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The general advice for the use of lecture notes is that, you should read the notes in advance, and
take notes from lectures. Let me quote what Nobel laureate William Faulkner (1897-1962), who grow
up in Oxford (USA), said when an interviewer asked that “Mr. Faulkner, some of your readers claim
they still cannot understand your work after reading it two or three times. What approach would you
advise them to adopt?” Faulkner answered, “ Read it a fourth time.” This advice applies to these
notes and books on analysis too – you need to come back and read them again and again.

The structure of the lecture notes for Analysis II (Oxford Edition) was based on the hand-written
notes by Professor Heath-Brown. I have tried to maintain the precise, rigor and simplicity style.
Thanks must also go to the previous lecturers of the course who have made substantial improvement
over the past years. While there are many excellent textbooks you should use for a comprehensive and
systematic account. I should recommend two classics, one by W. Rudin: Principles of Mathematical
Analysis (3rd Edition), the other by T. M. Apostol: Mathematical Analysis (Second Edition).

I do not implement a numbering system in lectures, however, if necessary, I may quote statements
with numbers referring to the lecture notes.

4. Several notations I will use frequently through the lectures:

• C: the set of all complex numbers – the complex plane

• R: the set of real numbers – the real line; R⊂ C.

• Q: the set of rational numbers, Q⊂ R .

• ∀ : “for all”, “for every one”, “whenever”

• ∃ : “there exist(s)”, “there is (are)”,

• iff stands for “if and only if”

If z = x+ iy is a complex number, then its |z| =
√

x2 + y2 is called the absolute value of z (also
called the modulus of z).

Comments will be put in square brackets [· · · ] giving further information.

Please send any comments you may have, or any typos and errors you may spot while you are
enjoying your reading to qianz@maths.ox.ac.uk
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Chapter 1

Function Limits and Continuity

In this chapter, we are going to
1) introduce the definition of limits for functions, including left-hand side and right-hand side

limits for functions on intervals, and some variations of function limits;
2) derive essential properties of functions limits, and establish relationship between function limits

and limits for sequences;
3) introduce the concepts of continuity and uniform continuity for functions;
4) prove several important theorems about continuous functions on intervals, such as the intermedi-

ate value theorem, boundedness and bounds of continuous functions on closed and bounded intervals,
uniform continuity of continuous functions on closed and bounded intervals;

5) study the continuity of monotone functions on intervals, and establish the inverse function the-
orem (continuity part) for strictly monotone functions on intervals;

6) discuss the uniform convergence of series of functions, and prove that the continuity is preserved
under uniform convergence.

1.1 Function Limits

Let us recall several facts about limits for sequences, which were covered in your Analysis I.

Limits for sequences and completeness

Definition 1.1.1 1) A sequence (zn) of real (or complex) numbers has a limit l, denoted by zn → l
as n→ ∞, or limn→∞ zn = l, if for every ε > 0, there is a real number N such that for every n > N,
|zn− l|< ε . [Some authors require N being a positive integer, but we do not demand for this].

2) A sequence (zn) of numbers converges if it has a limit l for some number l.
3) A sequence (zn) of numbers is called a Cauchy sequence if for every ε > 0 there exists real

number N such that for any n,m > N
|zn− zm|< ε.

That is, (zn) is Cauchy if
|zn− zm| → 0 as n,m→ ∞.

Here |xn− xm| → 0 as n,m→ ∞ means that for any given ε > 0 there is N such that |xn− xm|< ε

whenever n,m≥ N.

3



4 CHAPTER 1. FUNCTION LIMITS AND CONTINUITY

Remark 1.1.2 We may use symbol ∀ to mean “for every”; “whenever”; “for all”, and use notation
symbol ∃ to mean “there exist(s)”; “there is (are)”.

s. t. is the abbreviation of “such that”, “iff” stands for “if and only if” and “resp.” for “respec-
tively”.

Remark 1.1.3 According to definition, a sequence (zn) does not converge to l [that is, either (zn)
diverges or zn→ a 6= l], if and only if there exists ε > 0, for every natural number k, there is at least
one nk > k such that

|znk− l| ≥ ε .

In general, to formulate a contra-positive proposition: Replace symbol ∀ (“for every”) by ∃
(“there exist(s)”), and ∃ by ∀, and negate the statement.

Theorem 1.1.4 (Cauchy’s Criterion, The General Principle for Convergence) A sequence (zn) of
(real or complex) numbers converges if and only if it is a Cauchy sequence.

In this sense, the real line R and the complex plane C are complete [as metric spaces. We will
study this topic in Paper A2 in your second year].

Remark 1.1.5 According to Cauchy’s criterion, (zn) diverges [i.e. (zn) does not converge to a finite
limit], if and only if there is ε > 0, such that for every k ∈ N, there are integers nk1 , nk2 > k such that

|znk1
− znk2

| ≥ ε .

A sequence (an) of real numbers is increasing (or called non-decreasing) if an+1 ≥ an for n =
1,2,3, · · · . An increasing sequence (an) has a finite limit if it is bounded from above, or an→ ∞. In
fact

an→ sup{ak : k ≥ 1}= sup{ak : k ≥ m}

as n→ ∞ (for any m) with the convention that sup{ak} = ∞ if the sequence (an) is unbounded from
above. Similarly, if (an) is decreasing (or called non-increasing), then

an→ inf{ak : k ≥ 1}= inf{ak : k ≥ m}

as n→ ∞ (for any m) with the convention that inf{ak}=−∞ if the sequence (an) is unbounded from
below.

For a bounded sequence (an) of real numbers, its upper limit

limsup
n→∞

an = lim
n→∞

sup{ak : k ≥ n}

and its lower limit
liminf

n→∞
an = lim

n→∞
inf{ak : k ≥ n}

respectively.

Compactness

The following theorem demonstrates the ”compactness” of a bounded subset.

Theorem 1.1.6 (Bolzano-Weierstrass’ Theorem) A bounded sequence in R (or in C) has a sub-
sequence which converges to some number. That is, a bounded sequence of numbers possesses a
convergent sub-sequence.
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Proof. First we prove this for real sequences. Suppose (an) is a bounded sequence of real numbers.
Then the tail supremum

cn = sup{ak : k ≥ n}
exists for every n = 1,2, · · · , and (cn) is bounded and decreasing. Therefore (cn) has a limit denoted
by c. For each k = 1,2, · · · , there is nk ≥ k such that ank

ck−
1
k
< ank ≤ ck

and clearly we can choose nk so that k→ nk strictly increasing. Then (ank) is a sub-sequence of (an),
and by Sandwich lemma, ank → c. This proves the case of real sequences.

Suppose zn = an + bni is a bounded sequence of complex numbers. then both (an) and (bn) are
bounded sequences. Hence we can extract a convergent sub-sequence (ank). Now (bnk) is a bounded
real sub-sequence from which one can extract a convergent sub-sequence (bn′k

). Then (zn′k
) is a con-

vergent sub-sequence of (zn).
We will use frequently the following consequence of the Bolzano-Weierstrass theorem.

Corollary 1.1.7 A bounded sequence (zn) in R (or in C) converges to a limit l if and only if every
convergent sub-sequence of (zn) has the same limit.

Proof. [=⇒; “only if ” part; Necessity] Proved in Analysis I: any sub-sequence of a convergent
sequence tends to the same limit.

[⇐= ; “if” part; Sufficiency] Let us argue by contradiction [If you cannot prove a statement directly,
then formulate the contra-positive, and prove it is wrong]. Suppose (zn) were divergent. Since (zn)
is bounded, according to Bolzano-Weierstrass’ Theorem, one can extract a sub-sequence (znk) from
(zn) which converges to some number l1. Let (yn)≡ (zn)\ (znk) [the sub-sequence of (zn) with all znk

removed] which must be a sub-sequence otherwise (zn) converges to l1. If (yn) did not tend to l1, then
there is ε > 0 such that for every j ∈ N, there is an integer n j > j such that

|yn j − l1| ≥ ε .

[which is the contra-positive to that yn→ l1]. Since (yn j) is bounded, according to Bolzano-Weierstrass’
Theorem, there is a convergent sub-sequence (z′nk

) of (yn j), so that limz′nk
= l2 for some l2. Since

|z′nk
− l1| ≥ ε ∀k,

which yields that
lim
k→∞
|z′nk
− l1|= |l2− l1| ≥ ε > 0 .

[Here we have used the fact that if an→ a then |an| → |a|: you should be able to prove this by using
definition of sequence limits]. Therefore l1 6= l2. Thus we have found two sub-sequences of (zn)
converging to distinct limits, which is a contradiction to the assumption.

Limit points

Definition 1.1.8 Let E ⊆ R (resp. C). p ∈ R (resp. C) is called a limit point (or an accumulation
point, a cluster point ) of E, if for every ε > 0, there is z ∈ E other than p, i.e. z 6= p, such that

|z− p|< ε.

A point of E which is not a limit point of E is called an isolated point of E.
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Proposition 1.1.9 p ∈ R is a limit point of an interval [a,b] ( (a,b], [a,b) or (a,b)) if and only if
p ∈ [a,b], where a,b are two numbers.

[Exercise]

Concept of function limits

Mathematicians call a mapping from a subset E of R (or C) to R (or C) a function with domain
E. That is, a real (resp. complex) valued function f on E ⊂ R (or E ⊂ C) is a correspondence (i.e.
a mapping) which assigns each x of E to a unique real (resp. complex) number f (x). E is called the
domain of f . f (E) = { f (x) : x ∈ E} is called the range of f . That is, f (E) is the image of E under
the mapping f .

Example 1.1.10 f (x) =
√

1− x2 with domain E = [−1,1]. What is its graph? Its graph looks con-
tinuous, and f (E) = [0,1].

Example 1.1.11 Let

f (x) =
{ 1

q+p , if x = p
q ∈ (0,1], and (p,q) = 1 ,

0 , if x ∈ (0,1] is irrational, .

The domain of f is (0,1]. It is not easy to sketch the graph of f .

Example 1.1.12 f (x) = xsin 1
x with its domain R\{0}. As x tends to 0, f oscillates but tends to 0, so

that f has limit 0 as x goes to 0.

Definition 1.1.13 Let E ⊆ R (or C), and f : E → R (or C) be a real (or complex) function. Let p be
a limit point of E [ but p is not necessary in E], and l be a number. If for every ε > 0 there is δ > 0
[which may depend on p and ε] such that for every x ∈ E with 0 < |x− p|< δ we have

| f (x)− l|< ε,

then we say f tends to l as x goes to p [along E], written as

lim
x→p

f (x) = l

or f (x)→ l as x→ p [along E]. In this case we also say f (or f (x)) has limit l, or say f (x) converges
to l as x→ p.

[Do a sketch to demonstrate the meaning of the definition]. To underscore that we are taking limit
along E, we also write the limit as

lim
x∈E,x→p

f (x) = l.

This will be the case for side limits which will be introduced shortly.

Remark 1.1.14 f doesn’t converge to l as x→ p [that is, either f has no limit or f (x)→ a 6= l
as x→ p], then there is ε > 0, for every δ > 0 there exists x ∈ E such that 0 < |x− p| < δ but
| f (x)− l| ≥ ε .

Example 1.1.15 Let f (x) = |x|α sin 1
x for x 6= 0, where α > 0 is a constant. [E = R\{0}]. Show that

f (x)→ 0 as x→ 0.
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Proof. Since
∣∣xα sin 1

x

∣∣≤ |x|α for any x 6= 0, therefore, for every ε > 0, we may choose δ = ε1/α .
Then ∣∣∣∣xα sin

1
x
−0
∣∣∣∣≤ |x|α < ε

whenever 0 < |x−0|< δ . According to definition, |x|α sin 1
x → 0 as x→ 0.

Proposition 1.1.16 Let f : E → R (or C) and p be a limit point of E. If f has a limit as x→ p, then
the limit is unique.

Proof. [Proof by contradiction]. Suppose f (x)→ l1 and also f (x)→ l2 as x→ p, where l1 6= l2.
Then 1

2 |l1− l2|> 0, so that, according to definition of function limits, there is δ1 > 0 such that

| f (x)− l1|<
1
2
|l1− l2| ∀x ∈ E s. t. 0 < |x− p|< δ1 ,

and there exists δ2 > 0 such that

| f (x)− l2|<
1
2
|l1− l2| ∀x ∈ E s. t. 0 < |x− p|< δ2 .

Let δ = min{δ1,δ2}. Since p is a limit point of E, there is x ∈ E such that 0 < |x− p| < δ , and
therefore

|l1− l2| = | f (x)− l2− f (x)+ l1| [+1 and -1 technique]
≤ | f (x)− l1|+ | f (x)− l2| [Triangle Ineq.]

<
1
2
|l1− l2|+

1
2
|l1− l2|

= |l1− l2|

which is impossible. Thus we have completed the proof.

Theorem 1.1.17 [Function limits via limits for sequences.] Let f : E → R (or C) where E ⊆ R (or
C), p be a limit point of E, and l ∈ C. Then limx→p f (x) = l if and only if for any sequence (pn) in E
such that pn 6= p and pn→ p, we have

lim
n→∞

f (pn) = l .

[limx→p f (x) = l if and only if f tends to the same limit l along any sequence in E converging to
p.]

Proof. [Necessity] Suppose limx→p f (x) = l. Then for every ε > 0, there is a number δ > 0 such
that

| f (x)− l|< ε ∀x ∈ E with 0 < |x− p|< δ .

Let pn ∈ E be a sequence such that pn→ p and pn 6= p. Then, according to the definition for sequence
limits, there is N ∈N such that for every n > N, |pn− p|< δ . Since pn 6= p for every n, we also have
|pn− p|> 0, and therefore

0 < |pn− p|< δ ∀n > N.

Hence, for every n > N
| f (pn)− l|< ε .

According to definition of sequence limits, f (pn)→ l as n→ ∞.
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[Sufficiency] Let us argue by contradiction. If limx→p f (x) = l were not true, then there is ε > 0,
for each n = 1,2, · · · [withδ = 1

n ] there is [at least] one point xn ∈ E, such that 0 < |xn− p|< 1
n but

| f (xn)− l| ≥ ε .

