C4.3 Functional Analytic Methods for PDEs Lecture 15

Luc Nguyen
luc.nguyen@maths

University of Oxford

MT 2021

In the last lecture

- H^{2} regularity of weak solutions to linear elliptic equations.

This lecture

- H^{2} regularity of weak solutions to linear elliptic equations.
- Continuity of weak solutions to linear elliptic equations.

A priori H^{2} estimates in the general case

- We prove for $a_{i j}=\delta_{i j}$ that if $u \in H^{1}\left(\mathbb{R}^{n}\right)$ satisfies $-\partial_{i}\left(a_{i j} \partial_{j} u\right)=f$ on \mathbb{R}^{n} with $f \in L^{2}\left(\mathbb{R}^{n}\right)$, then $u \in H^{2}\left(\mathbb{R}^{n}\right)$.
- We now turn to the case where a is variable. To better convey central ideas, we will focus in the rest of this course to a priori estimates: We assume that the solution has the right regularity and will be concerned with establishing quantitative estimates.
- More precisely, we suppose that u belongs to $H^{2}\left(\mathbb{R}^{n}\right)$ and is a weak solution to $L u=f$ in \mathbb{R}^{n}, and would like to bound $\|u\|_{H^{2}\left(\mathbb{R}^{n}\right)}$ in terms of the bounds for the coefficients of L, $\|f\|_{L^{2}\left(\mathbb{R}^{n}\right)}$ and $\|u\|_{H^{1}\left(\mathbb{R}^{n}\right)}$.
- For simplicity, we will assume that $b \equiv 0$ and $c \equiv 0$. You should check that the methods we use work in the general case.

Method of freezing coefficients

Theorem

Suppose $a \in C^{1}\left(\mathbb{R}^{n}\right), \nabla a \in L^{\infty}\left(\mathbb{R}^{n}\right)$ and $L=-\partial_{i}\left(a_{i j} \partial_{j}\right)$. There exist $0<\delta_{0} \ll 1$ and $C>0$ such that if $\left\|a_{i j}-\delta_{i j}\right\|_{L \infty\left(\mathbb{R}^{n}\right)} \leq \delta_{0}$ and if $u \in H^{2}\left(\mathbb{R}^{n}\right)$ and satisfies $L u=f$ in \mathbb{R}^{n} in the weak sense, then

$$
\|u\|_{H^{2}\left(\mathbb{R}^{n}\right)} \leq C\left(\|f\|_{L^{2}\left(\mathbb{R}^{n}\right)}+\|u\|_{H^{1}\left(\mathbb{R}^{n}\right)}\right) .
$$

Proof

- Claim: u satisfies

$$
-\Delta u=f+\left(a_{i j}-\delta_{i j}\right) \partial_{i} \partial_{j} u+\partial_{i} a_{i j} \partial_{j} u=: \tilde{f},
$$

that is, for all $v \in C_{c}^{\infty}\left(\mathbb{R}^{n}\right)$,

$$
\int_{\mathbb{R}^{n}} \nabla u \cdot \nabla v d x=\int_{\mathbb{R}^{n}}\left[f+\left(a_{i j}-\delta_{i j}\right) \partial_{i} \partial_{j} u+\partial_{i} a_{i j} \partial_{j} u\right] v d x .
$$

Method of freezing coefficients

Proof

- Claim: for $v \in C_{c}^{\infty}\left(\mathbb{R}^{n}\right)$,

$$
\int_{\mathbb{R}^{n}} \nabla u \cdot \nabla v d x=\int_{\mathbb{R}^{n}}\left[f+\left(a_{i j}-\delta_{i j}\right) \partial_{i} \partial_{j} u+\partial_{i} a_{i j} \partial_{j} u\right] v d x .
$$

\star We note that $\left(a_{i j}-\delta_{i j}\right) v \in C_{c}^{1}\left(\mathbb{R}^{n}\right)$. Hence, by definition of weak derivatives,

$$
\begin{aligned}
\int_{\mathbb{R}^{n}}\left(a_{i j}-\delta_{i j}\right) \partial_{i} \partial_{j} u v d x= & -\int_{\mathbb{R}^{n}} \partial_{j} u \partial_{i}\left[\left(a_{i j}-\delta_{i j}\right) v\right] d x \\
= & -\int_{\mathbb{R}^{n}} \partial_{j} u\left[\left(a_{i j}-\delta_{i j}\right) \partial_{i} v+\partial_{i} a_{i j} v\right] d x \\
= & \int_{\mathbb{R}^{n}} \nabla u \cdot \nabla v d x-\int_{\mathbb{R}^{n}} a_{i j} \partial_{j} u \partial_{i} v d x \\
& -\int_{\mathbb{R}^{n}} \partial_{i} a_{i j} v d x .
\end{aligned}
$$

