B3.3 Algebraic Curves

Hilary 2022

kirwan@maths.ox.ac.uk

Example sheet 1

Section A (introductory questions, not for marking, solutions available)

1. Let (2, 1), (1, 1), (3, 4) represent points in the projective line $\mathbb{P}^1(\mathbb{R})$. Find representative vectors v_1, v_2, v_3 for these points which satisfy $v_1 + v_2 + v_3 = 0$.

Solution. We want $a, b, c \in \mathbb{R} \setminus \{0\}$ such that a(2, 1) + b(1, 1) + c(3, 4) = 0. We can take a = c = 1 and b = -5, giving $v_1 = (2, 1)$, $v_2 = (-5, -5)$ and $v_3 = (3, 4)$.

2. Embed \mathbb{R}^2 in the projective plane \mathbb{RP}^2 by $(x, y) \mapsto [1, x, y]$. Find the point of intersection in \mathbb{RP}^2 of the projective lines corresponding to the parallel lines y = mx and y = mx + c in \mathbb{R}^2 .

Solution. In homogeneous coordinates the projective lines have equations $mx_1 - x_2 = 0$ and $cx_0 + mx_1 - x_2 = 0$, which meet at [0, 1, m], a 'point at infinity' in the projective plane.

Section B (questions to be handed in for marking)

3. Embed \mathbb{C}^2 in the projective plane \mathbb{CP}^2 by $(x, y) \mapsto [1, x, y]$. Find the points of intersection in \mathbb{CP}^2 of the projective line and projective curve corresponding to the line y = mx + c and curve $y^2 = ax^2 + b$ in \mathbb{C}^2 , identifying any special cases.

4. Let \mathbb{Z}_2 be the field $\{0,1\}$ of integers modulo 2. Show that the number of points in *n*-dimensional projective space over \mathbb{Z}_2 is $2^{n+1} - 1$. How many projective lines are there in this space?

5. What are the answers to Q4 if you instead work over the field \mathbb{Z}_p with p elements, where p is an odd prime?

6. Show that $f: ([z_0, z_1], [w_0, w_1]) \mapsto [z_0 w_0, -z_0 w_1 - z_1 w_0, z_1 w_1]$ is a well-defined map from $\mathbb{CP}^1 \times \mathbb{CP}^1$ to \mathbb{CP}^2 .

Also show that this map is surjective.

Is the corresponding map $f : \mathbb{RP}^1 \times \mathbb{RP}^1 \to \mathbb{RP}^2$ surjective?

7. Show that complex projective space \mathbb{CP}^n is compact. What is the relationship between this space and a sphere of appropriate dimension?

Section C (optional extension questions, not to be handed in for marking)

8. Let $T: V \to V$ be an invertible linear map. When is $[v] \in \mathbb{P}(V)$ a fixed point of the projective transformation $\tau : \mathbb{P}(V) \to \mathbb{P}(V)$ defined by T? Show that every projective transformation τ of \mathbb{RP}^2 has a fixed point.