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Section A (introductory questions, not for marking, solutions available)

1. (i) Show that given any 5 points in CP2, there is at least one conic passing through
them. Show also that this conic is unique if no three of the points are collinear.

(ii) Let C be a quartic (degree 4) curve in CP2 with four singular points. Use the strong
form of Bézout’s theorem to show C must be reducible.

(iii) Show that y4 − 4xzy2 − xz(x− z)2 = 0 defines a quartic with three singular points.

Solution
(i) A conic is given by an equation of the form

∑3
j=1Bijxixj = 0 where B is 3 3 symmetric

and nonzero. We therefore have 5 homogeneous linear equations in 6 variables so there is a
nonzero solution.

Under the non-collinearity assumption, any four of the points are in general position so
can be moved to [1, 0, 0], [0, 1, 0], [0, 0, 1], [1, 1, 1]. Let the fifth point be [a, b, c]. If B is the
symmetric matrix defining the conic we see that

B11 = B22 = B33 = 0,

B12 +B23 +B31 = 0,

and
abB12 + bcB23 + caB31 = 0.

If the coefficients of the last equation are all equal then either a = b = c or two of a, b, c
are zero, and in each case this contradicts the assumption that the five points are distinct.
So any two nonzero solutions B are scalar multiples of each other, giving a unique conic.

(ii) Let the quartic C have 4 singular points, and let p be a distinct fifth point on C. Let
D be a conic through these 5 points, as guaranteed by part (i). Now we apply the strong
form of Bézout’s theorem: ∑

p∈C∩D

Ip(C,D) ≥ 1 + 2 + 2 + 2 + 2 = 9

as Ip(C,D) > 1 at a singularity of C. But (degC)(degD) = 8, so we have a contradiction
unless there is a common component, which implies that C is reducible.

(iii) Let P (x, y, z) = y4 − 4xzy2 − xz(x− z)2, so for a singular point we need

Px = −4zy − z(x− z)− 2xz(x− z) = 0,

Pz = −4xy − x(x− z) + 2xz(x− z) = 0,

Py = 4y − 8xyz = 0.
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The second equation implies either y = 0 or y2 = 2xz. If y = 0 then (from P = 0) we have
x = 0 or z = 0 or x = z. The only possible singular point we obtain in this way is [1, 0, 1].
If y2 = 2xz then

Px = −8xz − z(x− 2xz + z) + 2xz − 2xz = −z − 4xz − 3xz

which simplifies to Px = −z(x+ z)(3x+ z). Similarly, we find Pz = −x(x+ 3z)(x+ z). We
now find the resulting singularities are just those with x+ z = 0 which are

[1, i
√

2,−1] and [1,−i
√

2,−1],

giving three singularities in all.

Section B (questions to be handed in for marking)

2. Let P (x, y, z) be a homogeneous polynomial of degree d defining a nonsingular curve
C.

(i) Write down Euler’s relation for P, Px, Py, Pz. Deduce that the Hessian determinant
satisfies:

zHP (x, y, z) = (d− 1) det

 Pxx Pxy Pxz
Pyx Pyy Pyz
Px Py Pz

 .

(ii) Deduce further that:

z2HP (x, y, z) = (d− 1)2 det

 Pxx Pxy Px
Pyx Pyy Py
Px Py dP/(d− 1)

 .

(iii) Deduce that if P (x, y, 1) = y−g(x) then [a, b, 1] is a flex of C iff b = g(a) and g′′(a) = 0.

3. Let C and D be nonsingular projective curves of degree n and m in P2. Show that if
C is homeomorphic to D then either n = m or {n,m} = {1, 2}.

4. Show that if C is the conic y2 = xz then the map

f : P1 → C

given by
f : [s, t] = [s2, st, t2]

is a homeomorphism.
Deduce without using the degree-genus formula that all nonsingular conics have genus

zero.

5. Let f : X → Y be a (nonconstant) holomorphic map of compact connected Riemann
surfaces, where X is the Riemann sphere. Show that Y is homeomorphic to X.
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Section C (optional extension questions, not to be handed in for marking)

6(i) Let U be a connected open subset of C, and let f : U → C be holomorphic. Show
that if a ∈ U , then for sufficiently small real positive r, we have:

f(a) =
1

2π

∫ 2π

0

f(a+ reiθ) dθ.

(ii) Deduce that if |f| has a local maximum at a ∈ U , then |f| is constant on some
neighbourhood of a.

(iii) Deduce that if |f| has a local maximum at a ∈ U , then f is constant on U .

(iv) Now suppose S is a compact connected Riemann surface and f : S 7→ C is a
holomorphic function. Show that f is constant. [You may assume the Identity Theorem for
Riemann surfaces; that is, if two holomorphic maps on a (connected) Riemann surface agree
on a nonempty open set, then they agree everywhere].

7. Prove Pascal’s Theorem that the pairs of opposite sides of a hexagon inscribed in an
irreducible conic meet in three collinear points.
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