
Sparsity in Deep Learning

Ilan Price

C6.5 Theories of Deep Learning
Mathematical Institute, University of Oxford

2 December, 2021

Outline

1. Where can sparsity appear in deep learning?

2. The why, what, and how of neural network pruning

3. Static sparse training and the lottery ticket hypothesis

4. Dynamic sparse training

Outline

1. Where can sparsity appear in deep learning?

2. The why, what, and how of neural network pruning

3. Static sparse training and the lottery ticket hypothesis

4. Dynamic sparse training

Where can sparsity appear in deep learning?

Weights NeuronsThis talk

Persistent
or

‘per input’

Where can sparsity appear in deep learning?
● Sparsity in DL is an active and growing area of research

Figure 1 from [1]

● See thorough review paper by Torsten Hoefler et al. [1]

https://arxiv.org/pdf/2102.00554.pdf
https://arxiv.org/pdf/2102.00554.pdf

Why sparsify the weights?

● Deep networks are most-often vastly over parameterised

○ Parameter counts now range from
■ Resnet101 - 45 million
■ GPT-3 - 175 billion
■ T5-XXL - 1.6 trillion

○ Can even succeed with random labels (i.e. memorise the dataset) (Zhang et
al, 2017)

https://arxiv.org/pdf/1611.03530.pdf
https://arxiv.org/pdf/1611.03530.pdf

Why sparsify the weights?
● Do we want or need this over-parameterisation?

○ Needed at inference? No

Theory:
● “all function classes that are optimally approximated by a general class of

representation systems—so-called affine systems—can be approximated by
deep neural networks with minimal connectivity and memory requirements”
(Bolcskei et al, 2019)

● “trajectory growth can remain exponential in depth in sparse neural networks,
with the sparsity parameter appearing in the base of the exponent.” (Price &
Tanner, 2019)

https://epubs.siam.org/doi/pdf/10.1137/18M118709X
https://arxiv.org/pdf/1911.10651.pdf
https://arxiv.org/pdf/1911.10651.pdf

Why sparsify the weights?
● Do we want or need this over-parameterisation?

○ Needed at inference? No

Practice:
● Pruning research often shows 20x to even 100x compression possible

without sacrificing much performance.
● Sparsifying can even improve performance.

Why sparsify the weights?
● Do we want or need this over-parameterisation?

○ Need in training? Something of an open question.

● Benefits of overparameterisation for training
(Nguyen, 2019, Arora et al, 2018, and many more)

vs.

● Improvements in sparse training (more on this later)

https://arxiv.org/pdf/1901.07417.pdf
http://proceedings.mlr.press/v80/arora18a/arora18a.pdf

Why sparsify the weights?
● Do we want or need this over-parameterisation?

○ Desirable? No

■ Less over-parameterised (i.e. sparser) should generalise better

Fig 4. from [1]

https://arxiv.org/pdf/2102.00554.pdf

Why sparsify the weights?
● Do we want or need this over-parameterisation?

○ Desirable? No

■ Less over-parameterised (i.e. sparser) should generalise better

■ Huge storage and computational costs. Sparsity can help:
● sparse matrix-vector products: computational

cost
● storage - different methods depending on sparsity level e.g. CSR takes

■ Caveat: waiting on appropriate hardware and package implementations!

[Note: sparsity only one approach to compressing storage/compute of deep nets. See also network compression,
quanization, factorisation based approaches and more]

Neural network pruning techniques
Which parameters are unimportant?

1. Optimal brain damage (Lecun et al, 1989)

Assume convergence (), and approx. H with its diagonal then impact on the
loss of removing is given by

:= a salience score per parameter

Even more naive: approx. Hessian as the identity:

2. Iterative Magnitude Pruning (IMP): iteratively zero weights with largest magnitude

And other ways to approximate the Hessian, e.g. (Wang et al, 2019)

https://proceedings.neurips.cc/paper/1989/file/6c9882bbac1c7093bd25041881277658-Paper.pdf
http://proceedings.mlr.press/v97/wang19g/wang19g.pdf

Neural network pruning techniques

Many other methods:

● Variational Dropout (Molchanov et al, 2017)

● L0-regularisation (Louizos et al., 2018)

● Methods which drop ‘stagnant’’ weights (i.e. ‘not updated’ as a proxy for ‘not
important’) (Karnin, 1990)

● LAP (magnitude pruning which accounts for the magnitude of incoming and
outgoing connections of the neurons it connects) (Park et al, 2020)

And more! See [1]. As a general rule: hard to consistently beat well done done iterative
magnitude pruning (Gale et al, 2019)

http://proceedings.mlr.press/v70/molchanov17a/molchanov17a.pdf
https://arxiv.org/pdf/1712.01312.pdf
https://ieeexplore.ieee.org/document/80236
https://openreview.net/pdf?id=ryl3ygHYDB
https://arxiv.org/pdf/2102.00554.pdf
https://arxiv.org/pdf/1902.09574.pdf

Outline

1. Where can sparsity appear in deep learning?

2. The why, what, and how of neural network pruning

3. Static sparse training and the lottery ticket hypothesis

4. Dynamic sparse training

Static sparse training

● So far, pruning only during or after training means training still is expensive. Can
the nets be sparse from scratch?