Method of freezing coefficients

Proof

- Claim: for $v \in C_{c}^{\infty}\left(\mathbb{R}^{n}\right)$,

$$
\begin{aligned}
& \int_{\mathbb{R}^{n}} \nabla u \cdot \nabla v d x=\int_{\mathbb{R}^{n}}\left[f+\left(a_{i j}-\delta_{i j}\right) \partial_{i} \partial_{j} u+\partial_{i} a_{i j} \partial_{j} u\right] v d x . \\
& \star \int_{\mathbb{R}^{n}}\left(a_{i j}-\delta_{i j}\right) \partial_{i} \partial_{j} u v d x=\int_{\mathbb{R}^{n}} \nabla u \cdot \nabla v d x-\int_{\mathbb{R}^{n}} a_{i j} \partial_{j} u \partial_{i} v d x \\
& \quad-\int_{\mathbb{R}^{n}} \partial_{i} a_{i j} v d x .
\end{aligned}
$$

$$
\int_{\mathbb{R}^{n}} a_{i j} \partial_{j} u \partial_{i} v d x=\int_{\mathbb{R}^{n}} f v d x .
$$

* Putting the two identities together, we obtain the claim.

Method of freezing coefficients

Proof

- We have proved the claim that
$-\Delta u=\tilde{f}=f+\left(a_{i j}-\delta_{i j}\right) \partial_{i} \partial_{j} u+\partial_{i} a_{i j} \partial_{j} u$.
- By the lemma on the H^{2} regularity for $-\Delta$, we have a constant C such that

$$
\begin{aligned}
\left\|\nabla^{2} u\right\|_{L^{2}} \leq & C\|\tilde{f}\|_{L^{2}} \\
\leq & C\left[\|f\|_{L^{2}}+\left\|a_{i j}-\delta_{i j}\right\|_{L^{\infty}}\left\|\nabla^{2} u\right\|_{L^{2}(\Omega)}\right. \\
& \left.+\left\|\partial_{i} a_{i j}\right\|_{L^{\infty}}\|\nabla u\|_{L^{2}}\right] .
\end{aligned}
$$

- It is readily seen that if $C\left\|a_{i j}-\delta_{i j}\right\|_{L^{\infty}}<1$, then the second term on the right hand side can be absorbed back to the left hand side, giving the conclusion:

$$
\left\|\nabla^{2} u\right\|_{L^{2}} \leq C^{\prime}\left[\|f\|_{L^{2}}+\|\nabla u\|_{L^{2}}\right] .
$$

Method of differentiating the equation

Theorem

Suppose $a \in C^{1}\left(\mathbb{R}^{n}\right), \nabla a \in L^{\infty}\left(\mathbb{R}^{n}\right)$ and $L=-\partial_{i}\left(a_{i j} \partial_{j}\right)$.
There exists $C>0$ such that if $u \in H^{2}\left(\mathbb{R}^{n}\right)$ and satisfies $L u=f$ in
\mathbb{R}^{n} in the weak sense, then

$$
\|u\|_{H^{2}\left(\mathbb{R}^{n}\right)} \leq C\left(\|f\|_{L^{2}\left(\mathbb{R}^{n}\right)}+\|u\|_{H^{1}\left(\mathbb{R}^{n}\right)}\right) .
$$

Proof

- Let $w=\partial_{k} u \in H^{1}\left(\mathbb{R}^{n}\right)$. We would like to bound $\|w\|_{H^{1}}$.
- Claim: w satisfies

$$
L w=\partial_{i} h_{i} \text { where } h_{i}=\partial_{k} a_{i j} \partial_{j} u+f \delta_{i k},
$$

that is, for $v \in C_{c}^{\infty}\left(\mathbb{R}^{n}\right)$,

$$
\int_{\mathbb{R}^{n}} a_{i j} \partial_{j} w \partial_{i} v d x=-\int_{\mathbb{R}^{n}}\left[\partial_{k} a_{i j} \partial_{j} u+f \delta_{i k}\right] \partial_{i} v d x .
$$