Therefore we have constructed a sequence (xn) which converges to p, xn 6= p, but ( f (xn)) does not
tend to l, which is a contradiction.

Proposition 1.1.18 [Algebra of limits] Let p be a limit point of E, and f , g be two real (or complex)
functions on E. Suppose limx→p f (x) = A and limx→p g(x) = B. Then

1) limx→p ( f (x)±g(x)) = A±B;
2) limx→p f (x)g(x) = AB ;
3) if B 6= 0,

lim
x→p

f (x)
g(x)

=
A
B

.

Proof. Using AOL for sequence limits together with Theorem 1.1.17. [Exercise].

Example 1.1.19 Show that limx→0 sin 1
x does not exist.

Proof. Let xn =
1

2πn and yn =
1

2πn+π/2 . Then xn→ 0 and yn→ 0, but

lim
n→∞

sin
1
xn

= 0 and lim
n→∞

sin
1
yn

= 1 .

So that limx→0 sin 1
x doesn’t exist according to Theorem 1.1.17.

Example 1.1.20 [A very useful fact about function limits] If limx→p f (x) = l 6= 0, then there is δ > 0,
such that for x ∈ E with 0 < |x− p|< δ we have

| f (x)| ≥ |l|
2

.

In particular, | f (x)|> 0 for all x ∈ E such that 0 < |x− p|< δ .

Proof. Since limx→p f (x) = l and |l|> 0, applying the definition of function limits to f at p with
ε = |l|/2 which is positive, there is δ > 0, for x ∈ E such that 0 < |x− p|< δ we have

| f (x)− l|< |l|
2

Using triangle inequality we then deduce that

| f (x)| = |l +( f (x)− l)|
≥ |l|− | f (x)− l|

> |l|− |l|
2

=
|l|
2

for every x ∈ E such that 0 < |x− p|< δ .

Left-hand limits and right-hand limits limits for functions on intervals

For functions defined on an interval, we may talk about right-hand and left-hand limits, which
however are special cases of our definition for function limits.
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Definition 1.1.21 1) Let f be a real or complex function in [a,b) and p ∈ [a,b). Then we say the
right-hand limit of f at p exists and equals l, written as limx→p+ f (x) = l (or limx↓p f (x) = l, or
limx>p,x→p f (x) = l), if for every ε > 0, there is δ > 0, for any x ∈ [a,b) such that 0 < x− p < δ one
has

| f (x)− l|< ε .

2) Let f : (a,b]→ R (or C), and let p ∈ (a,b]. Then we say the left-hand limit of f at p exists and
equals l, written as limx→p− f (x) = l (or lim x↑p f (x) = l, or limx<p,x→p f (x) = l), if for every ε > 0,
there is δ > 0, such that for any x ∈ (a,b], 0 < p− x < δ one has

| f (x)− l|< ε .

For simplicity, the left-hand limit (resp. the right-hand limit) is denoted by f (p−) (resp. f (p+)).
Obviously, limx→p f (x) exists if and only if both the left-hand and the right-hand side limits at p

exist and equal.
There are some variations of function limits which are quite useful as well.

Definition 1.1.22 1) Let f be a real or complex function defined on (a,∞) (resp. (−∞,b)). We say
f (x)→ l as x→ ∞ (resp. x→−∞), written as limx→∞ f (x) = l (resp. limx→−∞ f (x) = l), if every
ε > 0, there is N, such that x > N (resp. x <−N)

| f (x)− l|< ε.

2) Let f be a real or complex function defined on {z : |z|> R} for some R > 0. Then f (z)→ l as
z→ ∞, if for every ε > 0, there is N > 0, such that for any |z|> N we have

| f (z)− l|< ε .

One can generalize the definition of limits at ∞ (resp. −∞) for function f with domain E, such that
∞ (resp. −∞) is a limit point of E.

Exercise 1.1.23 1) Give definitions of limx→x0 f (x) = ∞, limx→x0 f (x) =−∞, limx→−∞ f (x) = ∞ and
etc.

2) Formulate a statement that f does not tend to l as x→ ∞.

Example 1.1.24 Show that limx→∞

(
1+ 1

x

)x
= limx→−∞

(
1+ 1

x

)x
exists.

We will develop a powerful tool, the L’Hoptial rules, in the later part of the course to evaluate this
kind of limits. Here we prove this based on sequence limits.

Let an =
(
1+ 1

n

)n
. Then(

1+
1
n

)n

= 1+1+
1
2!

(
1− 1

n

)
+

1
3!

(
1− 1

n

)(
1− 2

n

)
+ · · ·

+
1
n!

(
1− 1

n

)(
1− 2

n

)
· · ·
(

1− n−1
n

)
,

so that an is increasing. Moreover

0 ≤ an < 1+1+
1
2!

+
1
3!

+ · · ·+ 1
n!

≤ 2+
1

1×2
+

1
2×3

+ · · ·+ 1
(n−1)n

< 3.
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Hence {an} is increasing and bounded, so that limn→∞ an = supn
(
1+ 1

n

)n
exists. This limit is denoted

by e.
If x > 0, we use [x] to denote the integer part of x. Obviously [x]≥ x−1→ ∞ as x→ ∞. Since(

1+
1
x

)x

≥
(

1+
1

[x]+1

)[x]

=

(
1+

1
[x]+1

)[x]+1 [x]+1
[x]+2

→ e

and (
1+

1
x

)x

≤
(

1+
1
[x]

)[x]+1

=

(
1+

1
[x]

)[x] [x]+1
[x]

→ e

the Sandwich Rule (or called the Squeezed Lemma) [Analysis I. You should formulate a version for
function limits and prove it !] implies that

lim
x→∞

(
1+

1
x

)x

= e .

For negative x, we set y =−x > 0. Then \leq(
1+

1
x

)x

=

(
1− 1

y

)−y

=

(
y−1

y

)−y

=

(
y

y−1

)y

=

(
1+

1
y−1

)y−1(
1+

1
y−1

)
→ e .

We will show that e = ∑
∞
n=0

1
n! and study the exponential function exp after we establish powerful

tools.

1.2 Continuity of functions
In the definition of limx→p f (x), the point p may not belong to the domain E of f . Even f (p) is
well-defined, the limit of f at p may not coincide with its value f (p).

Definition 1.2.1 Let f : E→ R (or C), where E ⊆ R (or C), and p ∈ E [ so p belongs to the domain
of f ]. If for every ε > 0 there is δ > 0, such that for every x ∈ E with |x− p|< δ we have

| f (x)− f (p)|< ε ,

then we say that f is continuous at p.

According to definition, f is continuous at any isolated point of E.
If p is a limit point of E, then f is continuous at p, if and only if

1. p belongs to the domain of f , i.e. f (p) is well defined,

2. limx→p f (x) exists,
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3. and limx→p f (x) equals the value of f at p.

Example 1.2.2 Let α > 0 be a constant. The function f (x) = |x|α sin 1
x is not continuous at x = 0 as

f is not well-defined. Redefine the function to be

g(x) =
{
|x|α sin 1

x if x 6= 0 ,
0 if x = 0 .

Then g is continuous at x = 0.

Example 1.2.3 Let f : (0,1]→ R defined by

f (x) =
{ 1

q , if x = p
q and (p,q) = 1,

0 , if x is irrational.

(here (p,q) = 1 means that p and q are co-prime, i.e, p,q have no common factor). Then f is
continuous at irrationals of (0,1], and is not continuous at rationales.

Proof. Suppose that x0 ∈ (0,1) is irrational, so by definition of f , f (x0) = 0, hence

| f (x)− f (x0)|=
{

0 if x is irrational,
1
q if x = p

q and (p,q) = 1 .

For every ε > 0, there are only finite many pairs of positive integers p and q such that p ≤ q and
q≤ 1

ε
, so that

δ ≡min
{∣∣∣∣x0−

p
q

∣∣∣∣ : p≤ q and q≤ 1
ε

}
> 0.

If |x− x0|< δ , then x is either irrational and f (x) = 0, or x is rational but 0≤ f (x)< ε , so that

| f (x)− f (x0)|< ε.

By definition, this shows that f is continuous at irrational number x0.
If x0 =

p
q ∈ (0,1] is rational, then, for ε = 1

2q > 0 and for whatever how small δ > 0, there is an
irrational number x̃∈ (0,1] such that |x̃− p

q |< δ [Here we use the fact that rational numbers are dense
in R, a fact proved in Analysis I in MT], so that

| f (x̃)− f (x0)|=
1
q
> ε .

f is not continuous at rational numbers.

Proposition 1.2.4 If f and g are continuous at p, so are f ±g; f g and f/g (provided g(p) 6= 0).

[Definition + Algebra of function limits].

Example 1.2.5 Let f : C→ C (or R→ R) be a polynomial. Then f is continuous in C (or R).

Theorem 1.2.6 If f : E → C and g : f (E)→ C, and h : E → C is the composition function of g and
f defined by

h(x) = (g◦ f )(x)≡ g( f (x)) for x ∈ E.

If f is continuous at p ∈ E and g is continuous at f (p), then h is continuous at p.



12 CHAPTER 1. FUNCTION LIMITS AND CONTINUITY

[Composition of two continuous functions is continuous.]
Proof. For any ε > 0, since g is continuous at f (p), there is δ1 > 0 such that for any y ∈ f (E) with

|y− f (p)|< δ1 we have
|g(y)−g( f (p))|< ε,

so that for x ∈ E such that | f (x)− f (p)|< δ1, then

|g( f (x))−g( f (p))|< ε .

Since f is continuous at p, so there is δ > 0, for any x ∈ E such that |x− p|< δ , we have

| f (x)− f (p)|< δ1.

Therefore
|g( f (x))−g( f (p))|< ε

for any x ∈ E such that |x− p|< δ . By definition h is continuous at p.
Let f be a real or complex function on [a,b) (resp. (a,b]) and p ∈ [a,b) (resp. p ∈ (a,b]). We

say f is right (resp. left) continuous at p if f (p+) = f (p) (resp. f (p−) = f (p)) [i.e. the right-hand
(or the left-hand) limit of f at p exists and equals f (p)]. According to definition, f is continuous at
p ∈ (a,b) if and only if f (p+) = f (p−) = f (p).

Example 1.2.7 Consider function

f (x) =
{

x if x≥ 0 ,
x+1 if x < 0 .

Then f (0+) = 0 and f (0−) = 1. f is not continuous at 0.

1.3 Continuous functions on intervals

In this part we are going to prove several important results about continuous functions on intervals.
Intervals are simple but important subsets of the real line R. Some authors insist that an interval

is bounded, in this course however an interval may be bounded or unbounded. Hardly we need a
definition of intervals though – one can either list all possible intervals, or give a formal definition.

Definition 1.3.1 We say a non-empty subset E ⊆ R possesses the interval property, if x,y ∈ E, then
E contains any real number z between x and y, that is, [x,y]⊆ E (or [y,x]⊆ E if y≤ x).

Proposition 1.3.2 Assume that E ⊆ R is non-empty and possesses the interval property.
(i) If E is unbounded from above and is also unbounded from below, then E = (−∞,∞).
(ii) If E is unbounded from below but bounded from above, then E = (−∞,b] or E = (−∞,b),

where b = supE.
(iii) If E is unbounded from above but bounded from below, then E = [a,∞) or E = (a,∞), where

a = infE.
(iv) If E is bounded, then E = (a,b), E = (a,b], E = [a,b) or E = [a,b], where a = infE and

b = supE.
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Proof. Let us prove (ii). The proofs of the others are similar. If E is unbounded from below, and
bounded above, then b= supE exists. Let us show that (−∞,b)⊆E. Suppose x< b, then by definition
of supE, there is x0 ∈ E such that b≥ x0 > x. Since E is unbounded from below, there is A ∈ E such
that A < x. Therefore A,x0 ∈ E and A < x < x0, and since E possesses the interval property, so x ∈ E
too. Thus (−∞,b)⊆ E. On the other hand E ⊆ (−∞,b] by definition of b. Therefore E = (−∞,b] or
E = (−∞,b) depending on whether b ∈ E or not. The proof is complete.

In the rest of the course we will only deal with functions on intervals.
By definition, a real or complex valued function f is continuous on a (bounded) closed interval

[a,b] (where a and b are two real numbers), by definition, if f is continuous at every x0 ∈ [a,b]. That
is, for every x0 ∈ (a,b),

f (x0) = f (x0+) = f (x0−) = lim
x→x0

f (x0),

f (a) = f (a+) = lim
x>a,x→a

f (x)

and
f (b) = f (b−) = lim

x<b,x→b
f (x).

In terms of ε−δ , for any given ε > 0, for every x0 ∈ (a,b), there is δ > 0 such that

| f (x)− f (x0)|< ε for every x ∈ (x0−δ ,x0 +δ )

and there are δa > 0 and δb > 0, such that

| f (x)− f (a)|< ε for any x ∈ [a,a+δa)

and
| f (x)− f (b)|< ε for any x ∈ (b−δb,b].

These properties of a continuous function f on [a,b] will be used in our arguments below.

1.3.1 Intermediate Value Theorem
Intermediate Value Theorem (in short, IVT) is one of the most important result about continuous
functions on intervals, which lies in the foundation for many concepts you will meet in your Part A
to Part C. The concept of connectivity of topological spaces (Paper A2 and Paper A5) has its origin
in IVT.

Theorem 1.3.3 (Intermediate Value Theorem (IVT)). Let f : [a,b]→R be continuous, and let C be
a number between f (a) and f (b). Then there is ξ ∈ [a,b] such that f (ξ )=C. Therefore [ f (a), f (b)]⊂
f ([a,b]) (or [ f (b), f (a)]⊂ f ([a,b]) if f (b)< f (a)), where f ([a,b]) = { f (x) : x ∈ [a,b]}.

