance σ2. Again, as a

solution to the stochastic differential equation (4.4), (St)t≥0 is a diffusion process, its dis-
tribution is determined by its transition function Pt(x, dz) (unfortunately we have to use
the same notations as in the last sub-section), and according to definition∫

R
f(z)Pt(x, dz) = E (f(St)|X0 = x)

= E
(
f(xeσBt+(µ− 1

2
σ2)t)

)
=

∫
R
f(xeσz+(µ− 1

2
σ2)t)

1√
2πt

e−
z2

2πtdz

=

∫ ∞
0

f(y)
1√
2πt

1

σy
e−

1
2πt(

1
σ

log y
x
−(µσ−

1
2
σ))

2

dy

where we assume that σ > 0 and have made the change of variable

xeσz+(µ− 1
2
σ2)t = y .

As usual, we define (Ptf)(x) =
∫
R f(z)Pt(x, dz). By the third line of the previous formula

(Ptf)(x) =

∫
R
f(xeσz+(µ− 1

2
σ2)t)

1√
2πt

e−
z2

2πtdz

=

∫
R
f(xeσ

√
ty+(µ− 1

2
σ2)t)

1√
2π
e−

y2

2π dy

= E
(
f(xeσ

√
tξ+(µ− 1

2
σ2)t)

)
[we have made a change variable z into

√
ty], where ξ ∼ N(0, 1). Compare with the

definition of Pt(x, dy) we have

Pt(x, dy) =
1√
2πt

1

σy
e−

1
2πt(

1
σ

log y
x
−(µσ−

1
2
σ))

2

dy on (0,∞)

That is, (St) has the transition density

p(t, x, y) =
1√
2πt

1

σy
e−

1
2πt(

1
σ

log y
x
−(µσ−

1
2
σ))

2

on (0,∞) .
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and, therefore, for geometric Brownian motion

(Ptf)(x) =

∫ ∞
0

1√
2πt

1

σy
e−

1
2πt(

1
σ

log y
x
−(µσ−

1
2
σ))

2

f(y)dy

for any x > 0.

4.2.3 Cameron-Martin’s formula

Consider a simple stochastic differential equation

dXt = dBt + b(t,Xt)dt (4.5)

where b(t, x) is a bounded, Borel measurable function on [0,∞)× R. We may solve (4.5)
by means of change of probabilities.

Let (Wt)t≥0 be a standard Brownian motion on (Ω,F ,Ft,P), and define probability
measure Q on (Ω,F∞) by

dQ
dP

∣∣∣∣
Ft

= E(N)t for all t ≥ 0

where Nt =
∫ t

0
b(s,Ws)dWs is a martingale (under the probability P), with 〈N〉t =∫ t

0
b(s,Ws)

2ds, which is bounded on any finite interval. Hence

E(N)t = exp

(∫ t

0

b(s,Ws)dWs −
1

2

∫ t

0

b(s,Ws)
2ds

)
is a martingale. According to Girsanov’s theorem

Bt ≡ Wt −W0 − 〈W,N〉t

is a martingale under the new probability Q, and 〈B〉t = 〈W 〉t = t. By Lévy’s martingale
characterization of Brownian motion, (Bt)t≥0 is a Brownian motion. Moreover

〈W,N〉t = 〈
∫ t

0

dWs,

∫ t

0

b(s,Ws)dWs〉

=

∫ t

0

b(s,Ws)ds

and therefore

Wt −W0 −
∫ t

0

b(s,Ws)ds = Bt

is a standard Brownian motion on (Ω,F ,Q). Thus

Wt = W0 +Bt +

∫ t

0

b(s,Ws)ds (4.6)

so that (Wt)t≥0 on (Ω,F∞,Q) is a solution of (4.5). The solution we have just constructed
is a weak solution of SDE (4.5).
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Theorem 4.2.3 (Cameron-Martin’s formula) Let b(t, x) = (b1(t, x), · · · , bn(t, x)) be bounded,
Borel measurable functions on [0,∞)×Rn. Let Wt = (W 1, · · · ,W n

t ) be a standard Brown-
ian motion on a filtered probability space (Ω,F ,Ft,P), and let F∞ = σ{Ft, t ≥ 0}. Define
probability measure Q on (Ω,F∞) by

dQ
dP

∣∣∣∣
Ft

= e
∑n
k=1

∫ t
0 b

k(s,Ws)dBks− 1
2

∑n
k=1

∫ t
0 |bk(s,Ws)|2ds for t ≥ 0 .

Then (Wt)t≥0 under the probability measure Q is a solution to

dXj
t = dBj

t + bj(t,Xt)dt (4.7)

for some Brownian motion (B1
t , · · · , Bn

t )t≥0 under probability Q.

On the other hand, if (Xt) is a solution of SDE (4.7) on some probability space
(Ω,F ,Ft,P) and define P̃

dP̃
dP

∣∣∣∣∣
Ft

= exp

{
−

n∑
k=1

∫ t

0

bk(s,Xs)dB
k
s −

1

2

n∑
k=1

∫ t

0

∣∣bk(s,Xs)
∣∣2 ds

}
for t ≥ 0

we may show that (Xt)t≥0 under probability measure P̃ is a Brownian motion. Therefore
solutions to SDE (4.7) is unique in law: all solutions have the same distribution.

4.3 Existence and uniqueness

In this section we present a fundamental result about the existence and uniqueness of
strong solutions.

4.3.1 Strong solutions: existence and uniqueness

By definition, any strong solution is a weak solution. We next prove a basic existence and
uniqueness theorem for a stochastic differential equation under a global Lipschitz condition.
Our proof will rely on two inequalities: The Gronwall inequality and Doob’s Lp-inequality.

Lemma 4.3.1 (The Gronwall inequality) If a non-negative function g satisfies the integral
equation

g(t) ≤ h(t) + α

∫ t

0

g(s)ds , 0 ≤ t ≤ T

where α is a constant and h : [0, T ]→ R is an integrable function, then

g(t) ≤ h(t) + α

∫ t

0

eα(t−s)h(s)ds , 0 ≤ t ≤ T .

Proof. Let F (t) =
∫ t

0
g(s)ds. Then F (0) = 0 and

F ′(t) ≤ h(t) + αF (t)
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so that (
e−αtF (t)

)′ ≤ e−αth(t) .

Integrating the differential inequality we obtain∫ t

0

(
e−αsF (s)

)′
ds ≤

∫ t

0

e−αsh(s)ds

and therefore

F (t) ≤
∫ t

0

eα(t−s)h(s)ds

which yields Gronwall’s inequality.
Consider the following stochastic differential equation

dXj
t =

n∑
l=1

f jl (t,Xt)dB
l
t + f j0 (t,Xt)dt ; j = 1, · · · , N (4.8)

where f jk(t, x) are Borel measurable functions on R+ × RN , which are bounded on any
compact subset in RN . We are going to show the existence and uniqueness by Picard’s
iteration. The main ingredient in the proof is a special case of Doob’s Lp- inequality: if
(Mt)t≥0 is a square-integrable, continuous martingale with M0 = 0, then for any t > 0

E
{

sup
s≤t
|Ms|2

}
≤ 4 sup

s≤t
E
(
|Ms|2

)
= 4E〈M〉t . (4.9)

Lemma 4.3.2 Let (Bt)t≥0 be a standard BM in R on (Ω,Ft,F ,P), and (Zt)t≥0 and (Z̃t)t≥0

be two continuous, adapted processes. Let f(t, x) be a Lipschitz function

|f(t, x)− f(t, y)| ≤ C|x− y| ; ∀t ≥ 0, x, y ∈ R

for some constant C.

1. Let

Mt =

∫ t

0

f(s, Zs)dBs −
∫ t

0

f(s, Z̃s)dBs ∀t ≥ 0 .

Then

E sup
s≤t
|Ms|2 ≤ 4C2

∫ t

0

E
∣∣∣Zs − Z̃s∣∣∣2 ds

for all t ≥ 0.

2. If

Nt =

∫ t

0

f(s, Zs)ds−
∫ t

0

f(s, Z̃s)ds ∀t ≥ 0

then

E sup
s≤t
|Ns|2 ≤ C2t

∫ t

0

E
∣∣∣Zs − Z̃s∣∣∣2 ds ∀t ≥ 0 .
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Proof. To prove the first statement, we notice that

sup
s≤t
|Ms|2 = sup

s≤t

∣∣∣∣∫ s

0

(
f(u, Zu)− f(u, Z̃u)

)
dBu

∣∣∣∣2
so that, by Doob’s L2-inequality

E sup
s≤t
|Ms|2 = E sup

s≤t

∣∣∣∣∫ s

0

(
f(u, Zu)− f(u, Z̃u)

)
dBu

∣∣∣∣2
≤ 4E

∣∣∣∣∫ t

0

(
f(s, Zs)− f(s, Z̃s)

)
dBs

∣∣∣∣2
= 4E

∫ t

0

∣∣∣f(s, Zs)− f(s, Z̃s)
∣∣∣2 ds

≤ 4C2

∫ t

0

E
∣∣∣Zs − Z̃s∣∣∣2 ds .

Next we prove the second claim. Indeed

sup
s≤t
|Ns|2 = sup

s≤t

∣∣∣∣∫ s

0

(
f(u, Zu)− f(u, Z̃u)

)
du

∣∣∣∣2
≤

(∫ t

0

∣∣∣f(s, Zs)− f(s, Z̃s)
∣∣∣ ds)2

≤ t

∫ t

0

∣∣∣f(s, Zs)− f(s, Z̃s)
∣∣∣2 ds

≤ C2t

∫ t

0

∣∣∣Zs − Z̃s∣∣∣2 ds

where the second inequality follows from the Schwartz inequality.

Theorem 4.3.3 Consider SDE (4.8). Suppose that f ji satisfy the Lipschitz condition:

|f(t, x)− f(t, y)| ≤ C|x− y| (4.10)

and the linear-growth condition that

|f(t, x)| ≤ C(1 + |x|) (4.11)

for t ∈ R+ and x, y ∈ RN . Then for any η ∈ L2(Ω,F0,P) and a standard Brownian motion
Bt = (Bi

t) in Rn, there is a unique strong solution (Xt) of (4.8) with X0 = η.

Proof. Proof of the existence of strong solutions. The unique strong solution can be
constructed by Picard’s iteration. As the first step in the iteration, X(0) = η, and define
X(n) inductively by the following equation

X
(n+1)
t = η +

∫ t

0

f(s,X(n)
s ) · dBs +

∫ t

0

f0(s,X(n)
s )ds (4.12)
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for n = 0, 1, 2, · · · . For simplifying our notations we introduce the following notations:

D
(n)
t =

∣∣∣X(n)
t −X

(n−1)
t

∣∣∣
and

ρ(n)(t) = E sup
s≤t

∣∣X(n)
s −X(n−1)

s

∣∣2
for n = 1, 2, · · · . Since f and f0 are globally Lipschitz, so that

D
(n+1)
t ≤

∣∣∣∣∫ t

0

(
f(s,X(n)

s )− f(s,X(n−1)
s )

)
· dBs

∣∣∣∣
+

∣∣∣∣∫ t

0

(
f0(s,X(n)

s )− f0(s,X(n−1)
s )

)
ds

∣∣∣∣
≤
∣∣∣∣∫ t

0

(
f(s,X(n)

s )− f(s,X(n−1)
s )

)
· dBs

∣∣∣∣
+ C

∣∣∣∣∫ t

0

D(n)
s ds

∣∣∣∣ .
It follows that (

D
(n+1)
t

)2

≤ 2 sup
s≤t

∣∣∣∣∫ s

0

(
f(r,X(n)

r )− f(r,X(n−1)
r )

)
· dBr

∣∣∣∣2
+ 2C

∣∣∣∣∫ t

0

D(n)
s ds

∣∣∣∣2 .
After taking the expectations both sides of the previous inequality to obtain

ρ(n+1)(s) ≤ 2E

[
sup
s≤t

∣∣∣∣∫ s

0

(
f(r,X(n)

r )− f(r,X(n−1)
r )

)
· dBr

∣∣∣∣2
]

+ 2CE
∣∣∣∣∫ t

0

D(n)
s ds

∣∣∣∣2 . (4.13)

The first expectation can be estimated by Doob’s inequality to the martingale

Mt =

∫ t

0

(
f(r,X(n)

r )− f(r,X(n−1)
r )

)
· dBr

where

〈M〉t =

∫ t

0

∣∣f(r,X(n)
r )− f(r,X(n−1)

r )
∣∣2 dr ≤ C

∫ t

0

(
D(n)
r

)2
dr

here the inequality follows from ((4.10)), so that

E sup
s≤t

∣∣∣∣∫ s

0

(
f(r,X(n)

r )− f(r,X(n−1)
r )

)
· dBr

∣∣∣∣ ≤ 4C

∫ t

0

ρ(n)(s)ds. (4.14)

While the second expectation on the right-hand side of (4.13) can be handled as the
following. By Cauchy-Schwartz inequality

E
∣∣∣∣∫ t

0

D(n)
s ds

∣∣∣∣2 ≤ t

∫ t

0

E
∣∣D(n)

s

∣∣2 ds ≤ t

∫ t

0

ρ(n)(s)ds. (4.15)
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Inserting (4.14) and (4.15) into (4.13) we thus obtain the following key inequality

ρ(n+1)(t) ≤ (8C + 2Ct)

∫ t

0

ρ(n)(s)ds (4.16)

for all t ≥ 0 and n = 0, 1, 2, · · · .
For any but fixed T > 0 we have

ρ(n+1)(t) ≤ (8C + 2CT )

∫ t

0

ρ(n)(s)ds

and

ρ(n)(s) ≤ (8C + 2CT )

∫ s

0

ρ(n−1)(r)dr,

hence

ρ(n+1)(t) ≤ (8C + 2CT )2

∫ t

0

(∫ s

0

ρ(n−1)(r)dr

)
ds.

