

C4.3 Functional Analytic Methods for PDEs Lecture 15

Luc Nguyen luc.nguyen@maths

University of Oxford

MT 2021

• H^2 regularity of weak solutions to linear elliptic equations.

- H^2 regularity of weak solutions to linear elliptic equations.
- Continuity of weak solutions to linear elliptic equations.

A priori H^2 estimates in the general case

- We prove for $a_{ij} = \delta_{ij}$ that if $u \in H^1(\mathbb{R}^n)$ satisfies $-\partial_i(a_{ij}\partial_j u) = f$ on \mathbb{R}^n with $f \in L^2(\mathbb{R}^n)$, then $u \in H^2(\mathbb{R}^n)$.
- We now turn to the case where *a* is variable. To better convey central ideas, we will focus in the rest of this course to a priori estimates: We assume that the solution has the right regularity and will be concerned with establishing quantitative estimates.
- More precisely, we suppose that u belongs to <u>H²(Rⁿ)</u> and is a weak solution to Lu = f in Rⁿ, and would like to bound ||u||_{H²(Rⁿ)} in terms of the bounds for the coefficients of L, ||f||_{L²(Rⁿ)} and ||u||_{H¹(Rⁿ)}.
- For simplicity, we will assume that $b \equiv 0$ and $c \equiv 0$. You should check that the methods we use work in the general case.

Theorem

Suppose $a \in C^1(\mathbb{R}^n)$, $\nabla a \in L^{\infty}(\mathbb{R}^n)$ and $L = -\partial_i(a_{ij}\partial_j)$. There exist $0 < \delta_0 \ll 1$ and C > 0 such that if $||a_{ij} - \delta_{ij}||_{L^{\infty}(\mathbb{R}^n)} \le \delta_0$ and if $u \in H^2(\mathbb{R}^n)$ and satisfies Lu = f in \mathbb{R}^n in the weak sense, then

$$||u||_{H^2(\mathbb{R}^n)} \leq C(||f||_{L^2(\mathbb{R}^n)} + ||u||_{H^1(\mathbb{R}^n)}).$$

Proof

Claim: u satisfies

$$-\Delta u = f + (a_{ij} - \delta_{ij})\partial_i\partial_j u + \partial_i a_{ij}\partial_j u =: \tilde{f},$$

that is, for all $v \in C^\infty_c(\mathbb{R}^n)$,

$$\int_{\mathbb{R}^n} \nabla u \cdot \nabla v \, dx = \int_{\mathbb{R}^n} \left[f + (a_{ij} - \delta_{ij}) \partial_i \partial_j u + \partial_i a_{ij} \partial_j u \right] v \, dx.$$

Proof

• Claim: for $v \in C^\infty_c(\mathbb{R}^n)$,

$$\int_{\mathbb{R}^n} \nabla u \cdot \nabla v \, dx = \int_{\mathbb{R}^n} \left[f + (a_{ij} - \delta_{ij}) \partial_i \partial_j u + \partial_i a_{ij} \partial_j u \right] v \, dx.$$

* We note that $(a_{ij} - \delta_{ij})v \in C_c^1(\mathbb{R}^n)$. Hence, by definition of weak derivatives,

$$\begin{split} \int_{\mathbb{R}^n} (a_{ij} - \delta_{ij}) \partial_i \partial_j u v \, dx &= -\int_{\mathbb{R}^n} \partial_j u \partial_i [(a_{ij} - \delta_{ij}) v] \, dx \\ &= -\int_{\mathbb{R}^n} \partial_j u [(a_{ij} - \delta_{ij}) \partial_i v + \partial_i a_{ij} v] \, dx \\ &= \int_{\mathbb{R}^n} \nabla u \cdot \nabla v \, dx - \int_{\mathbb{R}^n} a_{ij} \partial_j u \partial_i v \, dx \\ &- \int_{\mathbb{R}^n} \partial_i a_{ij} v \, dx. \end{split}$$