Proof. We may assume that f (a) ≤ f (b), otherwise consider the function − f (x) instead. If f (a) =
f (b), or C = f (a) or f (b), then the conclusion is clearly true with ξ = a or b. We may further assume
that C = 0 otherwise consider f (x)−C instead. Therefore we assume that f (a)< 0 < f (b), and want
to show that there is ξ ∈ (a,b) such that f (ξ ) = 0.

Do a sketch of the graph of f , which is a continuous curve, and observe that the first crossing point
through the x-axis of the curve must be a zero of f . Therefore we define

ξ = inf{x ∈ [a,b] : f (x)> 0} ,



14 CHAPTER 1. FUNCTION LIMITS AND CONTINUITY

where {x ∈ [a,b] : f (x)> 0} denotes the subset of [a,b] consisting of all x ∈ [a,b] such that f (x)> 0.
Since f (b)> 0, so that

{x ∈ [a,b] : f (x)> 0}

is non-empty and bounded, thus its infinimum ξ exists by the completeness axiom of real numbers.
We prove that f (ξ ) = 0. To this end, we first show that ξ ∈ (a,b) by using the continuity of f at a
and at b. In fact, since f (a)< 0 and f (b)> 0, and f is continuous at a and at b, there are δ1 > 0 and
δ2 > 0 such that

| f (x)− f (a)|<− f (a)
2

for x ∈ [a,a+δ1)

[Here we have applied the definition of continuity to f at a with ε =− f (a)/2 which is positive], and

| f (x)− f (b)|< f (b)
2

for x ∈ (b−δ2,b]

[Similarly here we have used the definition of continuity for f at b with ε = f (b)/2 > 0]. Therefore

f (x)<
f (a)

2
< 0 for x ∈ [a,a+δ1)

and

f (x)>
f (b)

2
> 0 for x ∈ (b−δ2,b].

By definition of ξ , the inequalities above yield that ξ ≥ a+δ1 > a and that ξ ≤ b−δ2 < b. Therefore
ξ ∈ (a,b).

We next show that f (ξ ) = 0 by using continuity of f at ξ . By definition of ξ , f (x)≤ 0 for every x
such that a≤ x < ξ , since f is continuous at ξ , so that

f (ξ ) = f (ξ−) = lim
x<ξ ,x→ξ

f (x)≤ 0.

We next show that f (ξ ) can’t be negative. If f (ξ )< 0, then since f is continuous at ξ , there is δ > 0
such that

| f (x)− f (ξ )|<− f (ξ )
2

for x ∈ (ξ −δ ,ξ +δ )

[Here using the definition of continuity for f at ξ with ε = − f (ξ )/2 – which were positive by
contradiction assumption], so that

f (x)<
f (ξ )

2
< 0 for x ∈ (ξ −δ ,ξ +δ )

and therefore f (x)≤ 0 for all x∈ [a,ξ +δ ). Hence we must have ξ ≥ ξ +δ , which is a contradiction.
Hence f (ξ ) = 0. The proof is complete.

In the previous proof, ξ = inf{x ∈ [a,b] : f (x)> 0} is the first x-coordinate at which the graph of
f crosses the x-axis, but ξ is not necessary the first root of f (x) = 0 greater than a. Of course we
may locate the first zero of the function f on [a,b], which is given by η = inf{x ∈ [a,b] : f (x)≥ 0}.
Under the conditions that f is continuous on [a,b] and f (a)< 0 < f (b), one can show that f (η) = 0.
This gives a slightly different proof of the IVT.

Proof. (Proof of IVT – a constructive proof ) The case that C = f (a) or C = f (b) is trivial, so we
assume that C 6= f (a) or f (b). Therefore f (a)<C < f (b) or f (b)<C < f (a). Let g(x) = f (x)−C.
Then g(a) and g(b) have different sign, g(a)g(b) < 0. Let x1 = a and y1 = b. Divide the interval



1.3. CONTINUOUS FUNCTIONS ON INTERVALS 15

[x1,y1] at its center 1
2(x1 + y1) into two equal parts. If g(1

2(x1 + y1)) = 0 then ξ = 1
2(x1 + y1) will

do. Otherwise, we choose x2 = x1 and y2 = (1
2(x1 + y1) if g(1

2(x1 + y1)) > 0, or x2 =
1
2(x1 + y1) and

y2 = y1 if g(1
2(x1 + y1))< 0. Then g(x2)g(y2)< 0; [x2,y2]⊂ [x1,y1] and

|y2− x2|=
1
2
(b−a) .

Apply the previous argument to [x2,y2] instead of [a,b], to obtain [x3,y3]⊂ [x2,y2], such that

|y3− x3|=
1
2
|y2− x2|=

1
22 (b−a)

and g(x3)g(y3) ≤ 0. By repeating the same procedure, we may find some [xk,yk] ⊂ [a,b], g(xk) = 0
or g(yk) = 0 then ξ = xk or yk will do.

Otherwise, we may construct two sequences (xn) and (yn) such that g(xn)g(yn) ≤ 0, [xn,yn] ⊂
[xn−1,yn−1] for any n = 2, · · · , and

|yn− xn| =
1
2
|yn−1− xn−1|

= · · ·= 1
2n−1 |y1− x1|

=
b−a
2n−1 .

Obviously, (xn) is a bounded increasing sequence, and (yn) is a bounded decreasing sequence, thus
xn → ξ and yn → ξ ′ for some ξ , ξ ′ ∈ [a,b] [Analysis I: bounded monotone sequences converge].
Since

lim
n→∞
|yn− xn|= lim

n→∞

1
2n−1 (b−a) = 0,

so ξ = ξ ′. Since g is continuous at ξ ,

0≥ lim
n→∞

g(xn)g(yn) = lim
n→∞

g(xn) lim
n→∞

g(yn) = g(ξ )2,

which yields that g(ξ )2 = 0, and therefore g(ξ ) = 0 [As g(ξ ) is a real number], so that f (ξ ) =C.

Remark 1.3.4 Given C between f (a) and f (b), ξ may be not unique. From the proof we can see
that, if [xn,yn] is a decreasing net of closed intervals (i.e. [xn,yn]⊂ [xn+1,yn+1] for each n) such that
the length yn− xn→ 0, then ∩∞

n=1[xn,yn] exactly contains one point (and in particular is not empty).

Remark 1.3.5 The proof of the IVT also provides a method of finding roots to f (ξ ) = c, but other
methods may find roots faster if additional information about f (e.g. that f is differentiable) is avail-
able.

The following corollary is the general form of IVT for real valued functions of one real variable.

Theorem 1.3.6 Let E ⊆ R be an interval, and f be real-valued and continuous on E. Then f (E)≡
{ f (x) : x ∈ E} is an interval too.

Proof. If E is empty, then there is nothing to prove, so we assume that E is a non-empty interval.
Then f (E) is non-empty. Let A,B ∈ f (E). We prove that for every real number C between A and
B, C also belongs to f (E). Let a,b ∈ E such that f (a) = A and f (b) = B. Since E is an interval,
by Proposition 1.3.2, [a,b] ⊂ E (or [b,a] ⊂ E if b < a), f is continuous on [a,b] (or [b,a]). By IVT
applying to f on [a,b] (or [b,a]), there is ξ between a and b such that f (ξ ) = C, which implies that
C ∈ f (E). According to Proposition 1.3.2, f (E) is an interval.
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Theorem 1.3.7 If f is a real valued function which is continuous on R, then f maps an interval to
an interval, that is, if E ⊆ R is an interval, then so is its image f (E) = { f (x) : x ∈ E}.

In Paper A2, we will show that the only connected subsets of R are intervals, so the previous
Corollary may be stated as the following

Theorem 1.3.8 If f : R→ R is continuous (i.e. f is continuous at every x ∈ R), and if E ⊆ R is
connected, then so is f (E).

1.3.2 Boundedness
A real or complex function f is bounded on E, if the image f (E) of E under the function f , which is
the subset { f (x) : x ∈ E}, is bounded. That is, there is non-negative constant M such that

| f (x)| ≤M ∀ x ∈ E .

Theorem 1.3.9 If f : [a,b]→ R (or C) is continuous, where a ≤ b are two real numbers, then f is
bounded on [a,b].

Proof. Let us prove this theorem by contradiction. Suppose f were unbounded, then for every
n ∈ N, there is [at least one] xn ∈ [a,b] such that | f (xn)| ≥ n. According to Bolzano-Weierstrass’
Theorem, we may extract a convergent sub-sequence (xnk) from (xn). Let xnk → p. Since [a,b]
contains all its limiting points, so that p ∈ [a,b]. Since f is continuous on [a,b], so it is continuous at
p, thus according to Theorem 1.1.17,

lim
n→∞

f (xnk) = f (p).

Therefore ( f (xnk)) must be bounded [from Analysis I: any convergent sequence is bounded], which
is a contradiction to the assumption that | f (xnk)| ≥ nk ≥ k for every k. Therefore f is bounded, and
the proof is complete.

In order to state the next important theorem about continuous functions on closed intervals, we
introduce the following notations.

Let f : E→R be a real-valued function on E, where E is non-empty. Then f (E) = { f (x) : x ∈ E}
is a non-empty subset of R. If f (E) is bounded from above, that is, f (E) has an upper bound, then
supx∈E f (x) (or denoted by supE f ) is the least upper bound of f (E), called the supremum of f on E,
that is,

sup
x∈E

f (x) = sup{ f (x) : x ∈ E} .

Similarly, if f (E) is bounded from below, that is, f (E) has a lower bound, then infx∈E f (x) denotes
the greatest lower bound of f (E), the infimum of f on E, so that

inf
x∈E

f (x) = inf{ f (x) : x ∈ E} .

The existence of the least and the greatest bounds for a bounded real function f is guaranteed by the
completeness of the real number system.

Suppose f is a real valued function which bounded from above on E. Then M = supx∈E f (x) if
and only if f (z) ≤ M [so M is an upper bound on E] and for any given ε > 0 there is zε ∈ E such
that f (zε) > M− ε [that is, any real which is smaller than M can not be a upper bound of f on E].
Similarly, if f is bounded from below on E, then m = infx∈E f (x) if and only if f (z) ≥ m [so m is a
lower bound on E] and for every ε > 0 there is zε ∈ E such that f (zε)< m+ε [that is, any real which
is greater than m is not a lower bound of f on E].
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Theorem 1.3.10 If f : [a,b]→ R is continuous, then f attains its bounds on [a,b]. That is, there are
x1,x2 ∈ [a,b] such that

f (x1) = sup
x∈[a,b]

f (x) and f (x2) = inf
x∈[a,b]

f (x)

respectively.

Proof. [That is, sup and inf are attained. Note that x1, x2 are not necessary unique. In short, we
may say “a continuous function on a closed bounded interval is bounded and attains its bounds”.]
We give two different proofs for this important theorem.

(1st Proof) According to Theorem 1.3.9, f is bounded on [a,b], so that m ≡ infx∈[a,b] f (x) exists
by the completeness of the real number system [Analysis I]. By definition, f (x)≥ m for all x ∈ [a,b],
and for every n = 1,2, · · · , there is an xn ∈ [a,b] such that

m≤ f (xn)≤ m+
1
n
.

Since (xn) is bounded, according to Bolzano-Weierstrass’ Theorem, we may extract a convergent
subsequence (xnk) : xnk → p. Then p ∈ [a,b]. Since f is continuous at p, limx→p f (x) = f (p), so that
f (xnk)→ f (p) according to Theorem 1.1.17. While

m≤ f (xnk)≤ m+
1
nk

(1.3.1)

for all k, so by letting k→ ∞ in the previous inequality (1.3.1) we obtain that

m≤ lim
k→∞

f (xnk) = f (p)≤ lim
k→∞

(
m+

1
nk

)
= m

[or by Sandwich lemma for sequence limits] which implies that f (p) = m = infx∈[a,b] f (x).
(2nd Proof) [More elegant proof – again argue by contradiction.] Let us prove that the supremum

of f is attained by contradiction. Let M = sup[a,b] f . Suppose M were not attained on [a,b], so that

f (z)< M ∀z ∈ [a,b].

Then
g(x) =

1
M− f (x)

is positive and continuous on [a,b]. Therefore, according to Theorem 1.3.9, g is bounded on [a,b].
Hence there is a positive number M0 such that

g(x) =
1

M− f (x)
≤M0

for every x ∈ [a,b]. It follows that

f (x)≤M− 1
M0

< M

for all x ∈ [a,b], which is a contradiction to the assumption that M is the least upper bound of f on
[a,b].

Remark 1.3.11 The proofs of the previous two theorems rely on the following facts:
1) [a,b] is bounded;
2) [a,b] is closed (i.e. [a,b] contains all limit points of [a,b]);
3) f is continuous.



18 CHAPTER 1. FUNCTION LIMITS AND CONTINUITY

Remark 1.3.12 In Paper A2 in your second year, we will study the concepts of open/closed subsets,
compact spaces and compact subsets. A subset A of R (or C) is called closed if A contains all its limit
points. A subset A of R or C is compact if and only if A is bounded and closed.

In terms of compact subsets, we have

Theorem 1.3.13 1) If f is a continuous real or complex valued function on a compact subset E, then
f (E) is also a compact subset.

2) If f is a continuous real valued function on a compact subset E ⊆ R or on a compact subset
E ⊆ C, then f attains its bounds, that is, there are x1, x2 ∈ E such that

f (x1)≤ f (x)≤ f (x2) for every x ∈ E,

so that f (x1) = infx∈E f (x) and f (x2) = supx∈E f (x).

Remark 1.3.14 The proofs of Theorem 1.3.20, 1.3.9, 1.3.10 rely on the compactness of the closed
interval [a,b] [via Bolzano-Weierstrass’ theorem], and the proof of IVT relies on the fact that [a,b] is
unbroken, i.e. [a,b] is “connected”. For details about “connectedness”, see W. Rudin’s Principles,
page 93, Theorem 4.22 and Theorem 4.23.

