B3.3 Algebraic Curves

Hilary 2022
kirwan@maths.ox.ac.uk

Example sheet 3

Section A (introductory questions, not for marking, solutions available)

1. (i) Show that given any 5 points in $\mathbb{C P}^{2}$, there is at least one conic passing through them. Show also that this conic is unique if no three of the points are collinear.
(ii) Let C be a quartic (degree 4) curve in $\mathbb{C P}^{2}$ with four singular points. Use the strong form of Bézout's theorem to show C must be reducible.
(iii) Show that $y^{4}-4 x z y^{2}-x z(x-z)^{2}=0$ defines a quartic with three singular points.

Solution

(i) A conic is given by an equation of the form $\sum_{j=1}^{3} B_{i j} x_{i} x_{j}=0$ where B is 33 symmetric and nonzero. We therefore have 5 homogeneous linear equations in 6 variables so there is a nonzero solution.

Under the non-collinearity assumption, any four of the points are in general position so can be moved to $[1,0,0],[0,1,0],[0,0,1],[1,1,1]$. Let the fifth point be $[a, b, c]$. If B is the symmetric matrix defining the conic we see that

$$
\begin{aligned}
& B_{11}=B_{22}=B_{33}=0, \\
& B_{12}+B_{23}+B_{31}=0,
\end{aligned}
$$

and

$$
a b B_{12}+b c B_{23}+c a B_{31}=0
$$

If the coefficients of the last equation are all equal then either $\mathrm{a}=\mathrm{b}=\mathrm{c}$ or two of $\mathrm{a}, \mathrm{b}, \mathrm{c}$ are zero, and in each case this contradicts the assumption that the five points are distinct. So any two nonzero solutions B are scalar multiples of each other, giving a unique conic.
(ii) Let the quartic C have 4 singular points, and let p be a distinct fifth point on C. Let D be a conic through these 5 points, as guaranteed by part (i). Now we apply the strong form of Bézout's theorem:

$$
\sum_{p \in C \cap D} I_{p}(C, D) \geq 1+2+2+2+2=9
$$

as $I_{p}(C, D)>1$ at a singularity of C. But $(\operatorname{deg} C)(\operatorname{deg} D)=8$, so we have a contradiction unless there is a common component, which implies that C is reducible.
(iii) Let $P(x, y, z)=y^{4}-4 x z y^{2}-x z(x-z)^{2}$, so for a singular point we need

$$
\begin{gathered}
P_{x}=-4 z y-z(x-z)-2 x z(x-z)=0, \\
P_{z}=-4 x y-x(x-z)+2 x z(x-z)=0, \\
P_{y}=4 y-8 x y z=0 .
\end{gathered}
$$

The second equation implies either $y=0$ or $y^{2}=2 x z$. If $y=0$ then (from $P=0$) we have $x=0$ or $z=0$ or $x=z$. The only possible singular point we obtain in this way is $[1,0,1]$. If $y^{2}=2 x z$ then

$$
P_{x}=-8 x z-z(x-2 x z+z)+2 x z-2 x z=-z-4 x z-3 x z
$$

which simplifies to $P x=-z(x+z)(3 x+z)$. Similarly, we find $P_{z}=-x(x+3 z)(x+z)$. We now find the resulting singularities are just those with $x+z=0$ which are

$$
[1, i \sqrt{2},-1] \text { and }[1,-i \sqrt{2},-1]
$$

giving three singularities in all.

Section B (questions to be handed in for marking)

2. Let $P(x, y, z)$ be a homogeneous polynomial of degree d defining a nonsingular curve C.
(i) Write down Euler's relation for P, P_{x}, P_{y}, P_{z}. Deduce that the Hessian determinant satisfies:

$$
z \mathcal{H}_{P}(x, y, z)=(d-1) \operatorname{det}\left(\begin{array}{ccc}
P_{x x} & P_{x y} & P_{x z} \\
P_{y x} & P_{y y} & P_{y z} \\
P_{x} & P_{y} & P_{z}
\end{array}\right) \text {. }
$$

(ii) Deduce further that:

$$
z^{2} \mathcal{H}_{P}(x, y, z)=(d-1)^{2} \operatorname{det}\left(\begin{array}{ccc}
P_{x x} & P_{x y} & P_{x} \\
P_{y x} & P_{y y} & P_{y} \\
P_{x} & P_{y} & d P /(d-1)
\end{array}\right) .
$$

(iii) Deduce that if $P(x, y, 1)=y-g(x)$ then $[a, b, 1]$ is a flex of C iff $b=g(a)$ and $g^{\prime \prime}(a)=0$.
3. Let C and D be nonsingular projective curves of degree n and m in \mathbb{P}^{2}. Show that if C is homeomorphic to D then either $n=m$ or $\{n, m\}=\{1,2\}$.
4. Show that if C is the conic $y^{2}=x z$ then the map

$$
f: \mathbb{P}^{1} \rightarrow C
$$

given by

$$
f:[s, t]=\left[s^{2}, s t, t^{2}\right]
$$

is a homeomorphism.
Deduce without using the degree-genus formula that all nonsingular conics have genus zero.
5. Let $f: X \rightarrow Y$ be a (nonconstant) holomorphic map of compact connected Riemann surfaces, where X is the Riemann sphere. Show that Y is homeomorphic to X.

Section C (optional extension questions, not to be handed in for marking)

6(i) Let U be a connected open subset of \mathbb{C}, and let $f: U \rightarrow \mathbb{C}$ be holomorphic. Show that if $a \in U$, then for sufficiently small real positive r, we have:

$$
f(a)=\frac{1}{2 \pi} \int_{0}^{2 \pi} f\left(a+r e^{i \theta}\right) d \theta
$$

(ii) Deduce that if $|f|$ has a local maximum at $a \in U$, then $|f|$ is constant on some neighbourhood of a.
(iii) Deduce that if $|f|$ has a local maximum at $a \in U$, then f is constant on U.
(iv) Now suppose S is a compact connected Riemann surface and $f: S \mapsto \mathbb{C}$ is a holomorphic function. Show that f is constant. [You may assume the Identity Theorem for Riemann surfaces; that is, if two holomorphic maps on a (connected) Riemann surface agree on a nonempty open set, then they agree everywhere].
7. Prove Pascal's Theorem that the pairs of opposite sides of a hexagon inscribed in an irreducible conic meet in three collinear points.