By repeating the same procedure we obtain that

ρ(n+1)(t) ≤ (8C + 2CT )n
∫ t

0

∫ t1

0

· · ·
∫ tn−1

0

ρ(1)(tn−1)dtn−1dtn−2 · · · dt1. (4.17)

While

ρ(1)(t) = E sup
s≤t

∣∣∣∣∫ s

0

f(r, η)dBr +

∫ s

0

f0(r, η)dr

∣∣∣∣2
≤ 2E sup

s≤t

∣∣∣∣∫ s

0

f(r, η)dBs

∣∣∣∣2 + 2E sup
s≤t

∣∣∣∣∫ s

0

f0(r, η)ds

∣∣∣∣2
≤ 2E sup

s≤T

∣∣∣∣∫ s

0

f(r, η)Br

∣∣∣∣2 + 2E sup
s≤t

∣∣∣∣∫ s

0

f0(r, η)ds

∣∣∣∣2
≡ C2(T ),

thus by inserting this estimate to (4.17) we conclude that

ρ(n+1)(t) ≤ C2(T ) (8C + 2CT )n
∫ t

0

∫ t1

0

· · ·
∫ tn−1

0

dtn−1dtn−2 · · · dt1

= C2(T )
(8C + 2CT )n T n

n!

for every n = 0, 1, 2, · · · and for all t ≤ T . Therefore

E sup
t≤T

∣∣∣X(n+1)
t −X(n)

t

∣∣∣2 ≤ C2(T )
(8C + 2CT )n T n

n!
(4.18)

and therefore, by using Markov inequality,

P
{

sup
t≤T

∣∣∣X(n+1)
t −X(n)

t

∣∣∣2 > 1

2n

}
≤ C2(T )

(8C + 2CT )n (2T )n

n!
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for every n = 0, 1, 2, · · · . Since

∑
n

C2(T )
(8C + 2CT )n (2T )n

n!
<∞

so that, according to Borel-Cantelli’s lemma, with probability one, X(n) converges uni-
formly to a limit X on any [0, T ]. It is easy to verify X is a strong solution.

Proof of uniqueness.

Let X and X̂ be two solutions with same Brownian motion B. Then

Xt = η +

∫ t

0

f(s,Xs) · dBs +

∫ t

0

f0(s,Xs)ds

and

X̂t = η +

∫ t

0

f(s, X̂s) · dBs +

∫ t

0

f0(s, X̂s)ds

Then, as in the proof of the existence,

E|Xt − X̂t|2 ≤ C(T )

∫ t

0

E|Xt − X̂t|2ds

for all t ≤ T , where C(T ) is a constant. The Gronwall inequality implies thus that
E (|Yt − Zt|2) = 0.

Remark 4.3.4 The iteration X(n) constructed in the proof of Theorem 4.3.3 is a function
of the Brownian motion B, and X

(n)
t only depends on η and Bs, 0 ≤ s ≤ t.

4.3.2 Continuity in initial conditions

Theorem 4.3.5 Under the same assumptions as in Theorem 4.3.3. Given a BM B =
(Bt)t≥0 in Rn on (Ω,F ,Ft,P), let (Xx(t))t≥0 be the unique strong solution of (4.8). Then
x→ Xx is uniformly continuous almost surely on any finite interval [0, T ]:

lim
δ↓0

sup
|x−y|<δ

E
{

sup
0≤t≤T

|Xx(t)−Xy(t)|2
}

= 0 . (4.19)

Proof. Let us only consider 1-dimensional case. Thus

Xx(t) = x+

∫ t

0

f1(s,Xx(s))dBs +

∫ t

0

f0(s,Xx(s))ds

and

Xy(t) = y +

∫ t

0

f1(s,Xy(s))dBs +

∫ t

0

f0(s,Xy(s))ds .
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Therefore, by Doob’s maximal inequality,

E
{

sup
0≤t≤T

|Xx(t)−Xy(t)|2
}
≤ 3|x− y|2

+3E

{
sup

0≤t≤T

∣∣∣∣∫ t

0

(f1(s,Xx(s))− f1(s,Xy(s)))dBs

∣∣∣∣2
}

+3E

{
sup

0≤t≤T

∣∣∣∣∫ t

0

(f0(s,Xx(s))− f0(s,Xy(s)))ds

∣∣∣∣2
}

≤ 3|x− y|2 + 12E

{∣∣∣∣∫ T

0

(f1(s,Xx(s))− f1(s,Xy(s))) dBs

∣∣∣∣2
}

+3TE
{∫ T

0

|f0(Xx(s))− f0(Xy(s))|2 ds

}
≤ 3|x− y|2 + 12E

{∫ T

0

|f1(s,Xx(s))− f1(s,Xy(s))|2 ds

}
+3TC2E

{∫ T

0

|Xx(s)−Xy(s)|2 ds
}

≤ 3|x− y|2 + 3C2(4 + T )

∫ T

0

E
(
|Xx(t)−Xy(t)|2

)
dt.

Setting

∆(t) = E
{

sup
0≤s≤t

|Xx(s)−Xy(s)|2
}

,

then we have

∆(T ) ≤ 3|x− y|2 + 3C2(4 + T )

∫ T

0

∆(t)dt

and therefore by Gronwall’s inequality

∆(T ) ≤ 6|x− y|2 exp(12C2 + 3TC2)

which yields (4.19).

4.4 Martingale problem and weak solutions

In the lecture (lecture 13) I did the computation for one dimensional case, but the com-
putations I did in the lecture do not depend on the dimension, so I supply the details for
a general case here, though some technical conditions still can be weaken but this can be
done better case by case.

Consider the following SDE

dX i
t =

d∑
k=1

σik(Xt)dB
k
t + bi(Xt)dt (4.20)
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where i = 1, · · · , d. We assume that all coefficients σij and bi are Borel measurable and
are bounded (here the boundedness is brought in for simplicity, which can be replaced by
other conditions). Let X = (Xt)≥0 be a solution on a filtered probability space (Ω,F ,Ft,P)
and B is a d-dimensional Brownian motion. That is, X satisfies the following stochastic
integral equation

X i
t = X i

0 +

∫ t

0

d∑
k=1

σik(Xs)dB
k
s +

∫ t

0

bi(Xt)ds

for t ≥ 0 and i = 1, · · · , d. Then, by Itô’s formula, for every f ∈ C2(Rd),

f(Xt)− f(X0) =
d∑
i=1

∫ t

0

∂f

∂xi
(Xs)dX

i
s +

1

2

d∑
i,j=1

∫ t

0

∂2f

∂xi∂xj
(Xs)d〈X i, Xj〉s.

Since

〈X i, Xj〉t =

∫ t

0

d∑
k,l=1

σik(Xs)σ
j
l (Xs)d

〈
Bk, Bl

〉
s

=

∫ t

0

d∑
k=1

σik(Xs)σ
j
k(Xs)ds.

Let aij(x) =
∑d

k=1 σ
i
k(x)σjk(x). Then a(x) = (aij(x)), as a square d×d-matrix, is symmetric

and non-negative (here non-negative means all its eigenvalues are non-negative). Then the
previous equality shows that

〈X i, Xj〉t =

∫ t

0

aij(Xs)ds

for all t ≥ 0. Substituting this relation into the previous equation for f(Xt) we obtain

f(Xt)− f(X0) =
d∑
i=1

∫ t

0

∂f

∂xi
(Xs)dX

i
s +

1

2

d∑
i,j=1

∫ t

0

aij(Xs)
∂2f

∂xi∂xj
(Xs)ds.

Now using the fact that X is a solution to our SDE we thus deduce that

f(Xt)− f(X0) =
d∑
i=1

∫ t

0

∂f

∂xi
(Xs)

(
d∑

k=1

σik(Xs)dB
k
s + bi(Xs)ds

)

+
1

2

d∑
i,j=1

∫ t

0

aij(Xs)
∂2f

∂xi∂xj
(Xs)ds

=

∫ t

0

d∑
k,i=1

σik(Xs)
∂f

∂xi
(Xs)dB

k
s +

∫ t

0

d∑
i=1

bi(Xs)
∂f

∂xi
(Xs)ds

+
1

2

d∑
i,j=1

∫ t

0

aij(Xs)
∂2f

∂xi∂xj
(Xs)ds.
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Let us introduce the following linear operator

L =
1

2

d∑
i,j=1

aij
∂2

∂xi∂xj
+

d∑
i=1

bi
∂

∂xi
(4.21)

which is an elliptic differential operator of second-order. The linear operator L operating
on a C2 function f gives a new function Lf :

Lf(x) =
1

2

d∑
i,j=1

aij(x)
∂2f(x)

∂xi∂xj
+

d∑
i=1

bi(x)
∂f(x)

∂xi

for every x ∈ Rd. By our assumption Lf is Borel measurable and locally bounded, i.e. Lf
is bounded on any compact subset of Rd. Under these notations, the previous equation for
f(Xt) can be rearranged as the following

f(Xt)− f(X0)−
∫ t

0

Lf(Xs)ds =

∫ t

0

d∑
k,i=1

σik(Xs)
∂f

∂xi
(Xs)dB

k
s

which is a continuous local martingale. Now the crucial observation, made first by Stroock
and Varadhan, is that the left-hand side is independent of an underlying Brownian motion
B. Since its importance, we introduce the following notation:

M
[f ]
t = f(Xt)− f(X0)−

∫ t

0

Lf(Xs)ds (4.22)

for t ≥ 0, and f ∈ C2(Rd).
As a by-product of the previous computation, we also have

M
[f ]
t =

∫ t

0

d∑
k,i=1

σik(Xs)
∂f

∂xi
(Xs)dB

k
s

and therefore

〈M [f ],M [g]〉t =

∫ t

0

d∑
k,i=1

σik(Xs)
∂f

∂xi
(Xs)

d∑
l,j=1

σjl (Xs)
∂f

∂xj
(Xs)d

〈
Bk, Bl

〉
s

=

∫ t

0

d∑
j,i=1

d∑
l,j=1

σjk(Xs)σ
i
k(Xs)

∂f

∂xi
(Xs)

∂f

∂xj
(Xs)ds

=

∫ t

0

d∑
j,i=1

aij(Xs)
∂f

∂xi
(Xs)

∂f

∂xj
(Xs)ds

Lemma 4.4.1 Suppose σij and bi are bounded and Borel measurable, aij and L are defined
by (4.21). If (Xt)t≥0 is a (weak) solution to SDE (4.20) on (Ω,F ,Ft,P), then for any
f ∈ C2(R)

M
[f ]
t = f(Xt)− f(X0)−

∫ t

0

(Lf)(Xs)ds
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is a continuous local martingale on (Ω,F ,Ft,P). Moreover

〈M [f ],M [g]〉t =

∫ t

0

d∑
j,i=1

aij(Xs)
∂f

∂xi
(Xs)

∂f

∂xj
(Xs)ds.

The fact the statement thatM [f ] is a local martingale does not depend on the underlying
Brownian motion allows us formulate the concept of weak solutions in terms of martingale
problem.

Definition 4.4.2 Let a(x) = (aij(x))i,j≤d be symmetric square d× d matrix valued, Borel
measurable and bounded function on Rd and bi(x) are bounded Borel measurable. Let L
be defined by (4.21) which is a linear operator operating on C2 functions. Let (Xt)t≥0

be a continuous stochastic process on a filtered space (Ω,F ,Ft,P). Then we say that
(Xt)t≥0 together with the probability P is a solution to the L-martingale problem, if for
every f ∈ C2(R)

M
[f ]
t = f(Xt)− f(X0)−

∫ t

0

Lf(Xs)ds

is a local martingale under the probability P.