Method of differentiating the equation

Proof

- Claim: for $v \in C_{c}^{\infty}\left(\mathbb{R}^{n}\right)$,

$$
\int_{\mathbb{R}^{n}} a_{i j} \partial_{j} w \partial_{i} v d x=-\int_{\mathbb{R}^{n}}\left[\partial_{k} a_{i j} \partial_{j} u+f \delta_{i k}\right] \partial_{i} v d x
$$

\star Note that $a_{i j} \partial_{i} v \in C_{c}^{1}\left(\mathbb{R}^{n}\right)$. Hence, by definition of weak derivatives,

$$
\begin{aligned}
\int_{\mathbb{R}^{n}} a_{i j} \partial_{j} w \partial_{i} v d x & =\int_{\mathbb{R}^{n}} \partial_{k} \partial_{j} u\left(a_{i j} \partial_{i} v\right) d x=-\int_{\mathbb{R}^{n}} \partial_{j} u \partial_{k}\left(a_{i j} \partial_{i} v\right) d x \\
& =-\int_{\mathbb{R}^{n}} a_{i j} \partial_{j} u \partial_{k} \partial_{i} v d x-\int_{\mathbb{R}^{n}} \partial_{j} u \partial_{k} a_{i j} \partial_{i} v d x
\end{aligned}
$$

Method of differentiating the equation

Proof

- Claim: for $v \in C_{c}^{\infty}\left(\mathbb{R}^{n}\right)$,

$$
\begin{gathered}
\int_{\mathbb{R}^{n}} a_{i j} \partial_{j} w \partial_{i} v d x=-\int_{\mathbb{R}^{n}}\left[\partial_{k} a_{i j} \partial_{j} u+f \delta_{i k}\right] \partial_{i} v d x . \\
\star \int_{\mathbb{R}^{n}} a_{i j} \partial_{j} w \partial_{i} v d x=-\int_{\mathbb{R}^{n}} a_{i j} \partial_{j} u \partial_{k} \partial_{i} v d x-\int_{\mathbb{R}^{n}} \partial_{j} u \partial_{k} a_{i j} \partial_{i} v d x .
\end{gathered}
$$

\star On the other hand, using $\partial_{k} v$ as a test function for $L u=f$, we have

$$
\int_{\mathbb{R}^{n}} a_{i j} \partial_{j} u \partial_{i} \partial_{k} v d x=\int_{\mathbb{R}^{n}} f \partial_{k} v d x
$$

* Putting the two identities together we get the claim.

Method of differentiating the equation

Proof

- We have thus shown that $L w=\partial_{i} h_{i}$ with $h_{i}=\partial_{k} a_{i j} \partial_{j} u+f \delta_{i k}$.
- Using w as a test function for this equation, we get

$$
\int_{\mathbb{R}^{n}} a_{i j} \partial_{j} w \partial_{i} w d x=-\int_{\mathbb{R}^{n}} h_{i} \partial_{i} w d x
$$

- Using ellipticity on the left side and Cauchy-Schwarz' inequality on the right side we get

$$
\lambda\|\nabla w\|_{L^{2}}^{2} \leq\|h\|_{L^{2}}\|\nabla w\|_{L^{2}} \leq \frac{\lambda}{2}\|\nabla w\|_{L^{2}}^{2}+\frac{1}{2 \lambda}\|h\|_{L^{2}}^{2} .
$$

- We thus have

$$
\|\nabla w\|_{L^{2}} \leq C\|h\|_{L^{2}} \leq C\left[\|f\|_{L^{2}}+\|\nabla u\|_{L^{2}}\right] .
$$

Recalling that $w=\partial_{k} u$, we're done.

Example

- Recall the example of the equation $-\left(a u^{\prime}\right)^{\prime}=f$ in $(-1,1)$ with $a=\chi_{(-1,0)}+2 \chi_{(0,1)}$.
- If $f \in L^{q}$, then $a u^{\prime} \in W^{1, q}$ and so u^{\prime} is presumably discontinuous.
- Nevertheless as u^{\prime} exists by assumption, u is continuous.
- In higher dimension, the existence of ∇u (in L^{2}) doesn't ensure continuity of u. Nevertheless, a major result due to De Giorgi, Moser and Nash around late 50s asserts that u is indeed continuous!