Proof

• Claim: for
$$v \in C^\infty_c(\mathbb{R}^n)$$
,

$$\int_{\mathbb{R}^n} \nabla u \cdot \nabla v \, dx = \int_{\mathbb{R}^n} \left[f + (a_{ij} - \delta_{ij}) \partial_i \partial_j u + \partial_i a_{ij} \partial_j u \right] v \, dx.$$

$$\star \int_{\mathbb{R}^n} (a_{ij} - \delta_{ij}) \partial_i \partial_j uv \, dx = \int_{\mathbb{R}^n} \nabla u \cdot \nabla v \, dx - \int_{\mathbb{R}^n} a_{ij} \partial_j u \partial_i v \, dx \\ - \int_{\mathbb{R}^n} \partial_i a_{ij} v \, dx.$$

 \star As Lu = f, we have

$$\int_{\mathbb{R}^n} a_{ij} \partial_j u \partial_i v \, dx = \int_{\mathbb{R}^n} f \, v \, dx.$$

 \star Putting the two identities together, we obtain the claim.

Proof

- We have proved the claim that $-\Delta u = \tilde{f} = f + (a_{ii} - \delta_{ii})\partial_i\partial_i u + \partial_i a_{ij}\partial_j u.$
- By the lemma on the H^2 regularity for $-\Delta$, we have a constant C such that

$$\begin{split} \|\nabla^{2}u\|_{L^{2}} &\leq C\|\tilde{f}\|_{L^{2}} \\ &\leq C\Big[\|f\|_{L^{2}} + \|a_{ij} - \delta_{ij}\|_{L^{\infty}}\|\nabla^{2}u\|_{L^{2}(\Omega)} \\ &+ \|\partial_{i}a_{ij}\|_{L^{\infty}}\|\nabla u\|_{L^{2}}\Big]. \end{split}$$

• It is readily seen that if $C \|a_{ij} - \delta_{ij}\|_{L^{\infty}} < 1$, then the second term on the right hand side can be absorbed back to the left hand side, giving the conclusion:

$$\|\nabla^2 u\|_{L^2} \leq C' \Big[\|f\|_{L^2} + \|\nabla u\|_{L^2} \Big].$$

Theorem

Suppose $a \in C^1(\mathbb{R}^n)$, $\nabla a \in L^{\infty}(\mathbb{R}^n)$ and $L = -\partial_i(a_{ij}\partial_j)$. There exists C > 0 such that if $u \in H^2(\mathbb{R}^n)$ and satisfies Lu = f in \mathbb{R}^n in the weak sense, then

$$\|u\|_{H^2(\mathbb{R}^n)} \leq C(\|f\|_{L^2(\mathbb{R}^n)} + \|u\|_{H^1(\mathbb{R}^n)}).$$

Proof

- Let $w = \partial_k u \in H^1(\mathbb{R}^n)$. We would like to bound $||w||_{H^1}$.
- Claim: w satisfies

$$Lw = \partial_i h_i$$
 where $h_i = \partial_k a_{ij} \partial_j u + f \delta_{ik}$,

that is, for $v\in \mathit{C}^\infty_c(\mathbb{R}^n)$,

$$\int_{\mathbb{R}^n} a_{ij} \partial_j w \partial_i v \, dx = - \int_{\mathbb{R}^n} [\partial_k a_{ij} \partial_j u + f \, \delta_{ik}] \partial_i v \, dx.$$

٠

Proof

• Claim: for $v \in C^\infty_c(\mathbb{R}^n)$,

$$\int_{\mathbb{R}^n} a_{ij} \partial_j w \partial_i v \, dx = - \int_{\mathbb{R}^n} [\partial_k a_{ij} \partial_j u + f \, \delta_{ik}] \partial_i v \, dx.$$

* Note that $a_{ij}\partial_i v \in C_c^1(\mathbb{R}^n)$. Hence, by definition of weak derivatives,

$$\int_{\mathbb{R}^n} a_{ij} \partial_j w \partial_i v \, dx = \int_{\mathbb{R}^n} \partial_k \partial_j u (a_{ij} \partial_i v) \, dx = -\int_{\mathbb{R}^n} \partial_j u \, \partial_k (a_{ij} \partial_i v) \, dx$$
$$= -\int_{\mathbb{R}^n} a_{ij} \partial_j u \, \partial_k \partial_i v \, dx - \int_{\mathbb{R}^n} \partial_j u \, \partial_k a_{ij} \partial_i v \, dx$$