Therefore a solution (Xt)t≥0 of SDE (4.20) on (Ω,F ,P) is a solution to L-martingale
problem. Conversely, we have the following theorem.

Theorem 4.4.3 Let aij, bi and L be given in Definition 4.4.2. Suppose there is (σij(x))
which is a symmetric matrix-valued, Borel measurable and

λ−1 ≤
d∑
i,j

ξiξjσij(x) ≤ λ

for some constant λ > 0, for all x ∈ Rd, (this is equivalent to say all eigenvalues of the
square matrix

(
σij(x)

)
are between λ−1 and λ for all x), such that aij =

∑d
k=1 σ

i
kσ

j
k for

i, j = 1, · · · , d. If (Xt)t≥0 on (Ω,F ,Ft,P) is a continuous process solving the L-martingale
problem: for every f ∈ C2(Rd)

M
[f ]
t = f(Xt)− f(X0)−

∫ t

0

Lf(Xs)ds

is a continuous local martingale on (Ω,F ,Ft,P), then (Xt)t≥0 on (Ω,F ,Ft,P) is a weak
solution to SDE

dX i
t =

d∑
k=1

σik(Xt)dBk
t + bi(Xt)dt (4.23)

for i = 1, · · · , d. Moreover

〈M [f ],M [g]〉t =

∫ t

0

{L(fg)− f (Lg)− g (Lf)} (Xs)ds .

for every f, g ∈ C2(Rd). Of course

L(fg)− f (Lg)− g (Lf) =
d∑

j,i=1

aij
∂f

∂xi
∂g

∂xj
.
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Proof. The key idea is to construct a Brownian motion B such that

X i
t = X i

0 +

∫ t

0

d∑
k=1

σik(Xs)dB
k
s +

∫ t

0

bi(Xt)ds.

If we apply the local martingale property to functions f i(x) = xi (the i-th coordinate of
x), according to the definition of L-martingale problem,

M i
t = f i(Xt)− f i(X0)−

∫ t

0

Lf i(Xs)ds

= X i
t −X i

0 −
∫ t

0

bi(Xs)ds

where M i = M [f i] for simplicity are continuous martingale. Therefore the candidate for
Brownian motion is defined by

Bi
t =

d∑
k=1

∫ t

0

(
σ−1(Xs)

)i
k
dMk

s

which are continuous martingales with initial zero. Here σ−1 denotes the inverse matrix of
σ with its entries denoted by (σ−1)

i
j. We need to show that B = (B1, · · · , Bd) is a standard

Brownian motion in Rd. We will apply Lévy’s characterization for Brownian motion to
this end. Therefore we need to compute

〈
Bi, Bj

〉
t

=

∫ t

0

d∑
k,l=1

(
σ−1(Xs)

)i
k

(
σ−1(Xs)

)j
l
d
〈
Mk,M l

〉
s
.

Let us compute 〈M [f ],M [g]〉t. By the polarization identity, we only need to compute
〈M [f ]〉t. By assumption

M
[f2]
t = f 2(Xt)− f 2(X0)−

∫ t

0

Lf 2(Xs)ds

is a local martingale. On the other hand, by integration by part

f 2(Xt)− f 2(X0) = 2

∫ t

0

f(Xs)df(Xs) +
〈
M [f ]

〉
t

= 2

∫ t

0

f(Xs)
[
dM [f ]

s + Lf(Xs)ds
]

+
〈
M [f ]

〉
t

= 2

∫ t

0

f(Xs)dM
[f ]
s + 2

∫ t

0

f(Xs)Lf(Xs)ds+
〈
M [f ]

〉
t
.

Substitute it into the previous equality we obtain that

M
[f2]
t = 2

∫ t

0

f(Xs)dM
[f ]
s +

〈
M [f ]

〉
t
−
∫ t

0

(
Lf 2 − 2fLf

)
(Xs)ds.
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Therefore we must have 〈
M [f ]

〉
t
−
∫ t

0

(
Lf 2 − 2fLf

)
(Xs)ds = 0

that is 〈
M [f ]

〉
t

=

∫ t

0

(
Lf 2 − 2fLf

)
(Xs)ds.

Therefore 〈
M [f ],M [g]

〉
t

=

∫ t

0

(L(fg)− fLg − gLf)(Xs)ds.

It is an easy exercise to verify that

L(fg)− fLg − gLf =
d∑

j,i=1

aij
∂f

∂xi
∂g

∂xj
.

In particular, for coordinate functions fk(x) = xk and f l(x) = xl we have〈
Mk,M l

〉
t

=

∫ t

0

akl(Xs)ds =

∫ t

0

d∑
m=1

σkm(Xs)σ
l
m(Xs)ds.

Thanks to this formula we can compute〈
Bi, Bj

〉
t

=

∫ t

0

d∑
k,l=1

(
σ−1(Xs)

)i
k

(
σ−1(Xs)

)j
l
d
〈
Mk,M l

〉
s

=

∫ t

0

d∑
m,k,l=1

(
σ−1(Xs)

)i
k

(
σ−1(Xs)

)j
l
σkm(Xs)σ

l
m(Xs)ds

=

∫ t

0

d∑
m,l=1

δim
(
σ−1(Xs)

)j
l
σlm(Xs)ds

=

∫ t

0

d∑
m=1

δimδjmds = δijt.

According to Lévy’s theorem, B is a standard Brownian motion. By definition∫ t

0

d∑
k=1

σik(Xs)dB
k
s =

∫ t

0

d∑
k,l=1

σik(Xs)
(
σ−1(Xs)

)k
l
dM l

s

=

∫ t

0

d∑
l=1

δildM
l
s = M i

t

= X i
t −X i

0 −
∫ t

0

bi(Xs)ds.

Rearrange this equation to deduce that

X i
t = X i

0 +

∫ t

0

d∑
k=1

σik(Xs)dB
k
s +

∫ t

0

bi(Xs)ds

for i = 1, · · · , d. That is to say that (X,B) is a weak solution to (4.23).



Chapter 5

Local times

Itô’s formula provides us a powerful semimartingale decomposition for f(Xt) − f(X0),
where f is a C2-function and X is a semimartingale. For example, if X = (Xt) is a
continuous semimartingale, then

f(Xt)− f(X0) =

∫ t

0

f ′(Xs)dXs +
1

2

∫ t

0

f ′′(Xs)d〈X〉s.

It has been recognized that such decomposition plays a central rôle in stochastic analysis,
it is thus natural to search for a decomposition for functions f with less regularity.

The concept of ”local times” of Brownian motion was introduced by Lévy in his study of
fine properties of Brownian sample paths, which was further developed into an important
tool in constructing diffusion processes on the real line in the classics Itô-McKean “Diffusion
processes and their sample paths”. In 1958, Tanaka established a decomposition for |Bt−a|
where B is a Brownian motion. One of the important contributions made by the French
school is that if f is convex and X is a continuous semimartingale, then f(X) is again a
semimartingale, its decomposition sometimes is called the generalized Itô’s formula.

5.1 Tanaka’s formula and local time

H. Tanaka proved that |Xt − a| is a semimartingale if X is a Brownian motion, estab-
lished its semimartingale decomposition, and identified its variation process as the local
time introduced by L. Lévy. These results have been extended to a general continuous
semimartingales by M. Yor and etc.

To study these results, we need a few facts about convex functions which are discussed
with details in the appendix.

Let X = (Xt)t≥0 be a continuous semimartingale and a ∈ R. Consider the convex
function f(x) = |x− a| on R, which is smooth except at a. Its left derivative f ′−(x) = −1
for x ≤ a and f ′−(x) = 1 for x > a. Choose a function α ∈ C∞0 (R) with a compact support
in (0, T ) (for some T > 0), such that

∫
R α(s)ds = 1. For each ε > 0, define fε = f ∗ αε

59
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where αε(z) = 1
ε
α
(
x
ε

)
, so that

fε(x) =

∫ ∞
−∞

f(x− z)αε(z)dz

=

∫ ∞
−∞

f(z)αε(x− z)dz.

fε is smooth for every ε > 0 and

dk

dxk
fε(x) =

∫ ∞
−∞

f(z)
dk

dxk
αε(x− z)dz

for k = 0, 1, 2, · · · . Since f is continuous, so that fε → f uniformly on any compact subset,
and

d

dx
fε(x) =

∫ ∞
−∞

f(z)
d

dx
αε(x− z)dz

= −
∫ ∞
−∞

f(z)
d

dz
αε(x− z)dz

= − lim
δ→0

1

δ

∫ ∞
−∞

f(z) (αε(x− z − δ)− αε(x− z)) dz

= − lim
δ→0

∫ εT

0

f(x− z − δ)− f(x− z)

δ
αε(z)dz.

If x− a ≤ 0, then for z ∈ (0,∞) and δ > 0

f(x− z − δ)− f(x− z)

δ
= 1

so that

d

dx
fε(x) = − lim

δ→0+

∫ ∞
0

f(x− z − δ)− f(x− z)

δ
αε(z)dz

= −
∫ ∞

0

αε(z)dz = −1.

While for x− a > 0, and for every ε > 0 such that εT < x−a
2

, then for |δ| < 0 we have for
any z ∈ (0, εT )

f(x− z − δ)− f(x− z)

δ
=
x− z − δ − (x− z)

δ
= −1

we therefore have

d

dx
fε(x) = − lim

δ→0

∫ ∞
0

f(x− z − δ)− f(x− z)

δ
αε(z)dz

= − lim
δ→0

∫ εT

0

(−1)αε(z)dz = −1.
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Hence f ′ε(x) → f ′−(x) at every point x ∈ R including x = a. Applying Itô’s formula to fε
for each ε > 0 to obtain

fε(Xt) = fε(X0) +

∫ t

0

f ′ε(Xs)dXs +
1

2

∫ t

0

f ′′ε (Xs)d〈X〉s.

Since fε(Xt)→ f(Xt), fε(X0)→ f(X0) and∫ t

0

f ′ε(Xs)dXs →
∫ t

0

f ′−(Xs)dXs

as ε ↓ 0, therefore 1
2

∫ t
0
f ′′ε (Xs)d〈X〉s has a limit as ε ↓ 0, which is denoted by 2Lat .

Tanaka’s formula. Suppose X is a continuous semimartingale and a ∈ R. Then there
is an adapted, continuous increasing process (Lat )t≥0 such that

|Xt − a| = |X0 − a|+
∫ t

0

sgn(Xs − a)dXs + 2Lat . (5.1)

where
sgn = 1(0,∞) − 1(−∞,0]

is the sign function (which is left-hand continuous). This formula indeed can be considered
as the definition of the local time Lat of X at a.

The important thing here is that, t → Lat is continuous, increasing, starting at 0, and
adapted to the filtration generated by (Xt)t≥0. Since

Lat =
1

2
|Xt − a| −

1

2
|X0 − a| −

1

2

∫ t

0

sgn(Xs − a)dXs

so that Lat is jointly measurable in (t, a) with respect to the Borel σ-algebra B([0,∞)×R).
Next we establish the Itô’s formula for a general convex function f .
Suppose f : R → R is a convex function, then f must be continuous on R, its right-

derivative

f ′+(a) = lim
h→0+

f(a+ h)− f(a)

h

and its left derivative

f ′−(a) = lim
h→0−

f(a+ h)− f(a)

h

exist and are increasing on R. f ′+ is right-continuous and f ′− is left-continuous. More-
over f ′+ is the right-continuous modification of f ′−, and similarly f ′− is the left-continuous
modification of f ′+, in the sense that

f ′+(a) = lim
ε→0+

f ′−(a+ ε)

and
f ′−(a) = lim

ε→0+
f ′+(a− ε)

for every a ∈ R.
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The Lebesgue-Stieltjies measure associated with the right derivative f ′+ is denoted by
µf ′+ which is the unique measure on (R,B(R)) such that

µf ′+((a, b]) = f ′+(b)− f ′+(a)

for any a ≤ b. As a consequence we also have

µf ′+([a, b)) = f ′−(b)− f ′−(a)

for any a ≤ b. On can verify that if in addition f ∈ C2(R), then µf ′+(dx) = f ′′(x)dx
which is absolutely continuous with respect to the Lebesgue measure. [Be careful, if the
second derivative of f exists but not continuous, then µf ′+(dx) is in general different from
the measure f ′′(x)dx !]

To establish the Itô’s formula for f(Xt) (where f is a convex function), let us compute
the following integral

J(x) =

∫
(−n,n)

|x− z|µf ′+(dz)

where x ∈ (−n, n), where n > 0 is a positive number. Firstly we notice that

J =

∫
(−n,x)

|x− z|µf ′+(dz) +

∫
(x,n)

|x− z|µf ′+(dz)

=

∫
(−n,x)

(x− z)µf ′+(dz)−
∫

(x,n)

(x− z)µf ′+(dz)

≡ J1 − J2.

