B3.3 Algebraic Curves

Hilary 2022
kirwan@maths.ox.ac.uk

Example sheet 2

Section A (introductory questions, not for marking, solutions available)

1. Let C be the projective curve with equation

$$
x^{2}+y^{2}=z^{2} .
$$

Show that the projective line through the points $[0,1,1]$ and $[t, 0,1]$ meets C in the two points $[0,1,1]$ and $\left[2 t, t^{2}-1, t^{2}+1\right]$.

Show that there is a bijection α between the projective line $y=0$ and C given by:

$$
\begin{gathered}
{[t, 0,1] \mapsto\left[2 t, t^{2}-1, t^{2}+1\right]} \\
{[1,0,0] \mapsto[0,1,1] .}
\end{gathered}
$$

Solution. A point on the projective line through $[0,1,1]$ and $[t, 0,1]$ is given by $[a t, b, a+b]$ where a and b are not both 0 . This point lies on C iff $a^{2} t^{2}+b^{2}=a^{2}+2 a b+b^{2}$, and hence iff $a^{2}\left(t^{2}-1\right)=2 a b$. This happens iff either $a=0$, in which case the point is $[0,1,1]$, or $a\left(t^{2}-1\right)=2 b$, in which case the point is $\left[2 t, t^{2}-1, t^{2}+1\right]$.

The projective line $y=0$ consists of the points $[t, 0,1]$ together with $[1,0,0]$. The projective line through the points $[0,1,1]$ and $[1,0,0]$ is the tangent line to C at $[0,1,1]$ and intersects C at this point only (with multiplicity two). The map α has an inverse which sends a point p of $C \backslash\{[0,1,1]\}$ to the unique point of intersection of the projective line through p and $[0,1,1]$ and the projective line $y=0$, and sends $[0,1,1]$ to the unique point of intersection of the tangent line to C at $[0,1,1]$ and the projective line $y=0$, which is [$1,0,0]$. Thus α is bijective.

Section B (questions to be handed in for marking)

2. Show that a homogeneous polynomial in two variables x, y may be factored into linear polynomials over \mathbb{C}.
3. Let C be the affine curve in \mathbb{C}^{2} defined by a polynomial $P(x, y)$. The multiplicity of C at a point $(a, b) \in C$ is defined to be the smallest positive integer m such that

$$
\frac{\partial^{m} P}{\partial x^{i} \partial y^{j}}(a, b) \neq 0
$$

for some $i, j \in \mathbb{N}$ with $i+j=m$. The polynomial

$$
\sum_{i+j=m} \frac{\partial^{m} P}{\partial x^{i} \partial y^{j}}(a, b) \frac{(x-a)^{i}(y-b)^{j}}{i!j!}
$$

is then homogeneous of degree m in $x-a$ and $y-b$, so is a product of m linear polynomials of the form $\alpha(x-a)+\beta(y-b)$ for $(\alpha, \beta) \in \mathbb{C}^{2} \backslash\{0\}$. The m lines (not necessarily distinct) defined by these linear polynomials are the tangent lines to C at (a, b).

Show that $(a, b) \in C$ is a nonsingular point of C if and only if its multiplicity is 1 ; what is its (unique) tangent line in this case?

A singular point of C of multiplicity m is called an ordinary singular point if the homogeneous polynomial of degree m defining its tangent lines has no repeated factors (that is, the point has m distinct tangent lines). A singular point of C of multiplicity 2 (respectively 3) is called a double point (respectively a triple point).

Find the multiplicities of the following curves at the origin, and determine whether the origin is an ordinary singular point in each case:
(i) $y^{2}=x^{3}+x^{2}$;
(ii) $y^{2}=x^{3}$;
(iii) $\left(x^{4}+y^{4}\right)^{2}=x^{2} y^{2}$;
(iv) $\left(x^{4}+y^{4}-x^{2}-y^{2}\right)^{2}=9 x^{2} y^{2}$.
4. Show that if $\alpha_{1}, \ldots, \alpha_{r}$ are distinct, then the affine curve

$$
y^{2}=\left(x-\alpha_{1}\right)\left(x-\alpha_{2}\right) \ldots\left(x-\alpha_{r}\right)
$$

is nonsingular.
What can you say about the associated projective curve?
5. (i) Show that the affine curve $y^{2}=x^{3}+x$ in \mathbb{C}^{2} is nonsingular.
(ii) Now consider this curve over the finite field \mathbb{Z}_{p} where p is a prime. That is, we consider the curve in $\left(\mathbb{Z}_{p}\right)^{2}$ with equation $y^{2}=x^{3}+x$.

For which p is this nonsingular?

Section C (optional extension questions, not to be handed in for marking)

6. Let $\mathbb{P}(V)$ be an n-dimensional projective space. We say that $n+2$ points in $\mathbb{P}(V)$ are in general position if each subset of $n+1$ points has linearly independent representative vectors.

Show that if X_{1}, \ldots, X_{n+2} are in general position then we can choose representative vectors v_{1}, \ldots, v_{n+2} such that

$$
v_{n+2}=\sum_{i=1}^{n+1} v_{i} .
$$

Deduce that given another set Y_{1}, \ldots, Y_{n+2} of points in general position there exists a unique projective transformation τ such that

$$
\tau: X_{i} \mapsto Y_{i} \quad(i=1, \ldots, n+2)
$$

What familiar result does this yield if $n=1$?
7. Prove Pappus's theorem by using the notion of general position as follows. First prove the theorem in the degenerate case when $A, B, C^{\prime}, B^{\prime}$ are not in general position. Then assume these points are in general position and take them to be $[1,0,0],[0,1,0],[0,0,1],[1,1,1]$. Calculate the three intersections explicitly, verify they are collinear, and explain why this proves the theorem in general.