As a consequence we have the following important

Corollary 1.3.15 Let f : [a,b]→ R be continuous, M = supx∈[a,b] f (x) and m = infx∈[a,b] f (x). Then
for any c ∈ [m,M] there is at least one ξ ∈ [a,b] such that f (ξ ) = c. Therefore

f ([a,b]) = [m,M] .

Proof. Let E = [a,b] an bounded and closed interval. Since f is continuous on E, so f is bounded,
thus m = inf f (E) and M = sup f (E) exist. By definition f (E) ⊂ [m,M]. On the other hand, f (E)
is an interval too (Theorem 1.3.6) and m,M ∈ f (E) by Theorem 1.3.10, [m,M] ⊂ f (E). Therefore
f (E) = [m,M].

Example 1.3.16 Suppose f : [0,1]→ [0,1] is continuous, then there is a fixed point of on [0,1], that
is, there is ξ ∈ [0,1] such that f (ξ ) = ξ . In fact, g(x) = f (x)− x is continuous on [0,1], and g(0) =
f (0)≥ 0 and g(1) = f (1)−1≤ 0, so, by IVT, there is ξ ∈ [0,1], such that f (ξ ) = ξ .

1.3.3 Uniform Continuity

Recall that f with its domain E is continuous at x0 ∈ E, if for any given ε > 0 one can find a number
δ > 0 such that

| f (x)− f (x0)|< ε

holds for all x ∈ E satisfying that |x− x0|< δ . In general, the positive number δ depends not only on
ε but also on x0, and the dependence of δ on ε and x0 measures the degree of “continuity” of f on E.

Example 1.3.17 Show that for every x0 6= 0, limx→x0
1
x = 1

x0
. Therefore 1

x is continuous at any x 6= 0.
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Proof. Since ∣∣∣∣1x − 1
x0

∣∣∣∣= |x− x0|
|x||x0|

,

thus, if |x− x0|< |x0|
2 [so we need to choose δ smaller than |x0|

2 ], then

|x| ≥ |x0|− |x− x0|>
|x0|
2

[by using the triangle inequality]

so that ∣∣∣∣1x − 1
x0

∣∣∣∣= |x− x0|
|x||x0|

≤ 2
|x0|2
|x− x0| .

[Thus in order to ensure that
∣∣∣1

x −
1
x0

∣∣∣ < ε we only need 2
|x0|2
|x− x0| < ε and |x− x0| < |x0|

2 ]. Choose

δ = min
{
|x0|
2 , ε|x0|2

2

}
[which is positive as x0 6= 0]. Then∣∣∣∣1x − 1

x0

∣∣∣∣< ε

whenever |x− x0|< δ . Hence 1
x →

1
x0

as x→ x0. Note that δ depends on ε and also on x0 as well, so
that the degree of “continuity” of f (x) = 1

x is not uniform in x ∈ (0,∞).

Example 1.3.18 Suppose that f is Lipschitz continuous in E in the sense that there is a constant M
such that

| f (x)− f (y)| ≤M|x− y|

for any x,y ∈ E. Then f is continuous at any x0 ∈ E.

Proof. Let x0 ∈ E. For every ε > 0, choose δ = ε

M+1 [which depends only on ε but not on x0 ∈ E].
Then

| f (x)− f (x0)| ≤ M|x− x0|

≤ M
(

ε

M+1

)
< ε

whenever x ∈ E such that |x− x0|< δ . Therefore for a given ε > 0 we can find a number δ > 0 that
works for all x0 ∈ E, so that f is uniformly continuous on E.

For example, f (x) =
√

x is Lipschitz continuous on [1,∞):

| f (x)− f (y)|= |x− y|√
x+
√

y
≤ |x− y|

for all x,y≥ 1, so that
√

x is uniformly continuous on [1,∞).

Definition 1.3.19 Let f : E → R (or C). f is uniformly continuous on E, if for every ε > 0, there is
δ > 0, such that for all y,x ∈ E with |y− x|< δ we have

| f (y)− f (x)|< ε .

The following theorem is important in the theory of Riemann integrals, which will be the analysis
topic in Trinity Term.
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Theorem 1.3.20 If f : [a,b]→ R (or C) is continuous, then f is uniformly continuous on [a,b].

Proof. [This theorem says that a continuous function on a closed interval (or in general on a
compact space, i.e. a bounded and closed subset of R or C, see W. Rudin’s Principles, Theorem 4.19,
page 91) is uniformly continuous.]

Let us argue by contradiction. Suppose that f were not uniformly continuous, then, ∃ ε > 0, such
that for any n [with δ = 1

n ], ∃ a pair of points xn, yn ∈ [a,b], |xn− yn|< 1
n but

| f (xn)− f (yn)| ≥ ε .

[which is the contra-positive to the uniform continuity]. Since (xn) is bounded, by Bolzano-Weierstrass’
Theorem, we may extract a convergent subsequence (xnk) from (xn) which converges to some p. p
must be a limit point of [a,b], so that p ∈ [a,b]. Since

|ynk− p| ≤ |xnk− ynk |+ |xnk− p|

<
1
nk

+ |xnk− p| → 0

Thus xnk → p and ynk → p. Since f is continuous at p,

0 < ε ≤ lim
k→∞
| f (xnk)− f (ynk)|= | f (p)− f (p)|= 0

which is impossible. Here we have used again the following fact about sequence limits: an→ a as
n→ ∞ implies that |an| → |a| as n→ ∞.

Proposition 1.3.21 If f is a real or complex valued function which is uniformly continuous on E ⊆R
or C, then f maps a Cauchy sequence in E to a Cauchy sequence. That is, if (xn) is a Cauchy
sequence, where xn ∈ E for n = 1,2, · · · , then ( f (xn)) is also a Cauchy sequence.

Proof. For any given ε > 0, since f is uniformly continuous on E, there is δ > 0, whenever x,y∈ E
such that |x− y|< δ we have

| f (x)− f (y)|< ε.

Since (xn) is Cauchy, there is N > 0 such that for all n,m≥ N, |xn− xm|< δ . Hence

| f (xn)− f (xm)|< ε

for all n,m≥ N. Therefore ( f (xn)) is a Cauchy sequence.
This is the best for what we can say about Cauchy sequences for a function on a general domain.

Actually the converse of the previous proposition is not true in general as the following example
shows.

Example 1.3.22 f (x) = x2 is continuous on [0,∞) but not uniformly in [0,∞). While f maps a Cauchy
sequence to a Cauchy sequence.

In fact, for every n = 1,2, · · · , let xn = n+ 1
n and yn = n then xn− yn =

1
n tends to zero as n→ ∞,

but
| f (xn)− f (yn)|= 2+

1
n2 > 2,

so f is not uniformly continuous. We claim that f maps a Cauchy sequence into a Cauchy sequence.
In fact, if (an) is a Cauchy sequence of [0,∞), then (an) must be bounded, thus there is A > 0 such
that all an ∈ [0,A], and therefore (an) is a Cauchy sequence in [0,A]. Since f is uniformly continuous
on [0,A] by Theorem 1.3.20, so ( f (an)) is also a Cauchy sequence by Proposition 1.3.21 applying to
f on the closed interval [0,A]. Therefore f (x) = x2 maps a Cauchy sequence into a Cauchy sequence,
but is not uniformly continuous on E.

While the converse is true if the domain E is bounded.



1.3. CONTINUOUS FUNCTIONS ON INTERVALS 21

Proposition 1.3.23 Let E be a bounded subset of R or C. Then a real or complex valued function f
is uniformly continuous on E if and only if f maps Cauchy sequences of E into Cauchy sequences.

Proof. By Proposition 1.3.21 we only need to show the sufficiency. That is, we prove that if
E is bounded, and if f maps a Cauchy sequence to a Cauchy sequence, then f must be uniformly
continuous on E. Suppose f were not uniformly continuous on E, so by definition there is an ε > 0
such that for every n there is a pair xn, yn in E such that |xn− yn|< 1

n but

| f (xn)− f (yn)| ≥ ε.

Since (xn) ⊂ E, so it is a bounded sequence, therefore by Bolzano-Weierestrass’ theorem, we may
extract a convergent sequence (xnk). Hence (xnk) is a Cauchy sequence, and, by AOL,

ynk = xnk +(ynk− xnk)

tends to the same limit of (xnk). Now define a2k+1 = xnk and a2k = ynk . Then (ak) is convergent, so it
is a Cauchy sequence of E, while

| f (a2k+1)− f (a2k)| ≥ ε

for all k, so the image ( f (ak)) is not Cauchy. This is a contradiction.

Example 1.3.24 f (x) =
√

x is uniformly continuous in [0,∞).

Proof. For every ε > 0, since
√

x is continuous on [0,1], according to Theorem 1.3.20, it is
uniformly continuous the closed interval [0,1]. Hence ∃δ1 > 0, ∀x,y ∈ [0,1] such that |x−y|< δ1 we
have

|
√

x−√y|< ε

2
. (1.3.2)

On [1,∞), the function
√

x is Lipschitz. In fact, for x,y≥ 1,∣∣√x−√y
∣∣= |x− y|√

x+
√

y
≤ 1

2
|x− y|

and therefore
√

x is uniformly continuous on [1,∞).
[In fact we can prove that

√
x is Lipschitz continuous on [a,∞) for any positive number a, but it is

not Lipschitz continuous on [0,∞)].
Thus ∃δ2 > 0, ∀x,y≥ 1 such that |x− y|< δ2 we have

|
√

x−√y|< ε

2
. (1.3.3)

Let δ = min{δ1,δ2}. Let x,y ∈ [0,∞) such that |x− y|< δ . If both x and y belong to [0,1] or both in
[1,∞), then

|
√

x−√y|< ε

2
< ε .

If x ∈ [0,1] and y≥ 1, since |x− y|< δ , so that |x−1|< δ and |y−1|< δ , and therefore

|
√

x−√y| ≤ |
√

x−
√

1|+ |√y−
√

1|

<
ε

2
+

ε

2
= ε.

Hence
|
√

x−√y|< ε

whenever x, y ∈ [0,∞) such that |x− y|< δ . By definition, f (x) =
√

x is uniformly continuous in the
unbounded interval [0,∞).
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1.3.4 Monotonic Functions and Inverse Function Theorem
We study in this part the continuity of monotone functions on intervals.

A function f : E → R, where E ⊆ R is a subset, is increasing (or called non-decreasing) on E
if x,y ∈ E and x ≤ y implies that f (x) ≤ f (y). Similarly we may define decreasing (or called non-
increasing) functions on E. A function on E is monotone if it is increasing on E or it is decreasing
on E. A function f is strictly monotone (resp. strictly increasing) on E if f is monotone (resp.
increasing) on E and f is also 1-1. If f : E → R is 1-1, then f defines an inverse function f−1 with
its domain f (E) = { f (x) : x ∈ E}.

Definition 1.3.25 Let f be a real valued function on E ⊆ R.
1) If f (x) ≤ f (y) (resp. f (x) ≥ f (y)) whenever x < y and x,y ∈ E, then we say f is increasing

(resp. decreasing) in E.
2) A function is called monotone on E if it is increasing on E or decreasing on E.
3) If x < y implies that f (x) < f (y) (resp. f (x) > f (y)) then f is said to be strictly increasing

(resp. strictly decreasing) on E.

Theorem 1.3.26 Let f be a monotone function on (a,b), and x0 ∈ (a,b). Then
1) The right-hand limit f (x0+) and left-hand limit f (x0−) exist, f (x0) lies between f (x0−) and

f (x0+).
2) f is continuous at x0 if and only if f (x0+)= f (x0−). In general, the difference f (x0+)− f (x0−)

is the ”jump” or “increment” of f at x0.

Proof. We may assume that f is increasing (i.e. non-decreasing) on (a,b), otherwise we consider
− f instead. Let x0 ∈ (a,b). Then { f (x) : a < x < x0} is clearly a non-empty subset of R. Since f is
non-decreasing, this subset is bounded from above by f (x0), so that

l = sup
a<x<x0

f (x)≡ sup{ f (x) : a < x < x0}

exists. By definition of l, for every ε > 0, there is xε < x0 such that

l− ε < f (xε)≤ l.

Let δ = x0− xε . Then for every x ∈ (x0−δ ,x0), x0 > x > xε , so that

l− ε < f (xε)≤ f (x)≤ l,

which implies that
| f (x)− l|< ε.

By definition of left-hand side limits

f (x0−) = sup
a<x<x0

f (x).

Similarly we have
f (x0+) = inf

x0<x<b
f (x)≡ inf{ f (x) : x0 < x < b} .

Since f is increasing, we have
f (x0−)≤ f (x0)≤ f (x0+).

Finally, by definition, limx→x0 f (x) exists if and only if f (x0+) = f (x0−). Since f (x0) is sandwich
between f (x0−) and f (x0+), so this is equivalent to that f is continuous at x0.

There are similar results for monotone functions on other types of intervals.
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Theorem 1.3.27 Let f be a monotone function on an interval E ⊆ R. Then f is continuous on E if
and only if f (E) = { f (x) : x ∈ E} is an interval.

Proof. If f is continuous, and E is an interval, then by IVT, f (E) is an interval too.
Suppose f is monotone and f (E) is an interval, let us show that f is continuous on E. We may

assume that f is increasing on E otherwise consider − f instead. We may assume E = (a,b), as the
other cases may be reduced to this case. For example, if E = [a,b), where a is a number, then we
define f (x) = f (a)+(x−a) for x < a, so f is increasing and continuous on (−∞,b), so we consider
this extension of f on (−∞,b) instead.

If there were x0 ∈ (a,b) such that f were not continuous at x0, we may deduce a contradiction.
In fact, according to Theorem 1.3.26, ( f (x0−), f (x0)) or/and ( f (x0), f (x0+)) is non-empty. Suppose
( f (x0−), f (x0)) is non-empty for example, then we can choose a number C ∈ ( f (x0−), f (x0)), and
choose x1 ∈ (a,x0) and x2 ∈ (x0,b). Then

f (x1)≤ f (x0−)<C < f (x0)< f (x2)

so C is between f (x1) and f (x2), but C /∈ f (E). Therefore, by Proposition 1.3.2, f (E) can’t be an
interval, which contradicts to the assumption.