Integrating by parts we obtain that

J1 =

∫
(−n,x)

(x− z)µf ′+(dz)

= −(x+ n)f ′+(−n) +

∫
(−n,x)

f ′+(z)dz

= −(x+ n)f ′+(−n) + f(x)− f(−n)

and similarly

J2 =

∫
(x,n)

(x− z)µf ′+(dz)

= (x− n)f ′−(n) + f(n)− f(x)

so that

J = −(x+ n)f ′+(−n) + f(x)− f(−n)− (x− n)f ′−(n)− f(n) + f(x)

= 2f(x)−
(
f ′+(−n) + f ′−(n)

)
x− nf ′+(−n) + nf ′−(n)− f(−n)− f(n)

which yields that

f(x) = αnx+ βn +
1

2

∫
(−n,n)

|x− z|µf ′+(dz)
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for any x ∈ (−n, n), where

αn =
f ′+(−n) + f ′−(n)

2
and

βn =
1

2

(
f(−n) + f(n) + nf ′+(−n)− nf ′−(n)

)
.

By continuity in x, the formula holds for x = ±n as well. Now we have established all
necessary facts about a convex function required to derive the Itô’s formula.

Theorem 5.1.1 Let X = (Xt)t≥0 be a continuous semimartingale and f : R→ R a convex
function. Then

f(Xt) = f(X0) +

∫ t

0

f ′−(Xs)dXs +

∫
R
Latµf ′+(da) (5.2)

where µf ′+ is the Lebesgue-Stieltjies measure associated with the right derivative f ′+. The

same formula is equally valid if f =
∑n

j=1 cjfj where fj are convex functions, cj are
constants, and µf ′+(da) =

∑n
j=1 cjµf ′j+(da) which is a signed measure.

If f ∈ C2(R) then ∫
R
f ′′(a)Lat da =

1

2

∫ t

0

f ′′(Xs)d〈X〉s (5.3)

for every t ≥ 0.

Proof. For any n > 0 we have

f(x) = αnx+ βn +
1

2

∫
(−n,n)

|x− z|µf ′+(dz)

for every x ∈ [−n, n], where αn and βn are given as above.
Let Tn = inf{t ≥ 0 : |Xt| ≥ n}. Then {Tn : n ≥ 1} is an increasing sequence of

stopping times and Tn ↑ ∞. Applying Tanaka’s formula to Xn
t = Xt∧Tn one obtains

|Xn
t − a| = |Xn

0 − a|+
∫ t

0

sgn(Xn
s − a)dXn

s + 2Ln,at

for each n, and as n → ∞, Ln,at = Lat∧Tn ↑ L
a
t . According to the previous representation

for f one obtains

f(Xn
t ) = αnX

n
t + βn +

1

2

∫
(−n,n)

|Xn
t − z|µf ′+(dz)

= αnX
n
t + βn +

1

2

∫
(−n,n)

|Xn
0 − z|µf ′+(dz)

+

∫
(−n,n)

∫ t

0

sgn(Xn
s − z)dXn

s µf ′+(dz) +

∫
(−n,n)

Ln,zt µf ′+(dz)

= αnX
n
t + βn +

1

2

∫
(−n,n)

|Xn
0 − z|µf ′+(dz)

+

∫ t

0

∫
(−n,n)

sgn(Xn
s − z)µf ′+(dz)dXn

s +

∫
(−n,n)

Ln,zt µf ′+(dz).



64 CHAPTER 5. LOCAL TIMES

According to definition of sgn and µf ′+ we have∫
(−n,n)

sgn(Xn
s − z)µf ′+(dz) =

∫
(−n,Xn

s )

µf ′+(dz)−
∫

[Xn
s ,n)

µf ′+(dz)

= f ′−(Xn
s )− f ′+(−n)−

(
f ′−(n)− f ′−(Xn

s )
)

= 2f ′−(Xn
s )−

(
f ′+(−n) + f ′−(n)

)
so after rearranging the terms to obtain

f ′−(Xn
s ) =

1

2

∫
(−n,n)

sgn(Xn
s − z)µf ′+(dz) + αn.

By the representation

f(Xn
0 ) = αnX

n
0 + βn +

1

2

∫
(−n,n)

|Xn
0 − z|µf ′+(dz).

Putting these relations into the equation for f(Xn
t ) we thus have

f(Xn
t ) = f(Xn

0 ) + αn (Xn
t −Xn

0 ) +

∫ t

0

[
f ′−(Xn

s )− αn
]
dXn

s

+

∫
(−n,n)

Ln,zt µf ′+(dz)

= f(Xn
0 ) +

∫ t

0

f ′−(Xn
s )dXn

s +

∫
(−n,n)

Ln,zt µf ′+(dz).

Letting n→∞ we obtain the formula.
For each a, (Lat )t≥0 is called the local time (process) of X at site a ∈ R. According to

definition

Lat =
1

2
(|Xt − a| − |X0 − a|)−

1

2

∫ t

0

sgn(Xs − a)dXs (5.4)

for t ≥ 0. Our next task is to study the regularity of (t, a)→ Lat as a random field.
Let us begin with the following

Lemma 5.1.2 Let b ∈ R, and g(x) = 1
2
(x− b)2 if x ≤ b and g(x) = 0 if x > b.

1) Then g′(x) = x− b for x ≤ b, g′(x) = 0 for x > b, and

µg′(dx) = 1(−∞,b](x)dx.

2) If X is a continuous semimartingale, then

g(Xt)− g(X0) =

∫ t

0

g′(Xs)dXs +
1

2

∫ t

0

1(−∞,b](Xs)d〈X〉s.

Proof. Item 1) follows an easy computation, and the fact that g′ is continuous. To
show item 2), we choose a function α ∈ C∞0 (R) with compact support in (0,∞) such that∫
R α(x)dx = 1 and for ε > 0 set αε(x) = ε−1α (ε−1x) and gε = αε ∗ g. Then, since g′ is
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continuous, both gε, g
′
ε converge to g, g′ uniformly on any compact set, and g′′ε converges

to 1(−∞,b] point-wise. Therefore, by passing to the limit as ε ↓ 0 in the Itô’s formula

gε(Xt)− gε(M0) =

∫ t

0

g′ε(Ms)dMs +
1

2

∫ t

0

g′′ε (Ms)d〈M〉s

we obtain item 2).

Lemma 5.1.3 Let X = X0 + M + A be the Doob-Meyer decomposition of a continuous
semimartingale, and Sn = inf {t ≥ 0 : |Xt| ≥ n}. Then, for any p ≥ 1 there is a constant
C depending only on p such that

E
∣∣∣∣ sup
0≤s≤t

∫ s∧Sn

0

1(a,b](Xr)dMr

∣∣∣∣2p
≤ C

{
(L+ n)p + E

(∫ t

0

|dAs|
)p

+ E〈M〉p/2t

}
|b− a|p (5.5)

for any n ≥ 0, t ≥ 0 and any a ≤ b such that |a|, |b| ≤ L.

Proof. Without losing a generality, we may assume that Sn = ∞. That is, |Xt| ≤ n
for all t. Let Nt =

∫ t
0

1(a,b](Xr)dMr for t ≥ 0. According to Burkhölder’s inequality

E sup
0≤s≤t

∣∣∣∣∫ s

0

1(a,b](Xr)dMr

∣∣∣∣2p ≤ CE
∣∣∣∣∫ t

0

1(a,b](Xr)d〈M〉r
∣∣∣∣p

where C, and through the proof, denotes a constant depending only on p, which can be
different from place to place. Let gc(x) = 1

2
(x− c)2 for x ≤ c and gc(x) = 0 for x > c. By

Lemma 5.1.2 ∫ t

0

1(a,b](Xs)d〈M〉s

= 2 (gb(Xt)− ga(Xt)− gb(X0) + ga(X0))

−2

∫ t

0

(g′b − g′a) (Xs)dMs − 2

∫ t

0

(g′b − g′a) (Xs)dAs.

It is easy to see that
|gb(x)− ga(x)| ≤ (L+ n)|b− a|

and
|g′b(x)− g′a(x)| ≤ |b− a|

so that ∣∣∣∣∫ t

0

X{a<Xs≤b}(Xs)d〈M〉s
∣∣∣∣

≤
[
4(L+ n) + 2

∫ t

0

|dAs|
]
|b− a|

+2

∣∣∣∣∫ t

0

(g′b − g′a) (Xs)dMs

∣∣∣∣ .
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Therefore

E
∣∣∣∣∫ t

0

X{a<Xs≤b}(Xs)d〈M〉s
∣∣∣∣p

≤ 2p−1E
[
4(L+ n) + 2

∫ t

0

|dAs|
]p
|b− a|p

+2pE
∣∣∣∣∫ t

0

(g′b − g′a) (Xs)dMs

∣∣∣∣p .

For the last term on the right hand side, we may use Burkhölder’s inequality again, to
obtain

E
∣∣∣∣∫ t

0

(g′b − g′a) (Xs)dMs

∣∣∣∣p ≤ CE
∣∣∣∣∫ t

0

(g′b − g′a)
2

(Xs)d〈M〉s
∣∣∣∣p/2

≤ CE〈M〉p/2t |b− a|p

which completes the proof.

Theorem 5.1.4 Let Xt = X0 + Mt + At be a continuous semimartingale, where M is a
local continuous martingale, A is a continuous process with finite variation. Let

Lat =
1

2
(|Xt − a| − |X0 − a|)−

1

2

∫ t

0

sgn(Xs − a)dXs

be the local time of X at a.
1) There is a set N ∈ F with probability zero, such that

(t, a)→ Lat (ω)

is jointly continuous in t ∈ R+ and right-continuous in a ∈ R for any ω ∈ Ω \N .
2) For each ω ∈ Ω \N , La−t (ω) exists and

Lat (ω)− La−t (ω) =

∫ t

0

1{Xs(ω)=a}dAs(ω)

and (t, a)→ Lat (ω) is jointly continuous almost surely if and only if
∫ t

0
1{Xs=a}dAs = 0.

Proof. For each n define

Tn = inf{t ≥ 0 : |Mt| ≥ n, 〈M〉t ≥ n or V (A)t ≥ n}

where V (A)t is the total variation of A on [0, t]. Then {Tn : n ≥ 1} is an increasing
sequence of stopping times, such that Tn ↑ ∞. Let Xn

t = Xt∧Tn , and similar notations
apply to other processes. Then

Lat∧Tn =
1

2
(|Xn

t − a| − |Xn
0 − a|)−

1

2

∫ t

0

sgn(Xn
s − a)dXn

s .
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Hence we first consider a semimartingale such that all processes M , 〈M〉 and V (A) are
bounded. For this case, t → 〈M〉t + V (A)t + t is continuous and strictly increasing, its
(right-continuous) inverse

τt = inf{s : 〈M〉s + V (A)s + s > t}.

Then each τt is a stopping, t→ τt is continuous and τt ↑ ∞. By definition

〈M〉τt + V (A)τt + τt = t, τ〈M〉t+V (A)τt+t
= t ∀t ≥ 0. (5.6)

In particular
〈M〉τt − 〈M〉τs + V (A)τt − V (A)τs + (τt − τs) = t− s

for t ≥ s ≥ 0, which yields that

〈M〉τt − 〈M〉τs ≤ t− s ∀t ≥ s ≥ 0 (5.7)

and
V (A)τt − V (A)τs ≤ t− s ∀t ≥ s ≥ 0. (5.8)

According to (5.4) one has

Laτt =
1

2
(|Xτt − a| − |X0 − a|)−

1

2

∫ τt

0

sgn(Xs − a)dXs

=
1

2
(|Zt − a| − |Z0 − a|)−

1

2

∫ t

0

sgn(Zs − a)dZs.

where Zt = Xτt . Let Zt = Z0 + M̃t + Ãt.Then M̃t = Mτt and Ãt = Aτt .
Since t→ τt is continuous and strictly increasing, so that

Lat = Laτ
τ−1
t

where
τ−1
t = 〈M〉t + V (A)t + t

is continuous, so that we only need to prove the conclusions in the theorem for Laτt .
Therefore we may further assume that processes M , 〈M〉 and V (A) are bounded by

some constant C0, and
〈M〉t − 〈M〉s ≤ t− s ∀t ≥ s ≥ 0,

and
V (A)t − V (A)s ≤ t− s ∀t ≥ s ≥ 0.