Proof

• Claim: for $v \in C^\infty_c(\mathbb{R}^n)$,

$$\int_{\mathbb{R}^n} a_{ij} \partial_j w \partial_i v \, dx = - \int_{\mathbb{R}^n} [\partial_k a_{ij} \partial_j u + f \, \delta_{ik}] \partial_i v \, dx.$$

* $\int_{\mathbb{R}^n} a_{ij}\partial_j w \partial_i v \, dx = -\int_{\mathbb{R}^n} a_{ij}\partial_j u \, \partial_k \partial_i v \, dx - \int_{\mathbb{R}^n} \partial_j u \, \partial_k a_{ij}\partial_i v \, dx.$ * On the other hand, using $\partial_k v$ as a test function for Lu = f, we have

$$\int_{\mathbb{R}^n} a_{ij} \partial_j u \, \partial_i \partial_k v \, dx = \int_{\mathbb{R}^n} f \partial_k v \, dx.$$

 \star Putting the two identities together we get the claim.

Proof

- We have thus shown that $Lw = \partial_i h_i$ with $h_i = \partial_k a_{ij} \partial_j u + f \delta_{ik}$.
- Using w as a test function for this equation, we get

$$\int_{\mathbb{R}^n} a_{ij} \partial_j w \partial_i w \, dx = - \int_{\mathbb{R}^n} h_i \partial_i w \, dx.$$

• Using ellipticity on the left side and Cauchy-Schwarz' inequality on the right side we get

$$\lambda \|
abla w \|_{L^2}^2 \leq \| h \|_{L^2} \|
abla w \|_{L^2} \leq rac{\lambda}{2} \|
abla w \|_{L^2}^2 + rac{1}{2\lambda} \| h \|_{L^2}^2.$$

We thus have

$$\|\nabla w\|_{L^2} \leq C \|h\|_{L^2} \leq C \Big[\|f\|_{L^2} + \|\nabla u\|_{L^2}\Big].$$

Recalling that $w = \partial_k u$, we're done.

- Recall the example of the equation -(au')' = f in (-1, 1) with $a = \chi_{(-1,0)} + 2\chi_{(0,1)}$.
- If $f \in L^q$, then $au' \in W^{1,q}$ and so u' is presumably discontinuous.
- Nevertheless as u' exists by assumption, u is continuous.
- In higher dimension, the existence of ∇u (in L²) doesn't ensure continuity of u. Nevertheless, a major result due to De Giorgi, Moser and Nash around late 50s asserts that u is indeed continuous!

Theorem (De Giorgi-Moser-Nash's theorem)

Suppose that $a, b, c \in L^{\infty}(\Omega)$, a is uniformly elliptic, and $L = -\partial_i(a_{ij}\partial_j) + b_i\partial_i + c$. If $u \in H^1(\Omega)$ satisfies Lu = f in Ω in the weak sense for some $f \in L^q(\Omega)$ with $q > \frac{n}{2}$, then u is locally Hölder continuous, and for any open ω such that $\overline{\omega} \subset \Omega$ we have

$$||u||_{C^{0,\alpha}(\omega)} \leq C(||f||_{L^{q}(\Omega)} + ||u||_{H^{1}(\Omega)})$$

where the constant C depends only on $n, \Omega, \omega, a, b, c$, and the Hölder exponent α depends only on n, Ω, ω, a .

We make some observations:

- In De Giorgi-Moser-Nash's theorem, no continuity is assumed on the coefficients *a_{ii}*.
- If a_{ij} is continuous, one can imagine using the method of freezing coefficients to reduce to the case a_{ij} is constant. Hence the model equation is $-\Delta u = f$.
- In 1*d*, we have -u'' = f. If $f \in L^q$, we then have that $u \in W^{2,q}_{loc}$.
- It turns out that, in any dimension, if $-\Delta u = f$ and $f \in L^q$, then $u \in W_{loc}^{2,q}$. In particular, when n/2 < q < n, by the embedding $W_{loc}^{2,q} \hookrightarrow W_{loc}^{1,\frac{qn}{n-q}} \hookrightarrow C_{loc}^{0,2-\frac{n}{q}}$, we have u is Hölder continuous.

To illustrate the method, we will assume for simplicity that $b \equiv 0$ and $c \equiv 0$. We will focus on a priori L^{∞} estimates, i.e. we assume that the solution $u \in L^{\infty}$ and try to establish estimates for $||u||_{L^{\infty}}$.