Lemma 1.3.28 Let E ⊆ R be an interval. Suppose f : E → R is continuous and 1-1 on E, then f
must be strictly monotone on E.

Proof. We may assume that E = [a,b] (where a < b) is a bounded and closed interval without
losing generality, as any interval E can be written as

E =
∞⋃

n=1

[an,bn]

where (an) is decreasing and (bn) is increasing.
We may assume that f (a) < f (b) otherwise consider − f instead. We prove that f is strictly

increasing on [a,b].
To this end, we first show that f (a) < f (x) < f (b) for every x ∈ (a,b). If for some x ∈ (a,b),

f (x) < f (a), then by IVT applying to continuous function f on [x,b], there is a ξ ∈ [x,b] such that
f (a) = f (ξ ). Since a < x ≤ ξ , this is a contradiction to the assumption that f is 1-1. Hence f (x) >
f (a) for every x ∈ (a,b). Similarly, we can show that f (x)< f (b) for any x ∈ (a,b). If a < x < y < b,
then considering continuous function f on [a,y], since f (a) < f (y), and f is 1-1 on [a,y], so that
f (a)< f (x)< f (y), which implies that f is strictly increasing on [a,b].

Now we are going to prove the inverse function theorem. The first part of this theorem is about
the continuity of inverse functions, the second part is about the differentiability of inverse functions
which will be dealt with in the next chapter.

Theorem 1.3.29 (Inverse Function Theorem). Let E ⊆R be an interval, and f : E→R be continu-
ous and 1-1 on E. Then the inverse function f−1 is continuous on f (E), where f (E) = { f (x) : x ∈ E}.

Proof. By IVT (Theorem 1.3.6), f (E) is an interval, and according to Lemma 1.3.28, f is strictly
monotone on E. Therefore f−1 is well-defined on the interval f (E) and is strictly monotone too. By
definition f−1( f (E)) = E which is an interval, so by Theorem 1.3.27 applying to f−1 on f (E), we
may deduce that f−1 is continuous on f (E). This completes the proof.
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Proof. [Another proof via ε-δ definition.] By Lemma 1.3.28, under the assumptions, f is strictly
monotone on E. We may assume that f is strictly increasing otherwise study − f instead. Without
losing generality we may assume that E = (a,b) is open, otherwise, for example if E = [a,b), we may
extend the definition of f continuously to (−∞,b) by setting f (x) = f (a)+(x−a) for x < a which is
continuous and 1-1 on (−∞,b).

Let f−1 be the inverse of f , with its domain f (E) = { f (x) : a < x < b}. Since f is continuous,
according to IVT (Theorem 1.3.6), f (E) is again an interval. Since f is strictly increasing, f (E) =
(c,d) is also an open interval, where

c = lim
x↓a

f (x) and d = lim
x↑b

f (x).

[Note that c can be−∞, and d can be ∞]. Let y0 ∈ (c,d). We are going to show that f−1 is continuous
at y0. Let x0 = f−1(y0) ∈ (a,b). For every ε > 0, we may choose 0 < ε1 < ε such that

(x0− ε1,x0 + ε1)⊆ (a,b).

Since f is strictly increasing,

δ ≡min{ f (x0 + ε1)− y0,y0− f (x0− ε1)}

is positive, and
(y0−δ ,y0 +δ )⊆ (c,d).

For every y such that |y− y0|< δ , since f is strictly increasing

f−1(y) = x ∈ (x0− ε1,x0 + ε1)

which implies that ∣∣ f−1(y)− f−1(y0)
∣∣< ε1 < ε

so by definition f is continuous at y0. Since y0 ∈ f (E) is arbitrary, so f−1 is continuous on f (E).
Thus we have completed the proof.

Theorem 1.3.30 (Inverse Function Theorem for functions on closed intervals) Let f be a strictly
increasing and continuous real function on [a,b]. Then the inverse function f−1 is well defined on
[ f (a), f (b)] and is continuous.

Proof. [There is a similar result for decreasing functions.] In this case f (a) and f (b) are the
minimum and the maximum of f respectively, so that f ([a,b]) = [ f (a), f (b)]. Therefore f−1 is well-
defined on [ f (a), f (b)]. The continuity of f−1 follows from Theorem 1.3.29 now.

We are now able to give a complete picture about monotone continuous functions on intervals.

Theorem 1.3.31 Let E be an interval and f : E → R be a real valued function. Then the following
statements are equivalent:

(i) f is 1-1 and continuous on E;
(ii) f is continuous, and f is strictly increasing on E or strictly decreasing on E;
(iii) f is 1-1, monotone on E, and f (E)≡ { f (x) : x ∈ E} is an interval.
If f satisfies any of conditions (i)-(iii), then f is continuous on interval E, f (E) is an interval, f

maps E one-to-one and onto f (E), and the inverse function f−1 is continuous on f (E). Moreover
f (E) = (c,d), [c,d), (c,d] or [c,d], where c = infE f and d = supE f , with the convention that if f is
unbounded from below then infE f =−∞, and similarly if f is unbounded from above then supE f =∞.
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Theorem 1.3.32 If f : (a,b)→R is monotone, then f is continuous on (a,b) except at most countably
many points.

Proof. Suppose f is increasing in (a,b), and A ⊂ (a,b) denotes the collection of discontinuous
points of f . If x < y, x,y ∈ (a,b), then, since f is increasing

f (x+) = inf
t>x

f (t) = inf
y>t>x

f (t)≤ sup
x<t<y

f (t) = sup
t<y

f (t) = f (y−).

Hence
f (x−)≤ f (x+)≤ f (y−)≤ f (y+)

which implies that
( f (x−), f (x+))∩ ( f (y−), f (y+)) = Ø (1.3.4)

for any x 6= y, x,y ∈ (a,b). By Theorem 1.3.26, x ∈ A if and only if f (x−) < f (x+), that is, the
open interval ( f (x−), f (x+)) is non-empty. For any x ∈ (a,b) at which f is discontinuous, then
( f (x−), f (x+)) is non-empty, so that we may choose a rational number rx ∈ ( f (x−), f (x+)) [using
the fact that rationales are dense in R]. By (1.3.4) rx are different for different x, thus x→ rx is
injective from A to Q. Therefore A is at most countable.

Example 1.3.33 Let {cn} be a sequence of positive numbers such that ∑cn converges. Let (xn) be a
sequence of distinct numbers in (a,b) [For example all rationales in (a,b)]. Consider

f (x) = ∑
n:xn<x

cn (a < x < b) ,

where the summation takes over those indices n for which xn < x. If there are no xn < x, then the
sum is assumed value zero. [Exercise: f is well defined on (a,b)]. Then f is increasing on (a,b),
discontinuous at each xn with an jump f (xn+)− f (xn−) = cn, and is continuous at any other point of
(a,b). Moreover f is a left-continuous at xn: f (xn−) = f (xn).

To study this function, which looks like a step function with infinitely steps, we may consider its
partial sum sequence

fn(x) = ∑
k≤n,xk<x

ck

where we do the sum over only those indices k which fulfill two constraints that k ≤ n and also that
xk < x. By assumption we have

| f (x)− fn(x)|=

∣∣∣∣∣ ∑
k>n,xk<x

ck

∣∣∣∣∣≤ ∞

∑
k=n+1

ck.

Note the right-hand side in the inequality is independent of x, so that

sup
x
| f (x)− fn(x)| ≤

∞

∑
k=n+1

ck→ 0

as n→ ∞, hence fn → f uniformly in (a,b), a concept we are going to introduce shortly. Let A =
{xk : k = 1,2, · · ·}. Then for every n, fn is continuous at every x ∈ (a,b)\A, and is left continuous at
every xk, so as the uniform limit of fn, f is continuous at every x ∈ (a,b)\A, and is left continuous at
every xk, see the big theorem below which we are going to prove for a general case.

Exercise 1.3.34 Modify the definition of f in the example so that f is right-continuous at each xn.
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1.4 Uniform Convergence
Let E be a subset of R or C, and f : E→ C be continuous at p ∈ E. Then

lim
x→p

f (x) = f (p) = f ( lim
x→p

x) ,

that is, we may interchange the function operation f and the limiting process limx→p. In many situa-
tions, we would like to understand if the order of performing two (or more) operations is relevant or
not.

Consider a sequence ( fn) of functions defined on E (⊂ R or C). If for every x ∈ E, the se-
quence fn(x)→ f (x), then we say that fn converges (to f ) on E, and f is the limit function, written
limn→∞ fn = f in E or fn→ f on E. We are interested in the following question: can we exchange
the order of taking two limits limn→∞ and limx→p:

lim
x→p

lim
n→∞

fn(x) and lim
n→∞

lim
x→p

fn(x) ?

In particular, if all fn are continuous at p, is the limit function limn→∞ fn continuous at p as well?
We may ask the same question for series of functions. If the sequence of partial sums

sn(x)≡
n

∑
k=1

fk(x) ∀x ∈ E

converges for every x ∈ E, then we will use
∞

∑
n=1

fn

to denote the limit function of (sn), called the sum of the series ∑
∞
n=1 fn. Can we exchange the

summation ∑
∞
n=1 [which by definition is understood as limn→∞ ∑

n
k=1] and limx→p:

lim
x→p

∞

∑
n=1

fn(x) =
∞

∑
n=1

lim
x→p

fn(x) ?

In other words, can we work out the limit limx→p of the infinite sum ∑
∞
n=1 fn term by term?

Example 1.4.1 Consider the sequence of functions [sketch their graphs!]

fn(x) =
{

0 if x≥ 1
n ;

−nx+1 if 0≤ x < 1
n .

Then

lim
n→∞

fn(x) = f (x)≡
{

0 if x 6= 0 ;
1 if x = 0 .

fn(x) converges to f (x) for every x∈ [0,1] [but not uniformly, see definition below]. The limit function
f is not continuous at 0, although all fn are continuous on [0,1]. Indeed

lim
x→0

lim
n→∞

fn(x) = lim
x→0

f (x) = 0

while
lim
n→∞

lim
x→0

fn(x) = lim
n→∞

1 = 1

so that
lim
x→0

lim
n→∞

fn(x) 6= lim
n→∞

lim
x→0

fn(x) .
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Definition 1.4.2 Let fn and f be real (or complex) functions on E, where n = 1,2, · · · .
1) If for every ε > 0, there is N ∈ N such that for all x ∈ E and for all n > N

| fn(x)− f (x)|< ε,

then we say fn converges to f uniformly on E, written as fn→ f uniformly on E as n→ ∞.
2) Define the sequence of partial sums

sn(x)≡
n

∑
k=1

fk(x) ∀x ∈ E

If sn→ s uniformly on E, then we say the series ∑
∞
n=1 fn converges uniformly on E.

By definition, fn→ f uniformly on E implies point-wise convergence that

lim
n→∞

fn(x) = f (x) ∀x ∈ E.

Theorem 1.4.3 Let fn, f : E→ R (or C). Then fn→ f uniformly on E if and only if

lim
n→∞

sup
x∈E
| fn(x)− f (x)|= 0 .

Proof. Recall the notation used here:

sup
x∈E
| fn(x)− f (x)|= sup{| fn(x)− f (x)| : x ∈ E}

which is the supermum of the function | fn− f | over E, or ∞ if the function | fn− f | is unbounded on
E.

“=⇒”. Suppose fn→ f uniformly on E, then for any given ε > 0 there is N such that ∀x ∈ E and
n > N we have

| fn(x)− f (x)|< ε

2
.

[That is, ε

2 is an upper bound of {| fn(x)− f (x)| : x ∈ E}]. Hence ∀n > N

sup
x∈E
| fn(x)− f (x)| ≤ ε

2
[Think about why we have “≤ ”, not “ < ” ?]

< ε .

According to definition, limn→∞ supx∈E | fn(x)− f (x)|= 0.
“⇐=”. Suppose limn→∞ supx∈E | fn(x)− f (x)|= 0, then ∀ε > 0 ∃N such that ∀n > N

sup
x∈E
| fn(x)− f (x)|< ε.

Therefore for all x ∈ E and n > N

| fn(x)− f (x)| ≤ sup
x∈E
| fn(x)− f (x)|< ε.

By definition fn→ f uniformly on E.

Exercise 1.4.4 Prove that fn→ f uniformly in E if and only if for any sequence (xn) in E

lim
n→∞
| fn(xn)− f (xn)|= 0 .
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[Hint: Formulate the contrapositive to that fn→ f uniformly in E].

Theorem 1.4.5 (Cauchy’s Criterion for Uniform Convergence) Let fn : E → R (or C). Then fn
converges uniformly on E, if and only if for every ε > 0, there is N ∈ N such that for n,m > N we
have

sup
x∈E
| fn(x)− fm(x)|< ε. (1.4.1)

Proof. “=⇒”. Suppose fn converges uniformly on E with limit function f , then ∀ ε > 0, ∃N such
that ∀n > N

sup
x∈E
| fn(x)− f (x)|< ε

2
.

Since
| fn(x)− fm(x)| ≤ | fn(x)− f (x)|+ | fm(x)− f (x)|

so that for any n,m > N,

sup
x∈E
| fn(x)− fm(x)| ≤ sup

x∈E
| fn(x)− f (x)|+ sup

x∈E
| fm(x)− f (x)|

<
ε

2
+

ε

2
= ε.

“⇐=”. Conversely, suppose (1.4.1) holds. Then for any x ∈ E, ( fn(x)) is a Cauchy sequence, so
that it is convergent. Let us denote its limit by f (x). For every ε > 0, choose an integer N such that
for all n, m > N and x ∈ E we have

| fn(x)− fm(x)|<
ε

2
.

For any fixed n > N and x ∈ E, letting m→ ∞ in the above inequality we obtain

| fn(x)− f (x)| = lim
m→∞
| fn(x)− fm(x)|

≤ ε

2
[Think about why “≤ ”, not “ < ” ?]