Let N(a)t = 1
2

∫ t
0
sgn(Xs − a)dMs for simplicity. Then

Lat =
1

2
(|Xt − a| − |X0 − a|)−N(a)t

−1

2

∫ t

0

sgn(Xs − a)dAs.
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We next prove that

(t, a)→ Jat ≡
1

2
(|Xt − a| − |X0 − a|)−N(a)t (5.9)

is jointly continuous. More precisely, there is a set N ⊂ Ω with probability zero, such that
(t, a)→ Jat (ω) is continuous on R+ × R for any Ω \ N .

Clearly we only need to show (t, a) → N(a)t is continuous except a probability zero
set. Let a < b ∈ R, 0 ≤ s ≤ t. Then

N(a)t −N(b)s =
1

2

∫ t

0

sgn(Xr − a)dMr −
1

2

∫ s

0

sgn(Xr − b)dMr

=
1

2

∫ t

s

sgn(Xr − a)dMr +

∫ s

0

1(a,b](Xr)dMr.

Therefore for any p ≥ 1 we have

E |N(a)t −N(b)s|2p ≤ 22(p−1)E
∣∣∣∣∫ s

0

1(a,b](Xr)dMr

∣∣∣∣2p
+22(p−1)E

∣∣∣∣∫ t

s

sgn(Xr − a)dMr

∣∣∣∣2p .

The first integral on the right-hand side can be dominated via (5.5), so let us control the
second expectation. Indeed, by using the Burkhölder’s inequality

E
∣∣∣∣∫ t

s

sgn(Xr − a)dMr

∣∣∣∣2p ≤ CE
∣∣∣∣∫ t

s

d〈M〉r
∣∣∣∣p

= CE(〈M〉t − 〈M〉s)p.

Therefore

E |N(a)t −N(b)s|2p

≤ CE(〈M〉t − 〈M〉s)p

+C

{
(L+ C0)p + E

(∫ t

s

|dAs|
)p

+ E〈M〉p/2t−s

}
|b− a|p

for any a, b such that |a|, |b| ≤ L, any t ≥ 0. Since, under our reduction, it holds that∫ t

0

|dAs| ≤ t and 〈M〉t − 〈M〉s ≤ t− s

so that there is a constant C depending only on p, L and C0

E |N(a)t −N(b)s|2p ≤ C
[
t
p
2 (b− a)p + (t− s)p

]
(5.10)

for any s, t ≥ 0, a, b ∈ R such that |a|, |b| ≤ L. It follows that, according to the Kolmogorov-
Čentsov theorem, (t, a)→ N(a)t is αp-Hölder continuous on any compact subset of [0,∞)×
R, for any p > 2, where αp = p−2

2p
.
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Finally we treat the Riemann-Stieltjies integral

Iat ≡
∫ t

0

sgn(Xs − a)dAs.

It is clear that

Iat − Ibs =

∫ t

0

(sgn(X − a)− sgn(X − b)) dA

+

∫ t

s

sgn(X − b)dA

so that, since a→sgn(Xs − a) is right-continuous,

lim
s→t
b↓a

(
Iat − Ibs

)
= 0

and

lim
s→t
b↑a

(
Iat − Ibs

)
= −2

∫ t

0

X{Xs−a=0}dAs.

Therefore (t, a) → Lat is jointly right continuous in a and continuous in t. Moreover it is
jointly continuous if and only if

∫ t
0
X{Xs=a}dAs = 0. In particular

Lat − La−t =

∫ t

0

X{Xs=a}dAs

which completes the proof.
From now on, for a continuous semimartingale X = (Xt)t≥0, we always use a version

of its local time Lat such that (t, a) → Lat is jointly continuous in t, right continuous in a
and having left hand limits La−t , without further qualification.

By checking the preceding proof, we find that it is possible to improve on the regularity
for the local time of Brownian motion.

Theorem 5.1.5 Let {Lat : t ≥ 0, a ∈ R} be the local time of one-dimensional standard
Brownian motion (Wt)t≥0.

1) For any L, T > 0 and p > 1 there is a constant C depending only on L, T, p such
that

E|Lat − Lbs|2p ≤ C (|b− a|p + |t− s|p) (5.11)

for (t, a), (s, b) ∈ [0, T ]× [−L,L].
2) If α < 1

2
, (t, a)→ Lat is jointly α-Hölder continuous.

Proof. From the proof of the previous theorem, for Brownian motion (Wt)t≥0, 〈W 〉t =
t.

Lat =
1

2
(|Wt − a| − |a|)−N(a)t

where

N(a)t =
1

2

∫ t

0

sgn(Ws − a)dWs
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so that

N(b)t −N(a)t =
1

2

∫ t

0

X{a<Ws≤b}(Ws)dWs.

Let gc(x) = 1
2
(x− c)2 if x ≤ c and gc(x) = 0 if x > c. By Lemma 5.1.2 one has∫ t

0

X{a<Ws≤b}(Ws)ds

= (Wt − b)21{Wt≤b} − (Wt − a)21{Wt≤a}

−2

∫ t

0

(g′b − g′a) (Ws)dWs

= (Wt − b)21{a<Wt≤b} − 2 (b− a)Wt1{Wt≤a}

+
(
b2 − a2

)
1{Wt≤a} − 2

∫ t

0

(g′b − g′a) (Ws)dWs.

While for any p > 1 one has the following elementary estimates

E|Wt − b|2p1{a<Wt≤b} ≤ |a− b|2p

and

E|Wt|2p1{Wt≤a} =

∫ a

−∞
|z|2p 1√

2πt
e−

z2

2t dz

≤ tp
∫ ∞
−∞
|z|2p 1√

2π
e−

z2

2 dz

= Cpt
p .

so that

E
∣∣∣∣∫ t

0

X{a<Ws≤b}(Ws)ds

∣∣∣∣p
≤ C [(a− b)p + (b+ a)p + tp] (b− a)p

+CE
∣∣∣∣∫ t

0

(g′b − g′a) (Ws)dWs

∣∣∣∣p
≤ C [(a− b)p + (b+ a)p + tp] (b− a)p

+CE
∣∣∣∣∫ t

0

(b− a)2 ds

∣∣∣∣p/2
where we have used the fact that |g′b(x)− g′a(x)| ≤ |b− a| for any x. Therefore

E
∣∣∣∣∫ t

0

X{a<Ws≤b}(Ws)ds

∣∣∣∣p ≤ C|b− a|p

where

C = Cp
[
(a− b)p + (b+ a)p + tp + tp/2

]
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where Cp depends only on p. It follows from B-D-G inequality that

E| sup
s≤t

(N(b)s −N(a)s) |2p ≤ CE
∣∣∣∣∫ t

0

X{a<Ws≤b}(Ws)ds

∣∣∣∣p
≤ C|b− a|p

where C as above. Therefore, for any L, T > 0 and p > 1, there is a constant C = C(L, T, p)
such that

E|N(a)t −N(b)s|2p ≤ C (|b− a|p + |t− s|p)

for all (s, b), (t, a) ∈ [0, T ]× [−L,L]. Now, by the Tanaka formula

Lat − Lbs =
1

2
(|Wt − a| − |Ws − b|)

−1

2
(|a| − |b|)− (N(a)t −N(b)s)

so that

|Lat − Lbs| ≤
1

2
|Wt −Ws|+ |b− a|+ |N(a)t −N(b)s| ,

which, together with the estimate for Nt, yields the desired result.

Remark 5.1.6 The following formula (from the preceding proof) may be useful. For t, s ≥
0 and a > b then

Lat − Lbs =
1

2
(|Wt − a| − |Ws − b|) +

1

2
(|b| − |a|)

+ (b− a)

(
b+ a

2
−Wt

)
1{Wt≤a}

+
1

2
(Wt − b)21{a<Wt≤b} − (b− a)

∫ t

0

1{Ws≤a}dWs

−
∫ t

0

(Ws − a)1{a<Wt≤b}dWs −
∫ t

s

sgn(Wr − b)dWr.

Let us prove important properties about the local time Lat of a continuous semimartin-
gale Xt = X0 +Mt + At.

Proposition 5.1.7 The following Tanaka’s formulas hold

(Xt − a)+ = (X0 − a)+ +

∫ t

0

1(a,∞)(Xs)dXs + Lat (5.12)

and

(Xt − a)− = (X0 − a)− −
∫ t

0

1(−∞,a](Xs)dXs + Lat . (5.13)

Proof. Apply (5.2) to f(x) = (x−a)+ so that f ′−(x) = 1(a,∞)(x) and µf ′+(dx) = δa(dx),
to obtain (5.12). Similarly, applying (5.2) to f(x) = (x − a)−: f ′−(x) = −1(−∞,a] and
µf ′+(dx) = δa(dx) so that (5.13) follows.
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Theorem 5.1.8 The local time t → Lat increasing only on {s : Xs = a}. More precisely∫ t
0
|Xs − a|dLas = 0 for all t > 0.

Proof. According to Itô’s formula

|Xt − a|2 = |X0 − a|2 + 2

∫ t

0

(Xs − a)dXs + 〈M〉t.

On the other hand, according to Tanaka’s formula, |Xt−a| is a continuous semimartingale
with decomposition

|Xt − a| = |X0 − a|+
∫ t

0

sgn(Xs − a)dXs + 2Lat .

Thus

〈|X − a|〉t =

∫ t

0

(sgn(Xs − a))2 d〈X〉s

=

∫ t

0

d〈X〉s = 〈M〉t

together with the integration by parts

|Xt − a|2 = |X0 − a|2 + 2

∫ t

0

|Xs − a|d|Xs − a|

+〈|X − a|〉t

= |X0 − a|2 + 2

∫ t

0

(Xs − a) dXs + 〈M〉t

+4

∫ t

0

|Xs − a|dLas .

Therefore we must have ∫ t

0

|Xs − a|dLas = 0.

Theorem 5.1.9 ( Occupation time formula) Let ϕ be a Borel measurable function on R,
bounded or non-negative.

1) If X is a continuous semi-martingale, then∫ t

0

ϕ(Xs)d〈X〉s = 2

∫
R
ϕ(a)Lat da (5.14)

for all t ≥ 0.
2) If X is a continuous local martingale, or if X = M + A (where M is a continuous

local martingale and A is adapted with finite variations) such that
∫ t

0
1{Xs=a}dAs = 0 for

all t > 0, then

lim
ε↓0

1

4ε

∫ t

0

1(a−ε,a+ε)(Xs)d〈X〉s = Lat
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for t ≥ 0.
3) If B is a Brownian motion and Lat (for t ≥ 0) is the local time process of B at a,

then

lim
ε↓0

1

4ε

∫ t

0

1(a−ε,a+ε)(Xs)dt = Lat

for all a and t ≥ 0.

Proof. Suppose ϕ = f ′′ for some f ∈ C2(R), then by (5.3), (5.14) holds. In particular,
(5.14) is valid for any continuous function ϕ, so it is true for any bounded or non-negative
ϕ.

Proposition 5.1.10 Suppose f : R → R is continuous, and there are finite many points
a1 < · · · < an such that f ∈ C2(ai, ai+1) (i = 0, · · · , n, with a0 = −∞, an+1 = ∞), f has
left and right derivatives at ai. Then

f(Xt) = f(X0) +

∫ t

0

f ′−(Xs)dXs +
1

2

∫ t

0

f ′′(Xs)d〈X〉s

+
n∑
i=1

(f ′(ai+)− f ′(ai−))Lait . (5.15)

Proof. We can apply Theorem 5.1.1 to f . In this case f ′′ exists except at ai and
therefore

µf ′+(dx) = f ′′(x)dx+
n∑
i=1

(
f ′+(ai)− f ′−(ai)

)
δai(dx).

Hence

f(Xt) = f(X0) +

∫ t

0

f ′−(Xs)dXs +

∫
R
f ′′(a)Lat da

+
n∑
i=1

(
f ′+(ai)− f ′−(ai)

)
Lait .

and the formula follows from∫
R
f ′′(a)Lat da =

1

2

∫ t

0

f ′′(Xs)d〈X〉s.

As an application we prove the comparison theorem (due to Yamada and etc.)

Theorem 5.1.11 Let σ, b1 and b2 are real valued, Lipschitz continuous functions on R.
Let X1 and X2 be the strong solutions to the following SDEs respectively:

X i
t = X i

0 +

∫ t

0

σ(X i
s)dBs +

∫ t

0

bi(X i
s)ds

for i = 1, 2, where B is a Brownian motion on (Ω,F ,P). Suppose
(1) X1

0 ≥ X2
0 almost surely, and

(2) b1(x) ≥ b2(x) for all x ∈ R.
Then X1

t ≥ X2
t for all t almost surely.
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Proof. Under the assumption there are unique strong solutions X1 and X2 for a given
Brownian motion B. Apply Tanaka ’s formula to the difference Yt = X2

t −X1
t we have

(X2
t −X1

t )+ =

∫ t

0

1(0,∞)(X
2
s −X1

s )d
(
X2
s −X1

s

)
+ L0

t

as (X2
0 −X1

0 )+ = 0, where Lat is the local time of X2 −X1 at a, so Lat is increasing with
La0 = 0. Taking expectations both side to obtain that

E(X2
t −X1

t )+ = E(Zt) + E(L0
t )

for all t ≥ 0, where

Zt =

∫ t

0

1(0,∞)(X
2
s −X1

s )d
(
X2
s −X1

s

)

for simplicity. We first show that indeed L0
t = 0. In fact by the occupation formula we

have ∫ t

0

1

Ys
1(0,∞)(Ys)d 〈Y 〉s = 2

∫ ∞
0

1

a
Lat da.