Fig 7. from [1]

https://arxiv.org/pdf/2102.00554.pdf

Static sparse training
● The lottery ticket hypothesis (Frankle and Carbin, 2019):

A randomly-initialized, dense neural network contains a subnetwork that is initialized
such that—when trained in isolation—it can match the test accuracy of the original

network after training for at most the same number of iterations.

● How do they show this?

Step 1. Train and prune with IMP to get accurate sparse network.

Step 2. Fix the resulting sparse support.

Step 3. Rewind those remaining weights to their initial values in that training run.

Step 4. Train as sparse from that specified initialisation

https://arxiv.org/pdf/1803.03635.pdf

Pruning-at-initialisation

● But can we find these ‘winning tickets’ before training? Aka: Pruning at
Initialisation (PaI)

Pruning-at-initialisation

● But can we find these ‘winning tickets’ before training? Aka: Pruning at
Initialisation (PaI)

● General framework:

1. Initialize a dense network

2. Define scalar objective

Pruning-at-initialisation

● But can we find these ‘winning tickets’ before training? Aka: Pruning at
Initialisation (PaI)

● General framework:

1. Initialize a dense network

2. Define scalar objective

3. Calculate vector of saliency scores

Pruning-at-initialisation

● But can we find these ‘winning tickets’ before training? Aka: Pruning at
Initialisation (PaI)

● General framework:

1. Initialize a dense network

2. Define scalar objective

3. Calculate vector of saliency scores

4. Prune parameters with lowest scores

Pruning-at-initialisation

● But can we find these ‘winning tickets’ before training? Aka: Pruning at
Initialisation (PaI)

● General framework:

1. Initialize a dense network

2. Define scalar objective

3. Calculate vector of saliency scores

4. Prune parameters with lowest scores

Pruning-at-initialisation methods

● (Random)

● SNIP
(Lee et al. 2019)

● GraSP
(Wang et al. 2019)

● FORCE
(de Jorge et al. 2021)

● SynFlow
(Tanaka et al. 2020)

is the parameter vector after pruning

 is the element-wise absolute value of the
parameters in the l^{th} layer

https://openreview.net/pdf?id=B1VZqjAcYX
https://openreview.net/pdf?id=SkgsACVKPH
https://openreview.net/pdf?id=9GsFOUyUPi
https://arxiv.org/pdf/2006.05467.pdf

Pruning-at-initialisation vs. Random
How important are these saliency scores at initialization?

1. After PaI we can often reshuffle the locations of the weights within layers and
still train to the same accuracy (Frankle et al, 2021)

2. Random subspace training suffices (for non-sparse subspaces) (Li et al, 2018)

3. Our recent work on DCT plus Sparse networks: After offsetting from the origin,
random sparse support for trainable parameters suffices. (Price and Tanner,
2021)

https://arxiv.org/pdf/2009.08576.pdf
https://arxiv.org/pdf/1804.08838.pdf
http://proceedings.mlr.press/v139/price21a/price21a.pdf
http://proceedings.mlr.press/v139/price21a/price21a.pdf

Outline

1. Where can sparsity appear in deep learning?

2. The why, what, and how of neural network pruning

3. Static sparse training and the lottery ticket hypothesis

4. Dynamic sparse training

Dynamic Sparse Training

● Static sparse training chooses support set of w, then keeps fixed during training.

● DST instead jointly optimises topology and weights, subject to fixed sparsity level

● Start sparse, then: Train, Prune, Regrow, Repeat.

● Methods defined by:
○ Criterion for pruning?
○ Criterion for regrowing?
○ Where does the pruning and regrowing occur? (ie. only within layers or

redistributed between layers?)

Dynamic Sparse Training Algorithms
● SET (Mocanu et al, 2018)

○ Initialise as Erdos Reyni random bipartite graph
○ Prune a fraction of the smallest magnitude weights
○ Regrow randomly

● DSR (Mostafa & Wang, 2019)
○ Similar to SET, but:

■ Proportion pruned is not constant for all iterations
■ Connections can be reallocated across layers

● RigL (ERK) (Evci et al, 2020) (SOTA)
○ Initialise all as Erdos Reyni but modified to account for kernel dimensions
○ Prune based on magnitude
○ Regrow based on gradient magnitude

And others, eg. Deep-R (Bellec et al, 2018), SNFS (Dettmers & Zettlemoyer, 2019)

https://www.nature.com/articles/s41467-018-04316-3.pdf
http://proceedings.mlr.press/v97/mostafa19a/mostafa19a.pdf
https://arxiv.org/pdf/1911.11134.pdf
https://arxiv.org/pdf/1711.05136.pdf
https://arxiv.org/pdf/1907.04840.pdf

Questions