• We assume in addition for now a boundary condition: u = 0 on ∂B_1 .

Theorem (Global a priori L^{∞} estimates)

Suppose that $a \in L^{\infty}(B_1)$, a is uniformly elliptic, $b \equiv 0$, $c \equiv 0$ and $L = -\partial_i(a_{ij}\partial_j)$. If $u \in H_0^1(B_1) \cap L^{\infty}(B_1)$ satisfies Lu = f in B_1 in the weak sense and $f \in L^q(B_1)$ with q > n/2, then

$$\|u\|_{L^{\infty}(B_1)} \leq C(\|f\|_{L^q(B_1)} + \|u\|_{L^2(B_1)})$$

where the constant C depends only on n, q, a.

Truncations and powers of H^1 functions

Lemma

Suppose that $u \in H_0^1(B_1) \cap L^{\infty}(B_1)$. Then, for $p \ge 1$ and $k \ge 0$, one has $(u_+ + k)^p - k^p \in H_0^1(B_1)$.

Proof

- As $u \in L^{\infty}(B_1)$, we can suppose $|u| \leq M$ a.e. in B_1 .
- By Sheet 3, $u_+ \in H^1(B_1)$.
- Select a function $g \in C^1(\mathbb{R})$ such that $g(t) = (t_+ + k)^p k^p$ for $t \leq M$, and $g(t) = (M + k + 1)^p - k^p$ for $t \geq M + 1$. Note that $(u_+ + k)^p - k^p = g(u)$.
- Then $|g(t)| + |g'(t)| \le C$ on \mathbb{R} .
- By the chain rule (Sheet 2), g(u) has weak derivatives $\nabla g(u) = g'(u) \nabla u \in L^2(B_1)$. Hence $g(u) \in H^1(B_1)$.

Truncations and powers of H^1 functions

Proof

- $g(u) \in H^1(B_1)$.
- We next show that g(u) ∈ H₀¹(B₁). Approximate u by (u_m) ∈ C_c[∞](B₁). The argument above shows that g(u_m) ∈ H¹(B₁). As g(u_m) is continuous, we have that the its trace on ∂B₁ is zero, hence g(u_m) ∈ H₀¹(B₁).
- We have, by Lebesgue's dominated convergence theorem

$$\int_{B_1} |g(u_m) - g(u)|^2 dx \to 0.$$

So $g(u_m) \rightarrow g(u)$ in L^2 .

Truncations and powers of H^1 functions

Proof

• Next, we have

$$\begin{split} \int_{B} |\nabla g(u_m) - \nabla g(u)|^2 \, dx &= \int_{B} |g'(u_m) \nabla u_m - g'(u) \nabla u|^2 \, dx \\ &\leq \int_{B} |g'(u_m) - g'(u)|^2 |\nabla u|^2 \, dx \\ &\quad + \int_{B} |g'(u_m)|^2 |\nabla u_m - \nabla u|^2 \, dx \rightarrow 0, \end{split}$$

where we use Lebesgue's dominated convergence theorem to treat the first integral and the convergence of ∇u_m to ∇u in L^2 to treat the second integral. Hence $\nabla g(u_m) \rightarrow \nabla g(u)$ in L^2 .

• We have thus shown that $g(u_m) \in H^1_0(B)$ and $g(u_m) \to g(u)$ in $H^1(B)$. The conclusion follows.

We now prove the statement that if $u \in H_0^1(B_1) \cap L^{\infty}(B_1)$ is such that Lu = f in B_1 with $f \in L^q(B_1)$ for some q > n/2, then

 $||u||_{L^{\infty}(B_1)} \leq C(||f||_{L^q(B_1)} + ||u||_{L^2(B_1)}).$

- We use Moser iteration method. We write B = B₁ and fix some k > 0, p ≥ 1.
- Let w = u₊ + k and we use v = w^p − k^p as test function. This is possible because we just proved that v ∈ H¹₀(B₁). We have

$$\int_{B} f v dx = \int_{B} a_{ij} \partial_{j} u \partial_{i} v dx$$
$$= \int_{B} p w^{p-1} a_{ij} \partial_{j} u \partial_{i} u_{+} dx$$
$$\stackrel{ellipticity}{\geq} \lambda p \int_{B} w^{p-1} |\nabla u_{+}|^{2} dx.$$