Since

∫ t

0

1

Ys
1(0,∞)(Ys)d 〈Y 〉s =

∫ t

0

1

Ys

(
σ(X2

s )− σ(X1
s )
)2

1(0,∞)(Ys)ds

≤ C

∫ t

0

Ys1(0,∞)(Ys)ds <∞

where C is the Lipschits constant of σ, so that

∫ ∞
0

1

a
Lat da <∞.

Since a → Lat is right continuous, so that L0
t = 0 for all t ≥ 0 almost surely. Therefore

E(X2
t −X1

t )+ = E(Zt).
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By definition

Zt =

∫ t

0

1(0,∞)(X
2
s −X1

s )
(
σ(X2

s )− σ(X1
s )
)
dBs

+

∫ t

0

1(0,∞)(X
2
s −X1

s )
(
b2(X2

s )− b1(X1
s )
)
ds

≤
∫ t

0

1(0,∞)(X
2
s −X1

s )
(
σ(X2

s )− σ(X1
s )
)
dBs

+

∫ t

0

1(0,∞)(X
2
s −X1

s )
(
b1(X2

s )− b1(X1
s )
)
ds

≤
∫ t

0

1(0,∞)(X
2
s −X1

s )
(
σ(X2

s )− σ(X1
s )
)
dBs

+ C

∫ t

0

1(0,∞)(X
2
s −X1

s )|X2
s −X1

s |ds

≤
∫ t

0

1(0,∞)(X
2
s −X1

s )
(
σ(X2

s )− σ(X1
s )
)
dBs

+ C

∫ t

0

(X2
s −X1

s )+ds

where C is the Lipschitz constant, which yields that

E(X2
t −X1

t )+ = E(Zt) ≤ C

∫ t

0

E(X2
s −X1

s )+ds

for all t ≥ 0. Therefore, by the Gronwall inequality, we may conclude that

E(X2
t −X1

t )+ = 0

so that X2
t ≤ X1

t for all t almost surely.

5.2 The Skorohod equation

It is possible to represent the local time Lat of a continuous semimartingaleX as a functional
of X. Skorohod has established an explicit formula for Lat in terms of the running maximum
of −X, and his formula is completely deterministic without any stochastic content. It is a
theorem which should be an exercise in Prelim Analysis!

Theorem 5.2.1 (Skorohod’s equation) Suppose y ∈ C[0,∞) is a continuous path in R
with initial value y(0) ≥ 0. Let

k(t) = max

{
0, max

0≤s≤t
(−y(s))

}
for t ≥ 0. (5.16)

Then k is the unique continuous and increasing function on [0,∞) with initial zero, such
that

x(t) = y(t) + k(t) ≥ 0 for t ≥ 0

and t→ k(t) increases only on {t : x(t) = 0}, that is,
∫∞

0
1{x(t) 6=0}dk(t) = 0.
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Proof. Let us follow the proof in Karatzas-Shreve, page 210. Suppose y ∈ C[0,∞) is
a continuous path with y(0) ≥ 0. Define a path k by (5.16). Since y is a continuous path
so is k, t→ k(t) is increasing by definition. Since −y(0) ≤ 0, so that k(0) = 0. Moreover

x(t) = y(t) + k(t) = max

{
y(t), max

0≤s≤t
(y(t)− y(s))

}
≥ 0.

We next show that k increases only on I = {t : x(t) = 0}. To this end we only need to
show that k does not increase on Iε = {t ≥ 0 : x(t) > ε} for every ε > 0. Since x is
continuous, Iε is open, so that Iε is countable union of disjoint open intervals (ai, bi) where
bi > ai (where i ∈ Λ an index set which may be empty). For every s ∈ [ai, bi]

−y(s) = k(s)− x(s) ≤ k(bi)− ε

so that by definition

k(bi) = max

{
0, max

0≤s≤bi
(−y(s))

}
= max

{
k(ai), max

ai<s≤bi
(−y(s))

}
≤ max {k(ai), k(bi)− ε} .

Since k is increasing, k(ai) ≤ k(bi), so we must have

k(ai) = k(bi)

for all i. Therefore k is constant on Iε for every ε > 0, hence k must be flat on R \ I =
{t ≥ 0 : x(t) > 0}.

Suppose there are two continuous increasing functions k1 and k2 with initial value 0 at
t = 0, such that

xi(t) = y(t) + ki(t) ≥ 0 for all t ≥ 0

and ki increases only on {t ≥ 0 : xi(t) = 0}, where i = 1, 2.
By definition xi(0) = y(0). Suppose there is b > 0 such that x1(b) > x2(b). Let

a = sup {t ≤ b : x1(t) = x2(t)} .

Then 0 ≤ a < b by the continuity of xi. Hence x1(s) > x2(s) ≥ 0 by definition of a, for all
s ∈ (a, b]. Since k1 increases only on {t ≥ 0 : x1(t) = 0}, so that

k1(a) = k1(b)

and therefore

0 < x1(b)− x2(b) = k1(b)− k2(b)

= k1(a)− k2(b) ≤ k1(a)− k2(a)

= x1(a)− x2(a) = 0
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which is a contradiction. Hence x1(t) ≤ x2(t) for all t ≥ 0. By symmetry we also have
x1(t) ≥ x2(t) for all t ≥ 0. The uniqueness now follows immediately.

If X is a continuous semimartingale, then according to Tanaka’s formula, for every
a ∈ R

|Xt − a| = |X0 − a|+
∫ t

0

sgn(Xs − a)dXs + 2Lat

where t → Lat is continuous, initial zero, and increasing only on {t : Xt = a}, which
is equivalent to that Lat increases only on {t ≥ 0 : |Xt − a| = 0}, hence, according to
Skorohod’s equation, we have the following corollary.

Corollary 5.2.2 If X is a continuous semimartingale, a ∈ R. Then its local time at a is
given by

Lat =
1

2
max

{
0, max

0≤s≤t

[
−
∫ s

0

sgn(Xr − a)dXr

]
− |X0 − a|

}
. (5.17)

We end this section to propose the following question which is mentally challenging.
Skorohod’s equation indeed gives rise to a mapping which sends a continuous path y(t) in
R with initial y(0) ≥ 0 (with running time t ∈ [0,∞)) to a continuous and increasing path
k(t) with k(0) = 0 so that the path x(t) = y(t) + k(t) is a continuous path in R+, and k
increase only on {t ≥ 0 : x(t) = 0}. Are there similar mappings for continuous paths in
Rd? There are of course trivial mappings which essentially one dimensional, are there true
multi-dimensional versions of Skorohod’s equation?

5.3 Local time for Brownian motion

According to Wiener, for every z ∈ R, there is a unique probability measure Pz on the
Borel σ-algebra over Ω = C[0,∞) the path space of all continuous paths in R, such that
the coordinate process {xt : t ≥ 0} is Brownian motion started at z: Pz{x0 = z} = 1. The
theory established in the previous section may be applied to one-dimensional Brownian
motion. Therefore there is a random field {Lat : t ≥ 0, a ∈ R} jointly Hölder continuous in
(t, a), such that

|xt − a| = |z − a|+
∫ t

0

sgn(xs − a)dxs + 2Lat Pz-a.s. (5.18)

for any z.

According to Skorohod’s equation

2Lat = max

{
max
0≤s≤t

βs − |z − a|, 0
}

Pz-a.s. (5.19)

where

βt = −
∫ t

0

sgn(xs − a)dxs (5.20)
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is Brownian motion started at 0 under Pz, and in terms of {βt : t ≥ 0} defined by (5.20),
we may rewrite Tanaka’s formula

|xt − a| = max

{
max
0≤s≤t

βs, |z − a|
}
− βt Pz-a.s. (5.21)

Therefore

Theorem 5.3.1 (P. Lévy, 1948) Let z, a ∈ R. Let W = (Wt)t≥0 be a Brownian motion
on (Ω,F ,P) started at z ∈ R, and (Lat )t≥0 be the local time of W at a ∈ R. Then
(2Lat , |Wt − a|)t≥0 on (Ω,F ,P) has the same distribution as that of(

(max
0≤s≤t

βs − |z − a|)+, |z − a| ∨ max
0≤s≤t

βs − βt
)
t≥0

(5.22)

where {βt : t ≥ 0} is Brownian motion starting at 0.

The previous conclusion can be stated in terms of a Brownian motion {βt : t ≥ 0} is
Brownian motion starting at 0 in R.

Theorem 5.3.2 (P. Lévy) Let {βt : t ≥ 0} be a Brownian motion starting at 0 in R. For
any a ∈ R, and Lat be the local time of β at a, that is

2Lat = |βt − a| − |β0 − a| −
∫ t

0

sgn (βs − a) dβs.

Then (2Lat , |βt − a|)t≥0 and(
(max
0≤s≤t

βs − |a|)+, |a| ∨ max
0≤s≤t

βs − βt
)
t≥0

(5.23)

have the same distribution.

In particular, if {βt : t ≥ 0} is Brownian motion starting at 0, and Lt = L0
t is the local

time of {βt : t ≥ 0} at 0, then the pair of processes {(2Lt, |βt|) : t ≥ 0} has the same
distribution as that of (

max
0≤s≤t

βs, max
0≤s≤t

βs − βt
)
t≥0

which was discovered by P. Lévy in 1948.
Next we would like to look at the distribution of the local time Lat .
The central problem is that whether one is able to describe the distribution of the

random field {(Lat , βt) : t ≥ 0, a ∈ R}?
Firstly, for fixed t > 0 and z ∈ R, the joint distribution (Lzt , |βt − z|) can be determined

according to Lévy’s theorem. Indeed, by the reflection principle,

P
{
βt ∈ da, max

0≤s≤t
βs ∈ db

}
=

2(2b− a)√
2πt3

e−
(2b−a)2

2t (5.24)

on {b ≥ 0, a ≤ b}, from which we can work out the distribution of Lzt for fixed t > 0 and
z ∈ R.
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Corollary 5.3.3 Same assumptions as in Theorem 5.3.2. Let t > 0 and z ∈ R.

1) The law of (L0
t , |βt|) has a PDF given by

p(x, y) =
4(2x+ y)√

2πt3
e−

(2x+y)2

2t ; x ≥ 0, y ≥ 0. (5.25)

2) If z 6= 0, (Lzt , |βt − z|) has a distribution in R2 with a PDF given by

P [Lzt ∈ dx, |βt − z| ∈ dy]

=
1√
2πt

(
e−

(y−|z|)2
2t − e−

(y+|z|)2
2t

)
1{y≥0}dyδ0(dx)

+
4√
2πt3

(2x+ y + |z|)e−
(2x+y+|z|)2

2t 1{x≥0,y≥0}dydx. (5.26)

Proof. Let {βt : t ≥ 0} is Brownian motion starting at 0 in R on a probability
space (Ω,F ,P). Let βMt = max0≤s≤t βs is the running maximum of the Brownian motion.
Then, according to Lévy’s theorem, (2Lzt , |βt − z|)t≥0 has the same distribution as that of(
(βMt − |z|)+, |z| ∨ βMt − βt

)
t≥0

. In particular, for a fixed t > 0

Ef(L0
t , |βt|) = Ef(

1

2
βMt , β

M
t − βt),

together with (5.24), we have

Ef(L0
t , |βt|) =

2√
2πt3

∫∫
b≥0,a≤b

f(
1

2
b, b− a)(2b− a)e−

(2b−a)2
2t dadb.

Making change of variables: x = 1
2
b and y = b− a we obtain

Ef(L0
t , |βt|) =

4√
2πt3

∫∫
x≥0,y≥0

f(x, y)(2x+ y)e−
(2x+y)2

2t dxdy.