< ε .

According to definition, fn→ f uniformly on E.

Remark 1.4.6 [Cauchy’s criterion of uniform convergence for series] A series ∑
∞
n=1 fn is uniformly

convergent in E if and only if for every ε > 0, there is N such that for n > m≥ N

sup
x∈E

∣∣∣∣∣ n

∑
k=m+1

fk(x)

∣∣∣∣∣< ε .

[Apply Cauchy’s criterion to the partial sum sequence (sn): sn = ∑
n
k=1 fk].

As a consequence, we prove the following simple but useful test for uniform convergence of series.

Theorem 1.4.7 (Weierstrass M-Test [for Uniform Convergence of Series]) Let ( fn) be a sequence of
(real or complex) functions defined on E. If there is a sequence of real numbers (Mn) such that

| fn(x)| ≤Mn for all x ∈ E

[i.e. Mn is an upper bound of | fn| on E] for n = 1,2, · · · , and ∑
∞
n=1 Mn converges, then ∑

∞
n=1 fn

converges uniformly on E. Moreover∣∣∣∣∣ ∞

∑
n=1

fn(x)

∣∣∣∣∣≤ ∞

∑
n=1
| fn(x)| ≤

∞

∑
n=1

Mn
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Proof. The proof of the last inequality, though obvious, is left as an exercise. By Cauchy’s criterion
for series of numbers, for every ε > 0, there exists an integer N such that

n

∑
k=m+1

Mk < ε for all n > m≥ N.

Let sn = ∑
n
k=1 fk be the partial sum sequence of ∑

∞
n=1 fn. Then for any n > m≥ N and for every x ∈ E

|sn(x)− sm(x)| =

∣∣∣∣∣ n

∑
k=m+1

fk(x)

∣∣∣∣∣
≤

n

∑
k=m+1

| fk(x)| [Triangle Inequality]

≤
n

∑
k=m+1

Mk .

That is, |sn− sm| is bounded above by ∑
n
k=m+1 Mk and therefore

sup
x∈E
|sn(x)− sm(x)| ≤

n

∑
k=m+1

Mk < ε .

Hence, according to Cauchy’s criterion for uniform convergence, (sn) converges uniformly in E.

Example 1.4.8 Let E = [0,1] and
fn(x) =

x
1+n2x2 .

Then limn→∞ fn(x) = 0 for every x ∈ E. Since

0≤ fn(x) =
1
2n

2nx
1+n2x2 ≤

1
2n
→ 0

so that fn→ f uniformly on [0,1].

Example 1.4.9 Let
fn(x) =

nx
1+n2x2 for x ∈ [0,1].

Then limn→∞ fn(x) = 0 for every x ∈ [0,1]. While fn(1/n) = 1/2, so that

sup
x∈[0,1]

| fn(x)− f (x)| ≥ 1
2
9 0 as n→ ∞

and therefore fn converges point-wise but not uniformly in [0,1].

Example 1.4.10 ∑
∞
n=0 xn converges to 1

1−x for x ∈ (−1,1), but not uniformly. [∑
∞
n=0 xn converges

uniformly on [−r,r] for any 0 < r < 1, see also Theorem 2.1.15 below].

Indeed, sn(x) = ∑
n
k=0 xk = 1−xn+1

1−x tends to 1
1−x for any |x|< 1. On the other hand∣∣∣∣sn(x)−

1
1− x

∣∣∣∣= |x|n+1

|1− x|
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so that

sup
x∈(−1,1)

∣∣∣∣sn(x)−
1

1− x

∣∣∣∣ ≥
(n+1

n+2

)n+1

|1− n+1
n+2 |

=
n+2(

1+ 1
n+1

)n+1 → ∞ .

Hence ∑
∞
n=0 xn does not converge uniformly in (−1,1).

Theorem 1.4.11 Let fn, f : E→R (or C), and fn→ f uniformly in E. Suppose all fn are continuous
at x0 ∈ E, then the limit function f is also continuous at x0. Therefore

lim
x→x0

lim
n→∞

fn(x) = lim
n→∞

fn(x0) = lim
n→∞

lim
x→x0

fn(x) .

[The uniform limit of continuous functions is continuous.]
Proof. For ε > 0, since fn→ f uniformly on E, there is N, such that for every n > N and x ∈ E

| fn(x)− f (x)|< ε

3
.

Since fN+1 is continuous at x0, there is δ > 0 (depending on x0 and ε) such that for x ∈ E satisfying
|x− x0|< δ , we have

| fN+1(x)− fN+1(x0)|<
ε

3
.

Hence, for every x ∈ E such that |x− x0|< δ , by using the Triangle Inequality,

| f (x)− f (x0)| ≤ | f (x)− fN+1(x)|+ | f (x0)− fN+1(x0)|
+| fN+1(x)− fN+1(x0)|

<
ε

3
+

ε

3
+

ε

3
= ε .

According to definition, f is continuous at x0.

Remark 1.4.12 [Version for series] If ∑
∞
n=1 fn converges uniformly on E and every fn is continuous

at x0 ∈ E, then

lim
x→x0

∞

∑
n=1

fn(x) =
∞

∑
n=1

fn(x0).

In particular, if fn is continuous on E for all n and ∑
∞
n=1 fn converges uniformly on E, then ∑

∞
n=1 fn is

continuous on E.

Corollary 1.4.13 Suppose the convergence radius of the power series ∑
∞
n=1 anxn is 0 < R ≤ ∞, then

for every 0 ≤ r < R, ∑
∞
n=1 anxn converges uniformly on the closed disk {x : |x| ≤ r}. Therefore,

∑
∞
n=1 anxn is continuous on the open ball {x : |x|< R}.

Proof. According to the definition of convergence radius, ∑
∞
n=1 anxn is absolutely convergent for

|x|< R. In particular, ∑
∞
n=1 |an|rn is convergent. Since for any x such that |x| ≤ r

|anxn| ≤ |an|rn
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therefore, by Weierstrass M-test, ∑
∞
n=1 anxn converges uniformly on {x : |x| ≤ r}. It follows that, ac-

cording to Theorem 1.4.11, as the uniform limit of continuous functions, f (x) = ∑
∞
n=0 anxn is continu-

ous on {x : |x|< r} for any 0≤ r < R. Suppose |x0|< R, then we may choose r such that |x0|< r < R,
so that f (x) is continuous at x0. Since x0 ∈ {x : |x|< R} is arbitrary, f (x) = ∑

∞
n=0 anxn is continuous

on {x : |x|< R}.

In general a power series ∑
∞
n=0 anxn is not uniformly convergent on the disk {x : |x|< R}, where R

is its convergence radius, but the previous corollary implies that it is continuous on {x : |x|< R}. The
end points R and −R need to be handled differently.

Theorem 1.4.14 (Abel’s theorem) If the series ∑
∞
n=0 an converges, then ∑

∞
n=0 anxn converges uni-

formly on [0,1]. Therefore, ∑
∞
n=0 anxn is continuous on [0,1], and

lim
x↑1

∞

∑
n=0

anxn =
∞

∑
n=0

an .

Proof. Let sn(x) = ∑
n
l=0 alxl be the partial sum sequence associated with the power series ∑anxn.

We want to show that (sn) satisfies the uniform Cauchy principle on [0,1]. We have already seen that
for n > m we have

|sn(x)− sm(x)|=

∣∣∣∣∣ n

∑
k=m+1

akxk

∣∣∣∣∣
and we want to control the right-hand side uniformly in x ∈ [0,1].

Since ∑an is convergent, its partial sum sequence ∑
n
k=0 ak is a Cauchy sequence, according to the

General Principle of Convergence Sequences, from Analysis I. Thus, for every ε > 0, there is N such
that, for every n > m > N we have ∣∣∣∣∣ n

∑
k=m+1

ak

∣∣∣∣∣< ε . (1.4.2)

Fix m > N, set

ck =
k

∑
j=m+1

a j for k ≥ m+1, cm = 0 .

[We may use the following observation – at this stage, from now on, we will only deal with the
series with the terms akxk for k ≥ m+ 1, while these terms for k ≤ m will not play any role in our
argument afterwards. Thus we can employ a trick that we can simply assume that all ak = 0 for
k ≤ m!].

Then (1.4.2) implies that |ck|< ε whenever k ≥ m, and ak = ck− ck−1. We have

n

∑
k=m+1

akxk =
n

∑
k=m+1

(ck− ck−1)xk

=
n

∑
k=m+1

ckxk−
n

∑
k=m+1

ck−1xk

=
n−1

∑
k=m+1

ck

(
xk− xk+1

)
+ cnxn
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[The last equality is called the Abel’s summation formula – which is a discrete version of integration
by parts]. Hence, for every x ∈ [0,1],∣∣∣∣∣ n

∑
k=m+1

akxk

∣∣∣∣∣ ≤ n−1

∑
k=m+1

|ck|
(

xk− xk+1
)
+ |cn|xn

< ε

n−1

∑
k=m+1

(
xk− xk+1

)
+ εxn

= εxm+1 ≤ ε .

According to definition, ∑
∞
n=0 anxn converges uniformly on [0,1]. Therefore ∑

∞
n=0 anxn continuous on

[0,1]. In particular

lim
x↑1

∞

∑
n=0

anxn =
∞

∑
n=0

an .

The following Dini’s theorem is interesting, but not examinable in paper M2.

Theorem 1.4.15 (Dini’s Theorem). Let fn be a sequence of real continuous functions on [a,b]. Sup-
pose limn→∞ fn(x) = f (x) for any x ∈ [a,b], where f is a continuous function on [a,b], and suppose
that

fn(x)≥ fn+1(x) ∀ n and ∀x ∈ [a,b] ,

then fn→ f uniformly in [a,b].

Proof. Let gn(x) = fn(x)− f (x). Then gn is continuous for every n, gn ≥ 0 and limn→∞ gn(x) = 0
for any x ∈ [a,b]. Suppose (gn) were not uniformly convergent on [a,b]. Then there is an ε > 0, such
that for each k there are a natural number nk > k and a point xk ∈ [a,b] such that

|gnk(xk)|= gnk(xk)≥ ε .

[which is the contra-positive to that (gn) converges to 0 uniformly on [a,b]]. We may choose nk so
that k→ nk is increasing, and may assume that xk→ p. [Otherwise we may argue with a convergent
subsequence of (xk), according to Bolzano-Weierstrass’ Theorem]. Then p ∈ [a,b]. Since gn(x) is
decreasing in n for every x ∈ [a,b], thus for every k fixed, for all l > k, we have

ε ≤ gnl(xl)≤ gnk(xl) . (1.4.3)

Letting l→ ∞ in the above inequality, we obtain

ε ≤ lim
l→∞

gnk(xl) = gnk(p) [since gnk is continuous at p],

which is a contradicts with the assumption that limk→∞ gnk(p) = 0.

Corollary 1.4.16 Suppose the series of functions ∑
∞
n=1 gn(x) converges to its sum S(x) for x ∈ [a,b],

suppose gn(x) ≥ 0 for every n and every x ∈ [a,b], and suppose all gn and its limit function S are
continuous on [a,b], then ∑

∞
n=1 gn converges to S uniformly on [a,b].

Proof. Apply Dini’s Theorem to fn = S−∑
n
k=1 gk to conclude that fn ↓ 0 uniformly on [a,b].
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Example 1.4.17 Let fn(x) = 1
1+nx for x ∈ (0,1). Then limn→∞ fn(x) = 0 for every x ∈ (0,1), fn is

decreasing in n, but fn does not converge uniformly. Dini’s theorem does not apply for this case,
since (0,1) is not compact.

The proofs of the following two theorems related to the concept of uniform convergence will be
given in the Trinity term.

Theorem 1.4.18 If fn→ f uniformly in [a,b] and if every fn is continuous in [a,b], then

ˆ b

a
f =
ˆ b

a
lim
n→∞

fn = lim
n→∞

ˆ b

a
fn .

Similarly, if the series ∑
∞
n=1 fn converges uniformly in [a,b] and if all fn are continuous, then we may

integrate the series term by term ˆ b

a

∞

∑
n=1

fn =
∞

∑
n=1

ˆ b

a
fn .

Let us however immediately point out that the notion of uniform convergence is not the right
condition for integrating a series term by term: we may exchange the order of integration

´ b
a (which

involves a limiting procedure) and limn→∞ under much weaker conditions. The search for correct
conditions for term-by-term integration led to the discovery of Lebesgue’s integration [Second year
A4 paper: Integration]. For details, see W. Rudin’s Principles, Chapter 11 (page 300).

Theorem 1.4.19 Let fn→ f in (a,b) (convergence point-wisely). Suppose f ′n exists and is continuous
on (a,b) for every n, and if f ′n→ g uniformly in (a,b). Then f ′ exists and is continuous in (a,b), and

d
dx

lim
n→∞

fn(x) = lim
n→∞

d
dx

fn(x) .

Similarly, if ∑ fn converges in (a,b), if every f ′n exists and is continuous in (a,b), and if ∑ f ′n converges
uniformly in (a,b), then

d
dx

∞

∑
n=1

fn =
∞

∑
n=1

f ′n .
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Chapter 2

Differentiability

In this chapter, we are going to
1) give the definition of the derivative of a function of a real variable and differentiability, and prove

important properties of derivatives such as algebra of derivatives, the chain rule and differentiability
of polynomials and inverse functions;

2) state the theorem that the derivative of a function defined by a power series is given by the
derived series, whose proof is given in the notes too but the proof is not examinable in paper M2;

3) prove Fermat’s theorem about vanishing of the derivative at a local maximum or minimum, and
as its application prove Darboux’ intermediate value theorem and Rolle’s Theorem;

4) establish the most important result in this course, the Mean Value Theorem (MVT), together
with simple applications: the identity theorem and a study of monotone functions;

5) give a definition of π and give a study of exponential and trigonometric functions;
5) prove Cauchy’s (generalized) Mean Value Theorem and l’Hôpital’s rules;
6) establish Taylor’s Theorem with remainder in Lagrange’s form by using MVT, and give exam-

ples of Taylor’s Theorem and the binomial expansion with arbitrary index.
The whole chapter is about the Mean Value Theorem and its substantial applications.