Proof

• We thus have

$$\int_{B} |\nabla w^{\frac{p+1}{2}}|^2 dx \leq Cp \int_{B} |f| |v| dx \leq Cp \int_{B} |f| w^p dx.$$

• By Friedrichs' inequality, this gives

$$\|w^{\frac{p+1}{2}}-k^{\frac{p+1}{2}}\|_{H^1}^2\leq Cp\int_B|f|w^p\,dx.$$

• By Gagliardo-Nirenberg-Sobolev's inequality, this implies that

$$\|w^{\frac{p+1}{2}}-k^{\frac{p+1}{2}}\|_{L^{\frac{2n}{n-2}}}^{2}\leq Cp\int_{B}|f|w^{p}\,dx.$$

We thus have

$$\|w^{\frac{p+1}{2}}\|_{L^{\frac{2n}{n-2}}}^2 \leq Cp \int_B (\frac{|f|}{k}+1) w^{p+1} dx.$$

Proof

•
$$\|w^{\frac{p+1}{2}}\|_{L^{\frac{2n}{n-2}}}^2 \leq Cp \int_B (\frac{|f|}{k}+1) w^{p+1} dx.$$

• Using Hölder's inequality, we then arrive at

$$\|w^{p+1}\|_{L^{\frac{n}{p-2}}} \leq Cp(\|\frac{|f|}{k}\|_{L^{q}}+1)\|w^{p+1}\|_{L^{q'}}.$$

• We now choose k to be any number larger than $\|f\|_{L^q}$ and obtain from the above that

$$\|w\|_{L^{\frac{n(p+1)}{n-2}}}^{p+1} \leq Cp\|w\|_{L^{q'(p+1)}}^{p+1}.$$

Recalling that q > n/2, we have $q' < \frac{n}{n-2}$. Thus the above inequality is self-improving: If w has a bound in $L^{q'(p+1)}$, then it has a bound in $L^{\frac{n(p+1)}{n-2}}$.

Proof

•
$$\|w\|_{L^{\frac{n(p+1)}{n-2}}}^{p+1} \leq C(p+1)\|w\|_{L^{q'(p+1)}}^{p+1}.$$

• Now let $\chi = \frac{n}{(n-2)q'} > 1$ and $t_m = \gamma \chi^m$ for some $\gamma > 2q'$, then the above gives

$$\|w\|_{L^{t_{m+1}}} \leq (Ct_m)^{\frac{q'}{t_m}} \|w\|_{L^{t_m}} = (C\gamma)^{q'\gamma^{-1}\chi^{-m}} \chi^{q'\gamma^{-1}m\chi^{-m}} \|w\|_{L^{t_m}}.$$

Hence by induction,

$$\|w\|_{L^{t_{m+1}}} \leq (C\gamma)^{q'\gamma^{-1}\sum_m \chi^{-m}} \chi^{q'\gamma^{-1}\sum_m m\chi^{-m}} \|w\|_{L^{\gamma}} \leq C \|w\|_{L^{\gamma}}.$$

• Sending $m \to \infty$, we obtain

$$\|w\|_{L^{\infty}} \leq C \|w\|_{L^{\gamma}}$$
 provided $\gamma > 2q'$.

Proof

- $\|w\|_{L^{\infty}} \leq C \|w\|_{L^{\gamma}}$ when $\gamma > 2q'$.
- We now reduce from L^{γ} to L^{2} :

$$\|w\|_{L^{\infty}} \leq C \Big\{ \int_{B} |w|^{\gamma} dx \Big\}^{1/\gamma} \leq C \|w\|_{L^{\infty}}^{1-\frac{2}{\gamma}} \Big\{ \int_{B} |w|^{2} dx \Big\}^{1/\gamma}$$

This gives

$$\|w\|_{L^{\infty}}\leq C\|w\|_{L^{2}}.$$

• Recalling that $w = u_+ + k$ and k can be any positive constant larger than $||f||_{L^q}$, we have thus shown that

$$||u_+||_{L^{\infty}} \leq C(||u||_{L^2} + ||f||_{L^q})$$

• Applying the same argument to *u*₋, we get the corresponding bound for *u*₋ and conclude the proof.