In the case that |z| > 0, one has

Ef(Lzt , |βt − z|)

= Ef(
1

2
(βMt − |z|)+, |z| ∨ βMt − βt)

=
2√
2πt3

∫∫
b≥0,a≤b

f(
1

2
(b− |z|)+, |z| ∨ b− a)(2b− a)e−

(2b−a)2
2t dadb

=
2√
2πt3

∫∫
|z|≥b≥0,a≤b

f(0, |z| − a)(2b− a)e−
(2b−a)2

2t dadb

+
2√
2πt3

∫∫
b≥|z|,a≤b

f(
1

2
(b− |z|), b− a)(2b− a)e−

(2b−a)2
2t dadb,
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where the first integral ∫∫
|z|≥b≥0,a≤b

f(0, |z| − a)(2b− a)e−
(2b−a)2

2t dadb

=

∫ 0

−∞

∫ |z|
0

f(0, |z| − a)(2b− a)e−
(2b−a)2

2t dbda

+

∫ |z|
0

∫ |z|
a

f(0, |z| − a)(2b− a)e−
(2b−a)2

2t dbda

=
t

2

∫ |z|
−∞

f(0, |z| − a)

(
e−

a2

2t − e−
(2|z|−a)2

2t

)
da

=
t

2

∫ ∞
0

f(0, y)

(
e−

(|z|−y)2
2t − e−

(|z|+y)2
2t

)
dy,

and in the second integral we make change of variables: x = 1
2
(b − |z|) and y = b − a, so

that ∫∫
b≥|z|,a≤b

f(
1

2
(b− |z|), b− a)(2b− a)e−

(2b−a)2
2t dadb

= 2

∫∫
x≥0,y≥0

f(x, y)(2x+ y + |z|)e−
(2x+y+|z|)2

2t dxdy

Putting together we have

Ef(Lzt , |βt − z|)

=
1√
2πt

∫ ∞
0

f(0, y)

(
e−

(y−|z|)2
2t − e−

(y+|z|)2
2t

)
dy

+
4√
2πt3

∫∫
x≥0,y≥0

f(x, y)(2x+ y + |z|)e−
(2x+y+|z|)2

2t dxdy.

This completes the proof.



Chapter 6

Appendix: Convex functions

In this chapter we collect some results about monotonic functions and convex functions.

6.1 Monotonic functions, Lebesgue-Stieltjes measures

A few elementary properties about about monotonic functions may be found in W. Rudin’s
Principles, page 95. If g : (a, b) → R is an increasing (or called non-decreasing) function,
then the left and right limits g(t−) and g(t+) of g at any t ∈ (a, b) exist. In fact, g(t−) =
lims↑t g(s) = sups<t g(s), and similarly g(t+) = lims↓t g(s) = infs>t g(s). Clearly g(t−) ≤
g(t+). g is continuous at t ∈ (a, b) if and only if g(t+) = g(t−). The difference g(t+) −
g(t−) is called the jump of g at t ∈ (a, b). Define g−(t) = g(t−) and g+(t) = g(t+). Then
g− and g+ are increasing on (a, b) as well, and g− ≤ g ≤ g+. Moreover g− = g = g+ except
at most countable many points in (a, b), thus g− = g = g+ almost everywhere on (a, b) with
respect to the Lebesgue measure. g− is left-continuous and g+ is right-continuous on (a, b).
We call that g− is the left-continuous modification of g, and that g+ is the right-continuous
modification of g.

Let g be a right-continuous increasing function on (a, b) with values in R. Then g(a) =
g(a+) = limt↓a g(t) and g(b) = g(b−) = limt↑b g(t) exist, g(a) ∈ [−∞,∞) and g(b) ∈
(−∞,∞]. The following convention is used: −(−∞) = ∞, −∞ < t < ∞ for every t ∈ R
and t +∞ = ∞. Therefore, g is naturally extended to an increasing function on [a, b]
taking values in [−∞,∞], and g is finite on (a, b).

The Lebesgue-Stieltjes measure µg ( also denoted by g(dt) ) on (a, b) may be constructed
as the following. First of all, define the length of (s, t] ⊆ (a, b) by µg((s, t]) = g(t)− g(s).
Then we construct the outer measure µ∗g by

µ∗g(A) = inf

{
∞∑
i=1

µg((si, ti]) : ∪∞i=1(si, ti] ⊇ A

}

where the inf runs over all possible countable coverings of A via intervals of form (s, t] ⊂ A.
µ∗g is an outer measure on (a, b):

1) µ∗g(A) ≥ 0 for every A ⊆ (a, b),

2) µ∗g(A) ≤ µ∗g(B) if A ⊂ B ⊂ (a, b), and

81
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3) µ∗g is countably sub-additive, that is,

µ∗g (∪∞i=1Ai) ≤
∞∑
i=1

µ∗g(Ai) for any Ai ⊂ (a, b).

The Caratheodory extension theorem allows us to construct the Lebesgue-Stieltjes measure
µg out off the outer measure µ∗g. Namely, we say a subset A ⊂ (a, b) is µg-measurable if
the Caratheodory condition holds:

µ∗g(F ) = µ∗g(F ∩ A) + µ∗g(F ∩ Ac)

for every subset F ⊂ (a, b). The totality of all µg-measurable subsets of (a, b) is denoted
by Mg. Caratheodory’s extension theorem says that

1) Mg is a σ-algebra on (a, b). Any subset in Mg is called µg-measurable, or simply a
measurable set if g is specified.

2) The outer measure µ∗g restricted onMg is a measure, the restriction of µ∗g is denoted
by µg, dg or by g(dt) if no confusion may arise.

3) ((a, b),Mg, µg) is complete, that is, every µ∗g-null set belongs to Mg.
4) Every Borel subset of (a, b) is µg-measurable, that is, B(a, b) ⊂Mg, and finally
5) If (s, t] ⊂ (a, b), then µ∗g((s, t]) = g(t)− g(s).
In particular, if a < t < b, then {t} = [t, t] is measurable and

µg({t}) = lim
n→∞

µg

(
(t− 1

n
, t]

)
= g(t)− lim

n→∞
g

(
t− 1

n

)
= g(t)− g(t−)

which is the jump of g at t as g is right continuous. It follows that, if [s, t] ⊂ (a, b), then

µg([s, t]) = µg({s}) + µg((s, t]) = g(s)− g(s−) + g(t)− g(s) = g(t)− g(s−),

and similarly
µg([s, t)) = g(t−)− g(s−).

If g is increasing function, but not necessary right-continuous on (a, b), then we define
µg to be the Lebesgue-Stieltjes measure generated by its right-continuous modification g+.
That is, µg = µg+ . Thus

µg((s, t]) = g(t+)− g(s+) ∀(s, t] ⊂ (a, b) (6.1)

and
µg({t}) = g(t+)− g(t−) (6.2)

is the jump of g at t.

Exercise 6.1.1 Let g : (a, b) → R be increasing and right-continuous. For ε > 0 set

gε(t) = g(t+ε)−g(t)
ε

if t, t + ε ∈ (a, b) otherwise gε(t) = 0. Though gε may not be increas-
ing, but it is non-negative Borel measurable function, thus we can construct the measure
µε(dt) = gε(t)dt on (a, b), then ∫

(a,b)

ϕdµε →
∫

(a,b)

ϕdµg

as ε ↓ 0 for any ϕ ∈ C∞0 (a, b).
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One of the famous theorems of Lebesgue is that, if g is increasing on (a, b), then g has
finite derivative almost everywhere on (a, b), denoted by g′ (see for example Theorem 17.12,
of E. Hewitt and K. Stromberg, page 264, or F. Riesz and B. Sz-Nagy: Leçons d’Analyse
Fonctionnelle, page 5). The measure m(dt) = g′(t)dt in general does not coincide with
the Lebesgue-Stieltjes measure µg. This is obvious in the case that g is discontinuous at
some point t ∈ (a, b) as then µg({t}) = g(t+) − g(t−) 6= 0 and thus µg is not absolutely
continuous with respect to the Lebesgue measure.

Next we discuss several versions of Lebesgue-Stieltjes measures, which are most useful
forms in the study of stochastic processes.

If g is defined on [a, b) or [a, b], then the natural Lebesgue-Stieltjes measure associated
g should be

m(dt) = (g(a+)− g(a))δ{a} + 1(a,b)µg

on [a, b), and

m(dt) = (g(a+)− g(a))δ{a} + 1(a,b)µg + (g(b)− g(b−))δ{b}

for [a, b]. The drawback for this convention lies in that the restriction of µg on [a1, b1] ⊂
(a, b) may not coincide with the measure m on [a1, b1]. There is no better way to formulate
a unified way to define Lebesgue-Stieltjes measures on an interval including at least end
point. The best we can do is to specify the measure at the end point(s) in each concrete
case.

If g : [0, b)→ [0,∞) is increasing. Then g is increasing on (0, b), it defines the Lebesgue-
Stieltjes measure µg on (0, b). We define a measure, denoted by mg on [0, b) by

mg(A) = g(0+)δ{0}(A ∩ {0}) + µg(A ∩ (0, b)),

which is a measure on the σ-algebra of all subset A of [0, b) such that A ∩ (0, b) ∈ Mg.
This σ-algebra is still denoted by Mg, if no confusion may arise. Thus, by definition∫

[0,b)

f(t)mg(dt) = f(0)g(0+) +

∫
(0,b)

f(t)g(dt).

In literature, mg is also denoted by g(dt) (as a measure on [0, b)), and the equality above
becomes ∫

[0,b)

f(t)g(dt) = f(0)g(0+) +

∫
(0,b)

f(t)g(dt).

Unfortunately, both integrals
∫

[0,b)
and

∫
(0,b)

could be written as
∫ b

0
, thus confusion may

be produced. Therefore, we will, as long as is there is a risk for confusion, write Lebesgue
integrals as

∫
E

, rather than using lower and upper limits. However, if g(0+) = 0, or
g(0) = 0 and g is right continuous, then the contribution of mg from {0} vanishes, in this

case both integrals
∫

[0,b)
fdg and

∫
(0,b)

fdg coincide, and
∫ b

0
f(t)g(dt) can be used without

ambiguous.
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6.2 Right continuous inverse

Let g : [0, b) → [0,∞) is right continuous and increasing. If b < ∞ then we set g(t) =
lims↑b g(s) = sup g (which may be ∞) for t ≥ b, thus g is extended to a right continuous
increasing function on [0,∞) taking values in [0,∞]. The right-continuous inverse of g,
denoted by g−1 is defined by

g−1(t) = inf{s ≥ 0 : g(s) > t} for t ≥ 0

then g−1 : [0,∞) → [0,∞] is right-continuous and increasing. Moreover, g−1(t) < ∞ if
and only if t < lims↑b g(s). In particular, if lims↑b g(s) = ∞ then g−1 is finite. For t > 0
the left limit

g−1(t) = lim
s<t,s↑t

g−1(s) = inf{s ≥ 0 : g(s) ≥ t}

= sup{s ≥ 0 : g(s) < t}

and set g−1(0) = 0.

Lemma 6.2.1 g and g−1 as above. Then
1) For any t ≥ 0, g (g−1(t)) ≤ g (g−1(t)) ≤ t, and
2) For t < lims↑b g(s), g(g−1(t)) ≥ g(g−1(t)) ≥ t.
3) If g is a continuous then g(g−1(t)) = g(g−1(t)) = t for any t < lims↑b g(s).
4) g is the right-continuous inverse of g−1 so that

g(t) = inf{s ≥ 0 : g−1(s) > t} for t ≥ 0

and
g(t) = sup{s ≥ 0 : g−1(s) ≤ t} for t ≥ 0.

These facts can be easily derived from definitions.

6.3 Convex functions

References:
1. G. H. Hardy, J. E. Littlewood and G. Pólya’s classic “Inequalities’ (which has been

published by Cambridge University Press is and has been in print since 1934).
2. L. Hörmander: “Notions of Convexity”, published by Birkhäuser in 1994. Birkhäuser

has recently re-issued Hörmander’s book in paperback and listed it as one of Birkhäuser’s
classics.

We however follow the conventional definition of convex functions which is slightly
different from but equivalent to that of Hörmander’s one.

Definition 6.3.1 Let f : (a, b) → R (where a or/and b may be infinity). f is called a
convex function on (a, b) if

f(λ1x1 + λ2x2) ≤ λ1f(x1) + λ2f(x2) (6.3)

for any x1, x2 ∈ (a, b) and λj ≥ 0 such that λ1 + λ2 = 1.



6.3. CONVEX FUNCTIONS 85

Remark 6.3.2 1) Some authors allow convex functions taking values ∞, but, for our
propose, we only concern with real valued functions.

2) Some authors also define convex functions on closed (or half closed) intervals,which
do bring some difference. For example, the continuity at the end points will be not guar-
ranted.

The following proposition summarize some elementary properties of convex functions.

Proposition 6.3.3 Let f : (a, b)→ R be convex on (a, b).