2.1 The concept of differentiability
In this course we study the differentiability of real (or complex)-valued functions on E, where E is a
subset of the real line R. The study of differentiation of complex functions on the complex plane C is
a totally different story from the real case here. The existence of complex coordinates or the complex
structure has a completely different meaning, so that it requires another theory – Complex Analysis
[Second year A2 paper: Metric Spaces and Complex Analysis].

2.1.1 Derivatives, basic properties
Let us begin with the definition of differentiability of a function, and derivatives.

Definition 2.1.1 1) Let (a,b)⊆R be an open interval, f be a real or complex valued function defined
on (a,b), and x0 ∈ (a,b). If

lim
x→x0

f (x)− f (x0)

x− x0

exists (a real or complex number), then the limit is called the derivative of f at x0 and is denoted by
f ′(x0) or d f

dx (x0).

35
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2) If f : (a,b]→ R (or C) and x0 ∈ (a,b], then the left-derivative of f at x0 is defined by

f ′(x0−) = lim
x↑x0

f (x)− f (x0)

x− x0
,

provided the limit exists. Similarly, if f : [a,b)→R (or C) and x0 ∈ [a,b), then the right-derivative of
f at x0 is defined by

f ′(x0+) = lim
x↓x0

f (x)− f (x0)

x− x0
,

provided the limit exists.
3) If f : D→C where D⊂C, z0 ∈D such that there is a (small δ > 0) D(z0,δ )= {z ∈ C : |z− z0|< δ}⊆

D, then the [complex] derivative of f at z0 is defined to be

f ′(z0) = lim
z→z0

f (z)− f (z0)

z− z0
,

provided the limit exists.

Remark 2.1.2 Let y = f (x). There are other notations for derivatives
dy
dx or d f (x0)

dx [used by G. W. Leibnitz]
y′ or f ′(x0) [introduced by J. L. Lagrange]
Dy or D f (x0) [used by A. L. Cauchy, in particular for vector-valued functions of several vari-

ables].

Remark 2.1.3 1) According to definition, f ′(x0) exists if and only if both side derivatives f ′(x0−)
and f ′(x0+) exist, and f ′(x0−) = f ′(x0+). If f : (a,b)→ C and f ′(x0) exists, then we say f is
differentiable at x0.

2) f is differentiable on (a,b) if it is differentiable at every point in (a,b).
3) f is differentiable on [a,b] if it is differentiable on (a,b) and both f ′(a+) and f ′(b−) exist.

Remark 2.1.4 Here we have abused the notations f ′(x0+) and f ′(x0−). Recall that if g is a function
defined in (a,b) and x0 ∈ (a,b), then g(x0+) and g(x0−) represent the right-hand limit and the left-
hand limit of g at x0:

g(x0+) = lim
x↓x0

g(x) and g(x0−) = lim
x↑x0

g(x) ,

respectively. According to definition here, if f is differentiable in (a,b) [so that the derivative function
f ′ of f is a well defined on (a,b)], f ′(x0+) and f ′(x0−) do not mean the right-hand and the left-hand
limits of the derivative function f ′ at x0! However, we will show that, if limx↓x0 f ′(x) exists, then
the right-hand limit of f ′; limx↓x0 f ′(x); does coincide with f ′(x0+) we have defined here. A similar
statement holds for f ′(x0−) as well.

Here is a simple example to show the difference. Consider f (x) = x2 sin 1
x for x 6= 0, and f (0) = 0.

Then we can show, by using definition of derivatives, that f ′(0) = 0 [Exercise] and

f ′(x) = 2xsin
1
x
− cos

1
x

for x 6= 0.

Therefore f ′(0+) = f ′(0−) = f ′(0) = 0, but the right-hand and left-hand limits of f ′ at 0: neither of
limx↓0 f ′(x) and limx↑0 f ′(x) exists!
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Exercise 2.1.5 1) If f ′(x0−)> 0 (resp. f ′(x0−)< 0), then there is a number δ > 0 such that f (x)≤
f (x0) (resp. f (x)≥ f (x0)) for every x ∈ (x0−δ ,x0].

2) If f ′(x0+) > 0 (resp. f ′(x0+) < 0), then there is δ > 0 such that f (x) ≥ f (x0) (resp. f (x) ≤
f (x0)) for any x ∈ [x0,x0 +δ ).

3) If f ′(x0)> 0 (resp. f ′(x0)< 0), then there is δ > 0 such that

( f (x)− f (x0))(x− x0)≥ 0

(resp.
( f (x)− f (x0))(x− x0)≤ 0 )

for all x ∈ (x0−δ ,x0 +δ ).

If f is differentiable at x0, i.e. f ′(x0) exists, then

f (x)− f (x0)

x− x0
− f ′(x0)→ 0 as x→ x0

and therefore the increment of f near x0 can be expressed as

f (x)− f (x0) = f ′(x0)(x− x0)+o(x,x0)

so that
f (x) = f (x0)+ f ′(x0)(x− x0)+o(x,x0),

where o(x,x0) is a function of x and x0 satisfying that

lim
x→x0

o(x,x0)

x− x0
= 0 .

The part of the increment f (x)− f (x0) linear in x−x0, namely f ′(x0)(x−x0), is called the differential
of f at x0, a concept we will not study further in this course. The linear part of f (x) near x0:

f (x0)+ f ′(x0)(x− x0)

is called the linear approximation of the function f (x) about x0. The linear function

y = f (x0)+ f ′(x0)(x− x0)

is the equation of the tangent line of f at (x0, f (x0)), which has been defined in your A-level course.
We next prove several standard facts about differentiability.

Theorem 2.1.6 Let f : (a,b)→ R (or C). If f is differentiable at x0 ∈ (a,b), then f is continuous at
x0.

Proof. Since

lim
x→x0

( f (x)− f (x0)) = lim
x→x0

f (x)− f (x0)

x− x0
(x− x0)

= lim
x→x0

f (x)− f (x0)

x− x0
lim

x→x0
(x− x0)

= f ′(x0)×0
= 0

where the second equality follows from the algebra of limits. Therefore limx→x0 f (x) = f (x0), thus
according to definition f is continuous at x0.
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Theorem 2.1.7 If f , g : (a,b)→ R (or C) are differentiable at x0 ∈ (a,b), then
1) ( f ±g)′ (x0) = f ′(x0)±g′(x0) ,
2) (Product rule) ( f g)′(x0) = f ′(x0)g(x0)+ f (x0)g′(x0) [This means that the mapping f → f ′ is a

derivation],
3) and if in addition g(x0) 6= 0(

f
g

)′
(x0) =

f ′(x0)g(x0)− f (x0)g′(x0)

g2(x0)
.

Proof. 1) follows from AOL for limits. 2) Let h = f g. Then we can write

h(x)−h(x0) = g(x0)( f (x)− f (x0))+ f (x)(g(x)−g(x0)) .

Dividing both sides by x− x0, and taking limit x→ x0 to obtain

lim
x→x0

h(x)−h(x0)

x− x0
= g(x0) lim

x→x0

f (x)− f (x0)

x− x0
+ lim

x→x0
f (x) lim

x→x0

g(x)−g(x0)

x− x0

= f ′(x0)g(x0)+ f (x0)g′(x0) [Algebra of limits]

where we have used the fact that g(x)→ g(x0) as x→ x0 [Theorem 2.1.6].
To prove 3), we need to show f/g is well defined near x0. Since g is continuous at x0, for ε = |g(x0)|

2
which is positive as g(x0) 6= 0, there is δ > 0, for any x ∈ (a,b) such that |x− x0|< δ we have

|g(x)−g(x0)|<
|g(x0)|

2
.

It follows that

|g(x)| ≥ |g(x0)|− |g(x)−g(x0)| [Triangle Inequality]

>
|g(x0)|

2
> 0 ∀ .

for all x ∈ (a,b) such that |x− x0|< δ . Let h = f
g on (a,b)∩ (x0−δ ,x0 +δ ). Then

h(x)−h(x0)

x− x0
=

1
g(x)g(x0)

[
g(x0)

f (x)− f (x0)

x− x0
− f (x0)

g(x)−g(x0)

x− x0

]
.

Letting x→ x0 we prove 3).

Theorem 2.1.8 (The chain rule for derivatives) Suppose f : (a,b)→R is differentiable at x0 ∈ (a,b),
g : (c,d)→R is differentiable at y0 = f (x0) ∈ (c,d), and f ((a,b))⊆ (c,d), then h = g◦ f is differen-
tiable at x0 and

h′(x0) = g′(y0) f ′(x0) .

Proof. Let

v(y) =
g(y)−g(y0)

y− y0
−g′(y0) ∀y 6= y0

and v(y0) = 0. Since g is differentiable at y0, v(y)→ 0= v(y0) as y→ y0, and therefore v is continuous
at y0. We may write the increment

g(y)−g(y0) = (y− y0)
(
g′(y0)+ v(y)

)
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which is valid for every y ∈ (c,d). In particular

g( f (x))−g( f (x0)) = ( f (x)− f (x0))
(
g′(y0)+ v( f (x))

)
for any x ∈ (a,b), so that

h(x)−h(x0)

x− x0
= g′(y0)

f (x)− f (x0)

x− x0
+ v( f (x))

f (x)− f (x0)

x− x0
. (2.1.1)

for all x 6= x0. Since f is differentiable at x0, f continuous at x0 [Theorem 2.1.6], and therefore
f (x)→ y0 as x→ x0, which in turn yields that v( f (x))→ 0 as x→ x0. Letting x→ x0 in (2.1.1) we
obtain

lim
x→x0

h(x)−h(x0)

x− x0
= g′(y0) lim

x→x0

f (x)− f (x0)

x− x0

+ lim
x→x0

v( f (x)) lim
x→x0

f (x)− f (x0)

x− x0

= g′(y0) f ′(x0)+0× f ′(x0)

= f ′(x0)g′(y0) .

Theorem 2.1.9 Let f be real valued continuous and 1-1 function on (a,b), and x0 ∈ (a,b). If f is
differentiable at x0 and f ′(x0) 6= 0, then the inverse function f−1 is differentiable at y0 = f (x0) and
the derivative of f−1 at y0 is given by

d
dy

f−1(y0) =
1

f ′( f−1(y0))
.

Proof. According to IVT, since f is continuous on (a,b), f ((a,b)) is an interval. Since f is 1-1,
by Lemma 1.3.28, f is strictly monotone (i.e. strictly increasing on (a,b), or is strictly decreasing on
(a,b)), hence f ((a,b)) must be an open interval (Theorem 1.3.31), denoted by (c,d), where

c = lim
x↓a

f (x) and d = lim
x↑b

f (x).

According to the Inverse Function Theorem (continuity part), the inverse function f−1 is continuous
on (c,d). Hence y0 = f (x0)∈ (c,d). If y→ y0, where y 6= y0 and y∈ (c,d), then since f−1 continuous,

x = f−1(y)→ f−1(y0) = x0

and x 6= x0 as f is 1-1, and x ∈ (a,b). Therefore, by AOL

lim
y→y0

f−1(y)− f−1(y0)

y− y0
= lim

y→y0

x− x0

f (x)− f (x0)

= lim
y→y0

1
f (x)− f (x0)

x−x0

=
1

limx→x0
f (x)− f (x0)

x−x0

=
1

f ′(x0)
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exists, so that f−1 is differentiable at y0 and

d
dy

f−1(y0) =
1

f ′(x0)
=

1
f ′( f−1(y0))

which completes the proof.

Example 2.1.10 Consider function

f (x) =
{

xsin 1
x if x 6= 0 ;

0 if x = 0 ,

which is continuous on R. Since

lim
x→0

f (x)− f (0)
x−0

= lim
x→0

sin
1
x

doesn’t exist, f is not differentiable at 0. f is differentiable at any other point, and

f ′(x) = sin
1
x
− 1

x
cos

1
x

∀x 6= 0 .

Note that limx→0 f ′(x) does not exist [Why ?]

Example 2.1.11 Let f (x) = x2 sin 1
x (x 6= 0) and f (0) = 0. Then

f ′(0) = lim
x→0

f (x)− f (0)
x

= lim
x→0

xsin
1
x
= 0

and
f ′(x) = 2xsin

1
x
− cos

1
x

∀x 6= 0 .

Therefore f is differentiable everywhere, the derivative function f ′ is not continuous at 0: limx→0 f ′(x)
doesn’t exist.

Example 2.1.12 f (x) = |x| is continuous but not differentiable at 0. But the left (right)-derivative of
f at 0 exists, and f ′(0−) =−1 and f ′(0+) = 1. Note that limx↓0 f ′(x) = f ′(0+) and limx→↑0 f ′(x) =
f ′(0−).

Definition 2.1.13 If f is differentiable on (a,b), then the second-order derivative

f ′′(x) = lim
h→0

f ′(x+h)− f ′(x)
h

if the limit exists, which is denoted also by f (2)(x). Inductively define f (n+1)(x) to be the derivative of
f (n) for any n, as long as the derivative exists.

Theorem 2.1.14 (Leibnitz Formula) If F = f g, then

F(n)(x) =
n

∑
j=0

(
n
j

)
f ( j)(x)g(n− j)(x) .
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2.1.2 Differentiability of power series
Power series are important class of differentiable functions.

Theorem 2.1.15 Consider the power series

f (z) =
∞

∑
n=0

anzn

= a0 +a1z+ · · ·+anzn + · · · . (2.1.2)

Let R be its convergence radius, and assume that 0 < R≤ ∞. Then
1) The power series obtained by differentiating f term by term

g(z) =
∞

∑
n=1

nanzn−1

= a1 +2a2z · · ·+nanzn−1 + · · · . (2.1.3)

has the same convergence radius R.
2) The [complex] derivative

f ′(z) = lim
w→z

f (w)− f (z)
w− z

exists for every z satisfying that |z|< R, and f ′(z) = g(z). That is

d
dz

∞

∑
n=0

anzn =
∞

∑
n=1

nanzn−1 for any |z|< R . (2.1.4)

Proof. [This theorem says that we may differentiate a power series term by term. Proof is not
examinable in Prelims Paper II – this theorem will be revisited in Paper A2.]