De Giorgi-Moser-Nash's theorem

Theorem (De Giorgi-Moser-Nash's theorem)

Suppose that $a, b, c \in L^{\infty}(\Omega)$, a is uniformly elliptic, and $L=-\partial_{i}\left(a_{i j} \partial_{j}\right)+b_{i} \partial_{i}+c$. If $u \in H^{1}(\Omega)$ satisfies $L u=f$ in Ω in the weak sense for some $f \in L^{q}(\Omega)$ with $q>\frac{n}{2}$, then u is locally Hölder continuous, and for any open ω such that $\bar{\omega} \subset \Omega$ we have

$$
\|u\|_{C^{0, \alpha}(\omega)} \leq C\left(\|f\|_{L^{q}(\Omega)}+\|u\|_{H^{1}(\Omega)}\right)
$$

where the constant C depends only on $n, \Omega, \omega, a, b, c$, and the Hölder exponent α depends only on n, Ω, ω, a.

A digression

We make some observations:

- In De Giorgi-Moser-Nash's theorem, no continuity is assumed on the coefficients $a_{i j}$.
- If $a_{i j}$ is continuous, one can imagine using the method of freezing coefficients to reduce to the case $a_{i j}$ is constant. Hence the model equation is $-\Delta u=f$.
- In $1 d$, we have $-u^{\prime \prime}=f$. If $f \in L^{q}$, we then have that $u \in W_{\text {loc }}^{2, q}$.
- It turns out that, in any dimension, if $-\Delta u=f$ and $f \in L^{q}$, then $u \in W_{\text {loc }}^{2, q}$.
In particular, when $n / 2<q<n$, by the embedding
$W_{\text {loc }}^{2, q} \hookrightarrow W_{\text {loc }}^{1, \frac{q n}{n-q}} \hookrightarrow C_{\text {loc }}^{0,2-\frac{n}{q}}$, we have u is Hölder continuous.

Global a priori L^{∞} estimate

To illustrate the method, we will assume for simplicity that $b \equiv 0$ and $c \equiv 0$. We will focus on a priori L^{∞} estimates, i.e. we assume that the solution $u \in L^{\infty}$ and try to establish estimates for $\|u\|_{L_{\infty}}$.

- We assume in addition for now a boundary condition: $u=0$ on ∂B_{1}.

Theorem (Global a priori L^{∞} estimates)

Suppose that $a \in L^{\infty}\left(B_{1}\right)$, a is uniformly elliptic, $b \equiv 0, c \equiv 0$ and $L=-\partial_{i}\left(a_{i j} \partial_{j}\right)$. If $u \in H_{0}^{1}\left(B_{1}\right) \cap L^{\infty}\left(B_{1}\right)$ satisfies $L u=f$ in B_{1} in the weak sense and $f \in L^{q}\left(B_{1}\right)$ with $q>n / 2$, then

$$
\|u\|_{L^{\infty}\left(B_{1}\right)} \leq C\left(\|f\|_{L^{q}\left(B_{1}\right)}+\|u\|_{L^{2}\left(B_{1}\right)}\right)
$$

where the constant C depends only on n, q, a.

Truncations and powers of H^{1} functions

Lemma

Suppose that $u \in H_{0}^{1}\left(B_{1}\right) \cap L^{\infty}\left(B_{1}\right)$. Then, for $p \geq 1$ and $k \geq 0$, one has $\left(u_{+}+k\right)^{p}-k^{p} \in H_{0}^{1}\left(B_{1}\right)$.

Proof

- As $u \in L^{\infty}\left(B_{1}\right)$, we can suppose $|u| \leq M$ a.e. in B_{1}.
- By Sheet $3, u_{+} \in H^{1}\left(B_{1}\right)$.
- Select a function $g \in C^{1}(\mathbb{R})$ such that $g(t)=\left(t_{+}+k\right)^{p}-k^{p}$ for $t \leq M$, and $g(t)=(M+k+1)^{p}-k^{p}$ for $t \geq M+1$. Note that $\left(u_{+}+k\right)^{p}-k^{p}=g(u)$.
- Then $|g(t)|+\left|g^{\prime}(t)\right| \leq C$ on \mathbb{R}.
- By the chain rule (Sheet 2), $g(u)$ has weak derivatives $\nabla g(u)=g^{\prime}(u) \nabla u \in L^{2}\left(B_{1}\right)$. Hence $g(u) \in H^{1}\left(B_{1}\right)$.