1) For any x1, x2 ∈ (a, b), and any c ∈ R

sup
x∈[x1,x2]

(f(x)− cx) = max {f(x1)− cx1, f(x2)− cx2} . (6.4)

2) For any xj ∈ (a, b) and λj ≥ 0 such that
∑

j λj = 1, then

f(
∑
j

λjxj) ≤
∑
j

λjf(xj) . (6.5)

3) It holds that
f(x)− f(x1)

x− x1

≤ f(x2)− f(x)

x2 − x
(6.6)

for any x1 < x < x2 such that xj ∈ (a, b).

4) If x ∈ (a, b), then h→ f(x+h)−f(x)
h

for any h 6= 0 such that x+h ∈ (a, b) is increasing.

5) f is (locally) Lipschitz continuous. That is for any closed interval [x1, x2] ⊂ (a, b)
there is a constant C depending only on f(x1) and f(x2) such that

|f(x)− f(y)| ≤ C|x− y| ∀x, y ∈ [x1, x2]. (6.7)

The first item appears as the definition property in Hörmander’s book, 2) is the gen-
eralization of our definition for convexity, and is a special case of Jensen’s inequality (see
below). 3) is the reformulation of (6.3). Item 4) follows 3) and is the most useful form to
us. 5) comes a little bit over awarded.

Exercise 6.3.4 If f : (a, b) → R is convex, then both limits limx↓a f(x) and limx↑b f(x)
exist [as reals or ∞ !]

Exercise 6.3.5 f : (a, b)→ R is convex, if and only if∣∣∣∣∣∣
1 1 1
x1 x2 x3

f(x1) f(x2) f(x3)

∣∣∣∣∣∣ ≥ 0

for any xi ∈ (a, b) such that x1 ≤ x2 ≤ x3.
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Exercise 6.3.6 If f : (a, b)→ R is convex, and t ∈ (a, b), then

f(s) ≥ β(s− t) + f(t)

for all s ∈ (a, b), and for any β such that

sup
s<t

f(t)− f(s)

t− s
≤ β ≤ inf

s>t

f(s)− f(t)

s− t
.

That is, the graph of f is above the line defined by the equation s = β(s − t) + f(t) (and
thus we call it a tangent line of f at t).

Proposition 6.3.7 Let f : (a, b)→ R be convex. Then
1) At any t ∈ (a, b), the left derivative f ′−(t) and right derivative f ′+(t) exist. Moreover

f ′−(t) = sup
s<t

f(t)− f(s)

t− s
and f ′+(t) = inf

s>t

f(s)− f(t)

s− t
.

2) If s, t ∈ (a, b) and s < t then

f ′−(s) ≤ f ′+(s) ≤ f(t)− f(s)

t− s
≤ f ′−(t) ≤ f ′+(t). (6.8)

In particular, both f ′− and f ′+ are increasing on (a, b).
3) f ′− is left-continuous and f ′+ is right-continuous on (a, b), respectively. Moreover for

any t ∈ (a, b)

f ′−(t) = f ′−(t−) = lim
ε↓0

f ′+(t− ε) (6.9)

and

f ′+(t) = f ′+(t+) = lim
ε↓0

f ′−(t+ ε). (6.10)

4) Let [s, t] ⊂ (a, b). Then∣∣∣∣f(y)− f(x)

y − x

∣∣∣∣ ≤ max{|f ′+(s)|, |f ′−(t)|}

for any x, y ∈ (s, t) and x 6= y.
5) Let t ∈ (a, b). Then f is differentiable at t if and only if f ′− is right continuous

at t, i.e. f ′−(t) = limε↓0 f
′
−(t + ε), which is also equivalent to that f ′+ is left continuous

at t, i.e. f ′+(t) = limε↓0 f
′
+(xt − ε). That is, f ′+ (resp. f ′−) is the right-continuous (resp.

left-continuous) modification of f ′− (resp. f ′+). In particular, f ′+ and f ′− generate the same
Lebesgue-Stieltjes measure on Borel sets of (a, b).

6) f is differentiable on (a, b) except at most countable many points.

All these conclusions follow easily from the item 4 in Proposition 6.3.3.
Next we turn to integral representations of convex functions. We need the following

integration by parts.
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Lemma 6.3.8 Let g : (a, b) → R be increasing, and [x1, x2] ⊂ (a, b) be a bounded, closed
interval. Suppose ϕ ∈ C1[x1, x2]. Then∫

(x1,x2)

ϕ(x)µg(dx) = ϕ(x2)g(x2−)− ϕ(x1)g(x1+)

−
∫ x2

x1

g(x)ϕ′(x)dx.

Proof. Under the conditions,
∫

(x1,x2)
ϕ(x)µg(dx) exists as Riemann-Stieltjes’ integral,

and the integration by parts formula is well known, see Theorem 7.6, in T. M. Apostol:
Mathematical Analysis, page 144.

If I = [x1, x2] is a compact interval, then define the Green function

GI(x, y) =

{
(y−x2)(x−x1)

x2−x1 if y ≥ x,
(x−x2)(y−x1)

x2−x1 if y ≤ x.

Note that G ≤ 0, symmetric and continuous on I × I.

Theorem 6.3.9 Let f : (a, b)→ R be convex, and I = [x1, x2] ⊂ (a, b) be a bounded closed
interval. Then

f(x) =
x− x1

x2 − x1

f(x2)− x− x2

x2 − x1

f(x1)

+

∫
(x1,x2)

GI(x, y)µf ′+(dy) (6.11)

for x ∈ [x1, x2].

Proof. Let us consider the case x ∈ (x1, x2). Let us compute the integral

J(x) =

∫
(x1,x2)

GI(x, y)µf ′+(dy)

=
x− x2

x2 − x1

∫
(x1,x)

(y − x1)µf ′+(dy)

+
x− x1

x2 − x1

∫
(x,x2)

(y − x2)µf ′+(dy)

+
(x− x2)(x− x1)

x2 − x1

(
f ′+(x)− f ′−(x)

)
.

The two integrals are Riemann-Stieltjes integrals which can be worked out by means of
integration by parts∫

(x1,x)

(y − x1)µf ′+(dy) = (x− x1)f ′−(x)−
∫

(x1,x)

f ′+(y)dy

= (x− x1)f ′−(x)− f(x) + f(x1)
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and ∫
(x,x2)

(y − x2)µf ′+(dy) = −(x− x2)f ′+(x)− f(x2) + f(x).

Therefore

J(x) = f(x) +
x− x2

x2 − x1

f(x1)− x− x1

x2 − x1

f(x2)

which proves the representation.
The following representation is most useful in our study of local times.

Theorem 6.3.10 Let f : (a, b)→ R be convex, and [x1, x2] ⊂ (a, b) be any bounded, closed
interval. Then

f(x) = αx+ β +
1

2

∫
(x1,x2)

|x− y|µf ′+(dy)

for any x ∈ [x1, x2], where

α =
f ′+(x1) + f ′−(x2)

2
and

β =
1

2

(
f(x1) + f(x2)− x1f

′
+(x1)− x2f

′
−(x2)

)
.

Proof. Let us consider the following integral

J(x) =

∫
(x1,x2)

|x− y|µf ′+(dy)

where [x1, x2] ⊂ (a, b) and x ∈ [x1, x2]. Let us consider the case that x ∈ (x1, x2). Using
integration by parts we have

J(x) =

∫
(x1,x)

(x− y)µf ′+(dy) +

∫
(x,x2)

(y − x)µf ′+(dy)

= (x− y)f ′+(y)
∣∣
(x1,x)

+ (y − x)f ′+(y)
∣∣
(x,x2)

+

∫
(x1,x)

f ′+(y)dy −
∫

(x,x2)

f ′+(y)dy

= −(x− x1)f ′+(x1) + (x2 − x)f ′−(x2)

+f(x)− f(x1)− f(x2) + f(x2)

which yields the conclusion.
Similarly we have

Theorem 6.3.11 Let f : (a, b)→ R be convex, and [x1, x2] ⊂ (a, b) be any bounded, closed
interval. Let h(x) = 1 for x ≥ 0 and h(x) = −1 for x < 0. Then

f ′+(x) =
1

2

∫
(x1,x2)

h(x− y)µf ′+(dy) +
f ′+(x1) + f ′−(x2)

2

for x ∈ [x1, x2], and, if h̃(x) = 1 for x > 0 and h̃(x) = −1 for x ≤ 0 then

f ′−(x) =
1

2

∫
(x1,x2)

h̃(x− y)µf ′+(dy) +
f ′+(x1) + f ′−(x2)

2

for x ∈ [x1, x2].



6.3. CONVEX FUNCTIONS 89

Proof. Again, compute the integral

J(x) =

∫
(x1,x2)

h(x− y)µf ′+(dy)

for x ∈ (x1, x2). Since h(0) = 1 so that∫
{x}

h(x− y)µf ′+(dy) = f ′+(x)− f ′−(x)

and integrating by parts one has∫
(x1,x)

h(x− y)µf ′+(dy) = f ′−(x)− f ′+(x1)

and ∫
(x,x2)

h(x− y)µf ′+(dy) = −f ′−(x2) + f ′+(x)

so that
2f ′+(x) = J(x) + f ′+(x1) + f ′−(x2).

Our last topic is about approximations to convex functions by C2-functions. Recall the
standard approach. Suppose α is a C∞-function with a compact support in R, such that∫
R α(x)dx = 1, and for each ε > 0 we consider αε(x) = 1

ε
α (x/ε). If u is a function on R

which is locally integrable, then we set

uε(x) =

∫
R
u(x− y)αε(y)dy

=

∫
R
u(y)αε(x− y)dy.

The right-hand side is the convolution of u and αε, denoted by u ∗ αε. For each ε > 0, uε
is a smooth function, and if u is continuous then uε → u uniformly on any compact set. If
u ∈ Lp(R) where 1 ≤ p <∞, then uε → u in Lp(R) (the conclusion is not true for p =∞).

Suppose f : R → R is convex, then f must be continuous, its first derivative in
distribution sense is f ′+ (and f ′−), and its second derivative in distribution sense is the
Lebesgue-Stieltjes measure µf ′+ generated by the increasing function f ′+. Therefore

f ′ε(x) =

∫
R
f(y)

d

dx
αε(x− y)dy

= −
∫
R
f(y)

d

dy
αε(x− y)dy (6.12)

=

∫
R
f ′−(y)αε(x− y)dy (6.13)

the last equation follows from the fact that f ′− is the distribution derivative of f . In
particular f ′ε = f ′− ∗ αε for each ε > 0.
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Similarly

f ′′ε (x) =

∫
R
f(y)α′′ε(x− y)dy

=

∫
R
αε(x− y)µf ′+(dy) (6.14)

which implies in particular that each fε is convex.

Lemma 6.3.12 Suppose α ∈ C∞0 (R) has a compact support in (0,∞) such that
∫
R α(x)ds =

1.
1) If fε = f ∗ αε then

f ′ε(x)→ f ′−(x) ∀x ∈ R.

2) If fε = f ∗ α̃ε where α̃(x) = α(−x) (so its support is in (−∞, 0)), then

f ′ε(x)→ f ′+(x) ∀x ∈ R.

Proof. Suppose α has a support in (0, R) where R > 0 is a number. Then

f ′ε(x)− f ′−(x) =

∫
R

(
f ′−(y)− f ′−(x)

)
αε(x− y)dy

=

∫
R

(
f ′−(x− y)− f ′−(x)

)
αε(y)dy

=

∫ R

0

(
f ′−(x− y)− f ′−(x)

) 1

ε
α(y/ε)dy

=

∫ R

0

(
f ′−(x− εz)− f ′−(x)

)
α(z)dz.

Since f ′− is left continuous, so that f ′−(x − εz) → f ′−(x) uniformly in z ∈ (0, R) as ε ↓ 0.
Therefore f ′ε(x)− f ′−(x)→ 0.

Clearly we can not expect that f ′′ε converges to the derivative of f ′+, but the family of
measures f ′′ε (x)dx does converges (in distribution sense).

Lemma 6.3.13 Let α ∈ C∞0 (R) has a compact support such that
∫
R α(x)ds = 1, and

fε = f ∗ αε. Then ∫
R
ϕ(x)f ′′ε (x)dx→

∫
R
ϕ(x)µf ′+(dx)

as ε ↓ 0 for any ϕ ∈ C∞0 (R).

Proof. By definition∫
R
ϕ(x)f ′′ε (x)dx =

∫
R

(
ϕ(x)

∫
R
αε(x− y)µf ′+(dy)

)
dx

=

∫
R

(∫
R
ϕ(x)αε(x− y)dx

)
µf ′+(dy)

=

∫
R
ϕ ∗ α̃ε(y)µf ′+(dy)
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where α̃(x) = α(−x). Since ϕ has a compact support, so is ϕ∗ α̃ε and therefore ϕ∗ α̃ε → ϕ
uniformly. It follows that ∫

R
ϕ(x)f ′′ε (x)dx→

∫
R
ϕ(x)µf ′+(dx).


