B3.3 Algebraic Curves

Hilary 2022
kirwan@maths.ox.ac.uk

Example sheet 1

Section A (introductory questions, not for marking, solutions available)

1. Let $(2,1),(1,1),(3,4)$ represent points in the projective line $\mathbb{P}^{1}(\mathbb{R})$. Find representative vectors v_{1}, v_{2}, v_{3} for these points which satisfy $v_{1}+v_{2}+v_{3}=0$.

Solution. We want $a, b, c \in \mathbb{R} \backslash\{0\}$ such that $a(2,1)+b(1,1)+c(3,4)=0$. We can take $a=c=1$ and $b=-5$, giving $v_{1}=(2,1), v_{2}=(-5,-5)$ and $v_{3}=(3,4)$.
2. Embed \mathbb{R}^{2} in the projective plane $\mathbb{R} \mathbb{P}^{2}$ by $(x, y) \mapsto[1, x, y]$. Find the point of intersection in $\mathbb{R P}^{2}$ of the projective lines corresponding to the parallel lines $y=m x$ and $y=m x+c$ in \mathbb{R}^{2}.

Solution. In homogeneous coordinates the projective lines have equations $m x_{1}-x_{2}=0$ and $c x_{0}+m x_{1}-x_{2}=0$, which meet at $[0,1, m]$, a 'point at infinity' in the projective plane.

Section B (questions to be handed in for marking)

3. Embed \mathbb{C}^{2} in the projective plane $\mathbb{C P}^{2}$ by $(x, y) \mapsto[1, x, y]$. Find the points of intersection in $\mathbb{C P}^{2}$ of the projective line and projective curve corresponding to the line $y=m x+c$ and curve $y^{2}=a x^{2}+b$ in \mathbb{C}^{2}, identifying any special cases.
4. Let \mathbb{Z}_{2} be the field $\{0,1\}$ of integers modulo 2 . Show that the number of points in n-dimensional projective space over \mathbb{Z}_{2} is $2^{n+1}-1$. How many projective lines are there in this space?
5. What are the answers to Q4 if you instead work over the field \mathbb{Z}_{p} with p elements, where p is an odd prime?
6. Show that $f:\left(\left[z_{0}, z_{1}\right],\left[w_{0}, w_{1}\right]\right) \mapsto\left[z_{0} w_{0},-z_{0} w_{1}-z_{1} w_{0}, z_{1} w_{1}\right]$ is a well-defined map from $\mathbb{C P}^{1} \times \mathbb{C P}^{1}$ to $\mathbb{C P}^{2}$.

Also show that this map is surjective.
Is the corresponding map $f: \mathbb{R} \mathbb{P}^{1} \times \mathbb{R} \mathbb{P}^{1} \rightarrow \mathbb{R} \mathbb{P}^{2}$ surjective?
7. Show that complex projective space $\mathbb{C P}^{n}$ is compact. What is the relationship between this space and a sphere of appropriate dimension?

Section C (optional extension questions, not to be handed in for marking)

8. Let $T: V \rightarrow V$ be an invertible linear map. When is $[v] \in \mathbb{P}(V)$ a fixed point of the projective transformation $\tau: \mathbb{P}(V) \rightarrow \mathbb{P}(V)$ defined by T ? Show that every projective transformation τ of $\mathbb{R P}^{2}$ has a fixed point.