Truncations and powers of H^{1} functions

Proof

- $g(u) \in H^{1}\left(B_{1}\right)$.
- We next show that $g(u) \in H_{0}^{1}\left(B_{1}\right)$.

Approximate u by $\left(u_{m}\right) \in C_{c}^{\infty}\left(B_{1}\right)$. The argument above shows that $g\left(u_{m}\right) \in H^{1}\left(B_{1}\right)$.
As $g\left(u_{m}\right)$ is continuous, we have that the its trace on ∂B_{1} is zero, hence $g\left(u_{m}\right) \in H_{0}^{1}\left(B_{1}\right)$.

- We have, by Lebesgue's dominated convergence theorem

$$
\int_{B_{1}}\left|g\left(u_{m}\right)-g(u)\right|^{2} d x \rightarrow 0
$$

So $g\left(u_{m}\right) \rightarrow g(u)$ in L^{2}.

Truncations and powers of H^{1} functions

Proof

- Next, we have

$$
\begin{aligned}
\int_{B}\left|\nabla g\left(u_{m}\right)-\nabla g(u)\right|^{2} d x= & \int_{B}\left|g^{\prime}\left(u_{m}\right) \nabla u_{m}-g^{\prime}(u) \nabla u\right|^{2} d x \\
\leq & \int_{B}\left|g^{\prime}\left(u_{m}\right)-g^{\prime}(u)\right|^{2}|\nabla u|^{2} d x \\
& +\int_{B}\left|g^{\prime}\left(u_{m}\right)\right|^{2}\left|\nabla u_{m}-\nabla u\right|^{2} d x \rightarrow 0
\end{aligned}
$$

where we use Lebesgue's dominated convergence theorem to treat the first integral and the convergence of ∇u_{m} to ∇u in L^{2} to treat the second integral.
Hence $\nabla g\left(u_{m}\right) \rightarrow \nabla g(u)$ in L^{2}.

- We have thus shown that $g\left(u_{m}\right) \in H_{0}^{1}(B)$ and $g\left(u_{m}\right) \rightarrow g(u)$ in $H^{1}(B)$. The conclusion follows.

Global a priori L^{∞} estimates

We now prove the statement that if $u \in H_{0}^{1}\left(B_{1}\right) \cap L^{\infty}\left(B_{1}\right)$ is such that $L u=f$ in B_{1} with $f \in L^{q}\left(B_{1}\right)$ for some $q>n / 2$, then

$$
\|u\|_{L^{\infty}\left(B_{1}\right)} \leq C\left(\|f\|_{L^{q}\left(B_{1}\right)}+\|u\|_{L^{2}\left(B_{1}\right)}\right) .
$$

- We use Moser iteration method. We write $B=B_{1}$ and fix some $k>0, p \geq 1$.
- Let $w=u_{+}+k$ and we use $v=w^{p}-k^{p}$ as test function. This is possible because we just proved that $v \in H_{0}^{1}\left(B_{1}\right)$.
We have

$$
\begin{aligned}
\int_{B} f v d x & =\int_{B} a_{i j} \partial_{j} u \partial_{i} v d x \\
& =\int_{B} p w^{p-1} a_{i j} \partial_{j} u \partial_{i} u_{+} d x \\
& \stackrel{\text { ellipticity }}{\geq}
\end{aligned} \lambda p \int_{B} w^{p-1}\left|\nabla u_{+}\right|^{2} d x .
$$

Global a priori L^{∞} estimate

Proof

- We thus have

$$
\int_{B}\left|\nabla w^{\frac{p+1}{2}}\right|^{2} d x \leq C p \int_{B}|f||v| d x \leq C p \int_{B}|f| w^{p} d x
$$

- By Friedrichs' inequality, this gives

$$
\left\|w^{\frac{p+1}{2}}-k^{\frac{p+1}{2}}\right\|_{H^{1}}^{2} \leq C p \int_{B}|f| w^{p} d x
$$

- By Gagliardo-Nirenberg-Sobolev's inequality, this implies that

$$
\left\|w^{\frac{p+1}{2}}-k^{\frac{p+1}{2}}\right\|_{L^{\frac{2 n}{n-2}}}^{2} \leq C p \int_{B}|f| w^{p} d x
$$

- We thus have

$$
\left\|w^{\frac{p+1}{2}}\right\|_{L^{2 n}}^{2} \leq C p \int_{B}\left(\frac{|f|}{k}+1\right) w^{p+1} d x
$$

Global a priori L^{∞} estimate

Proof

- $\left\|w^{\frac{p+1}{2}}\right\|_{L^{\frac{2 n}{n-2}}}^{2} \leq C p \int_{B}\left(\frac{|f|}{k}+1\right) w^{p+1} d x$.
- Using Hölder's inequality, we then arrive at

$$
\left\|w^{p+1}\right\|_{L^{\frac{n}{n-2}}} \leq C p\left(\left\|\frac{|f|}{k}\right\|_{L^{q}}+1\right)\left\|w^{p+1}\right\|_{L^{q^{\prime}}}
$$

- We now choose k to be any number larger than $\|f\|_{L^{q}}$ and obtain from the above that

$$
\|w\|_{\substack{\frac{n(p+1)}{n-2}}}^{p+1} \leq C p\|w\|_{L^{\prime}(p+1)}^{p+1} .
$$

Recalling that $q>n / 2$, we have $q^{\prime}<\frac{n}{n-2}$. Thus the above inequality is self-improving: If w has a bound in $L^{q^{\prime}(p+1)}$, then it has a bound in $L^{\frac{n(p+1)}{n-2}}$.

Global a priori L^{∞} estimate

Proof

- $\|w\|_{\frac{L^{(\rho+1)}}{n-2}}^{p+1} \leq C(p+1)\|w\|_{L^{q^{\prime}(p+1)}}^{p+1}$.
- Now let $\chi=\frac{n}{(n-2) q^{\prime}}>1$ and $t_{m}=\gamma \chi^{m}$ for some $\gamma>2 q^{\prime}$, then the above gives

$$
\begin{aligned}
\|w\|_{L^{t_{m+1}}} & \leq\left(C t_{m}\right)^{\frac{q^{\prime}}{t_{m}}}\|w\|_{L^{t_{m}}} \\
& =(C \gamma)^{q^{\gamma^{\prime}} \gamma^{-1} \chi^{-m}} \chi^{q^{\prime} \gamma^{-1} m \chi^{-m}}\|w\|_{L^{t_{m}}} .
\end{aligned}
$$

Hence by induction,

$$
\|w\|_{L^{L_{m+1}}} \leq(C \gamma)^{q^{\prime} \gamma^{-1} \sum_{m} \chi^{-m} \chi^{q^{\prime} \gamma^{-1} \sum_{m} m \chi^{-m}}\|w\|_{L^{\gamma}} \leq C\|w\|_{L^{\gamma}} ~}
$$

- Sending $m \rightarrow \infty$, we obtain

$$
\|w\|_{L^{\infty}} \leq C\|w\|_{L^{\gamma}} \text { provided } \gamma>2 q^{\prime} .
$$

Global a priori L^{∞} estimate

Proof

- $\|w\|_{L^{\infty}} \leq C\|w\|_{L^{\gamma}}$ when $\gamma>2 q^{\prime}$.
- We now reduce from L^{γ} to L^{2} :

$$
\|w\|_{L^{\infty}} \leq C\left\{\int_{B}|w|^{\gamma} d x\right\}^{1 / \gamma} \leq C\|w\|_{L^{\infty}}^{1-\frac{2}{\gamma}}\left\{\int_{B}|w|^{2} d x\right\}^{1 / \gamma}
$$

This gives

$$
\|w\|_{L^{\infty}} \leq C\|w\|_{L^{2}} .
$$

- Recalling that $w=u_{+}+k$ and k can be any positive constant larger than $\|f\|_{L^{q}}$, we have thus shown that

$$
\left\|u_{+}\right\|_{L^{\infty}} \leq C\left(\|u\|_{L^{2}}+\|f\|_{L^{q}}\right)
$$

- Applying the same argument to u_{-}, we get the corresponding bound for u_{-}and conclude the proof.