1) Let |z|< R. Set r = 1
2(|z|+R) (or r = 2|z|+1 if R = ∞). Then |z|< r < R and q≡ |z|r ∈ [0,1).

We have the following facts:
(a) ∑

∞
n=0 |an|rn < ∞ [Analysis 1: a power series converges absolutely inside its convergence disk],

(b)
{

nqn−1} is bounded. [Indeed ∑nqn−1 converges (by the ratio test), so that limn→∞ nqn−1 = 0:
but we don’t need these stronger results here].

Let bn = nqn−1. Then
bn+1

bn
=

n+1
n

q

which is smaller than 1 for n large enough. Thus (bn) is decreasing for large n, so that limn→∞ bn
exists, and therefore (nqn−1) is bounded. Let nqn−1 ≤M for some M > 0, for every n.

(c) ∑
∞
n=1 nanzn−1converges absolutely. Indeed

|nanzn−1| ≤ n|an||z|n−1 = nqn−1|an|rn−1

≤ M
r
|an|rn ∀n≥ 1

so that, by the comparison test [Analysis 1]

∞

∑
n=1

n|an||z|n−1 ≤ M
r

∞

∑
n=1
|an|rn < ∞.

Similarly we may prove that the convergence radius of ∑
∞
n=1 nanzn−1 can not be greater than that of

∑
∞
n=0 anzn.
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2) We are going to show that the complex derivative f ′(z) exists and equals g(z) at every point z
such that |z|< R. Let r = 1

2(|z|+R) (or r = |z|+1 if R = ∞). Then r < R, and |z|< r. For any point
w 6= z such that |w|< r, consider

f (w)− f (z)
w− z

−g(z) =
∞

∑
n=1

an

(
wn− zn

w− z
−nzn−1

)
=

∞

∑
n=2

an

(
wn− zn

w− z
−nzn−1

)
; (2.1.5)

where we have added the series f (w), f (z) and g(z) term by term, which is justified as all these series
are absolutely convergent [Analysis 1: a power series converges absolutely inside the convergence
disk]. Our aim is to show that

f (w)− f (z)
w− z

−g(z)→ 0 as w→ z .

To this end we use the following identity

wn− zn

w− z
= zn−1 + zn−2w+ · · ·+ zwn−2 +wn−1

[Exercise. Apply the geometric series

1+ x+ x2 + · · ·+ xn−1 =
1− xn

1− x
∀n≥ 1

to x = w/z or z/w]. Therefore, for any w 6= z and n≥ 2

wn− zn

w− z
−nzn−1 = zn−1 + zn−2w+ · · ·+ zwn−2 +wn−1

−zn−1− zn−1−·· ·− zn−1− zn−1

=
n−1

∑
k=1

(
zn−1−kwk− zn−1

)
=

n−1

∑
k=1

zn−1−k
(

wk− zk
)

.

Let

hn (w) = an

n−1

∑
k=1

zn−1−k
(

wk− zk
)

; n = 2,3, · · · .

Then
f (w)− f (z)

w− z
−g(z) =

∞

∑
n=2

hn (w)

All hn are continuous in C (polynomials in w), and hn(z) = 0 (for all n≥ 2). We claim that ∑
∞
n=2 hn (w)

converges uniformly in |w| ≤ r. In fact

|hn (w) | ≤ |an|
n−1

∑
k=1
|z|n−1−k

(
|w|k + |z|k

)
≤ 2n|an|rn−1 .
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By 1), ∑n|an|rn−1 < ∞, so that ∑
∞
n=2 hn (w) converges uniformly in closed disk {w : |w| ≤ r} [Weier-

strass M-test, Chapter 2]. Hence ∑
∞
n=2 hn (w) is continuous in the disk |w| ≤ r [Theorem 1.4.11: the

uniform limit of continuous functions is continuous]. Therefore

lim
w→z

∞

∑
n=2

hn (w) =
∞

∑
n=2

hn (z) = 0

so that

lim
w→z

f (w)− f (z)
w− z

= lim
w→z

(
f (w)− f (z)

w− z
−g(z)

)
+g(z)

= lim
w→z

∞

∑
n=2

hn (w)+g(z)

= g(z) .

This completes the proof.

Now we are in a position to study several important elementary functions.

Example 2.1.16 It was the great mathematician Gauss who studied the exponential function exp as
a function on the complex plane, and made the link between exp and trigonometric functions sin and
cos. The modern approach we present as the following is essentially due to him.

The exponential function is defined by the power series

expz = ez =
∞

∑
n=0

1
n!

zn = 1+ z+
z2

2!
+ · · ·

which converges everywhere in C (that is, its convergence radius is ∞). Substituting z by iz or −iz,
and using the fact that i2n = (−1)n we obtain that

eiz =
∞

∑
n=0

(−1)n

(2n)!
z2n + i

∞

∑
n=0

(−1)n

(2n+1)!
z2n+1

and

e−iz =
∞

∑
n=0

(−1)n

(2n)!
z2n− i

∞

∑
n=0

(−1)n

(2n+1)!
z2n+1

which allows to define the trigonometric functions sin and cos in terms of the exponential function
exp, namely

sinz =
eiz− e−iz

2i
=

∞

∑
n=0

(−1)n

(2n+1)!
z2n+1 = z− z3

3!
+

z5

5!
· · ·

and

cosz =
eiz + e−iz

2
=

∞

∑
n=0

(−1)n

(2n)!
z2n = 1− z2

2!
+

z4

4!
+ · · ·

which have infinite convergence radius, and therefore both are differentiable. It follows immediately
the Euler formula

eiz = cosz+ isinz

which is valid for every complex number z.
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According to Theorem 2.1.15 exp is differentiable in C and its derivative may be calculated by
differentiate term by term. Hence

d
dz

expz =
∞

∑
n=1

n
zn−1

n!
=

∞

∑
n=1

zn−1

(n−1)!
=

∞

∑
n=0

zn

n!
= expz.

Similarly
d
dz

sinz =
∞

∑
n=0

(−1)n(2n+1)
z2n

(2n+1)!
=

∞

∑
n=0

(−1)n z2n

(2n)!
= cosz

and
d
dz

cosz =
∞

∑
n=1

(−1)n2n
z2n−1

(2n)!
=−

∞

∑
n=1

(−1)n−1 z2n−1

(2n−1)!
=−sinz.

Example 2.1.17 Let us consider exp as the function on R. Then exp0 = 1, x→ expx is strictly
increasing on [0,∞). Since expx≥ 1+x for every x≥ 0, so that exp maps [0,∞) one-to-one and onto
[1,∞). [Indeed it is strictly increasing from (−∞,∞) one to one and onto (0,∞), see below Corollary
2.3]. Let ln : [1,∞)→ [0,∞) denote the inverse function of f = exp on [0,∞). By definition, ln1 = 0
and ln is strictly increasing on [1,∞). Since d

dx expx = expx > 0 for all x≥ 0, according to Theorem
2.1.9, f−1 is differentiable on [1,∞) and, for every y ∈ [1,∞)

d
dy

lny =
1

f ′( f−1(y))
=

1
f ( f−1(y))

=
1
y
.

Therefore ln is differentiable and
d
dx

lnx =
1
x

for all x≥ 1.

We will study exp on (−∞,∞) and its inverse ln, which is defined on (0,∞), after we establish the
important Mean Value Theorem.

2.1.3 Van der Vaerden’s example
The following example of a continuous function on R which is nowhere differentiable was constructed
by B. L. Van der Waerden [For your reading – I don’t think I’ll have time to work through this
example].

Let us begin with a simple continuous function

h(x) =
{

x if 0≤ x≤ 1;
2− x if 1≤ x≤ 2

and extend h to be a periodic function with period 2, i.e. h(x+ 2) = h(x) for x ∈ R. Then h is
continuous on R. Consider the series

f (x) =
∞

∑
n=0

(
3
4

)n

h(4nx) .

By the Weierstrass M-test, ∑
∞
n=0
(3

4

)n
h(4nx) converges uniformly in R, thus f is continuous on R

[Theorem 1.4.11] and

| f (x)| ≤
∞

∑
n=0

(
3
4

)n

= 4 for every x ∈ R .
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Let x ∈ R, m ∈ N and set k = [4mx] the integer part of 4mx: k is the unique integer such that

k ≤ 4mx < k+1 .

Let αm = 4−mk and βm = 4−m(k+1). Obviously

αm ≤ x < βm

and
βm−αm =

1
4m → 0 as m→ ∞ .

In particular, limm→∞ αm = limm→∞ βm = x. We are going to show that

lim
m→∞

f (βm)− f (αm)

βm−αm

does not exist, so that f is not differentiable at x. Since x is arbitrary, f is nowhere differentiable.
If n > m, then 4nβm−4nαm is an even number, and if n≤m then there is no integer between 4nβm

and 4nαm. Therefore

|h(4n
βm)−h(4n

αm)|=
{

0, if n > m;
4n−m, if n≤ m.

Hence

f (βm)− f (αm) =
∞

∑
n=0

(
3
4

)n

(h(4n
βm)−h(4n

αm))

=
m

∑
n=0

(
3
4

)n

(h(4n
βm)−h(4n

αm))

so that

| f (βm)− f (αm)| ≥
(

3
4

)m

−
m−1

∑
n=0

(
3
4

)n

|h(4n
βm)−h(4n

αm)|

=

(
3
4

)m

−
m−1

∑
n=0

4n−m
(

3
4

)n

=

(
3
4

)m

− 1
4m

3m−1
2

=
1
2

(
3
4

)m

+
1
2

1
4m .

Therefore
| f (βm)− f (αm)|

βm−αm
≥ 3m +1

2
→ ∞ as m→ ∞

and it follows that lim f (βm)− f (αm)
βm−αm

does not exist. Hence f is not differentiable at any point x.

2.2 Mean Value Theorem (MVT)
Next we are going to study functions by using the tools we have developed, namely function limits
and derivatives.
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2.2.1 Local maxima and minima
If f : E→ R is a real function on E, then a ∈ E is a local maximum (resp. local minimum) if there is
a δ > 0, such that (a−δ ,a+δ )⊆ E and for every x ∈ (a−δ ,a+δ ).

f (x)≤ f (a) (resp. f (x)≥ f (a)).

A local maximum or minimum is called a local extremum.

Lemma 2.2.1 Let δ > 0 and a ∈ R.
1) If f (x)≤ f (a) for every x ∈ (a−δ ,a] and if f ′(a−) exists, then f ′(a−)≥ 0. Similarly
2) If f (x)≤ f (a) for every x ∈ [a,a+δ ) and if f ′(a+) exists, then f ′(a+)≤ 0.

Proof. 1) Since
f (x)− f (a)≤ 0, for all x ∈ (a−δ ,a)

so that
f (x)− f (a)

x−a
≥ 0 for all x ∈ (a−δ ,a)

and therefore, as f ′(a−) exists,

f ′(a−) = lim
x↑a

f (x)− f (a)
x−a

≥ 0 .

The proof of 2) is similar, as for x ∈ (a,a+δ ), (x)− f (a)≤ 0 so that

f (x)− f (a)
x−a

≤ 0 for all x ∈ (a,a+δ )

and therefore

f ′(a+) = lim
x↓a

f (x)− f (a)
x−a

≤ 0.

Similarly we have

Lemma 2.2.2 Let δ > 0 and a ∈ R.
1) If f (x)≥ f (a) for every x ∈ (a−δ ,a] and if f ′(a−) exists, then f ′(a−)≤ 0. Similarly
2) If f (x)≥ f (a) for every x ∈ [a,a+δ ) and if f ′(a+) exists, then f ′(a+)≥ 0.

As a consequence we have the following important

Theorem 2.2.3 (Fermat’s Theorem) Let f : E→R. Suppose that a is a local extremum of f , and f is
differentiable at a. Then f ′(a) = 0.

Since f is differentiable at a we have

f ′(a+) = f ′(a−) = f ′(a)

so according to the previous lemma, f ′(a) = 0.
[Fermat’s theorem says that a local extremum must be a stationary point.]

As an interesting application, we show the following Intermediate Value Theorem for derivative
functions.
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Theorem 2.2.4 (Darboux’ Intermediate Value Theorem) If f : [a,b]→ R is differentiable on [a,b],
and f ′(a)< A < f ′(b), then there exists a point ξ ∈ (a,b) such that f ′(ξ ) = A.

Proof. Let g(x) = f (x)−Ax. Then g is differentiable in [a,b], so that g is continuous in [a,b].
Therefore g attains its bounds. Moreover

g′(x) = f ′(x)−A

so that g′(a) = f ′(a)−A < 0 and g′(b) = f ′(b)−A > 0. Since g′(a) < 0 there exists δ1 > 0 such
that g(x) < g(a) for x ∈ (a,a+ δ1). Similarly, since g′(b) > 0, there is δ2 > 0 such that g(x) < g(b)
for x ∈ (b− δ2,b). Therefore a or b cannot be the minimum of g on [a,b], so that g must have its
minimum (though not necessary unique) ξ ∈ (a,b), which is thus a local minimum of g. By Fermat’s
theorem, g′(ξ ) = 0.

Example 2.2.5 Consider f (x) = x2 sin 1
x if x 6= 0, and f (0) = 0. f is differentiable everywhere, but

the derivative function

f ′(x) = 2xsin
1
x
− cos

1
x

is not continuous at 0, and thus IVT [Chapter 1: IVT for continuous functions on closed intervals]
does not apply to f ′ on [−1,1] for example, but f ′ attains all values between f ′(−1) and f ′(1),
according to the Darboux IVT.

Theorem 2.2.6 (Rolle’s Theorem, 1691) If f : [a,b]→ R is continuous on the closed interval [a,b],
differentiable on (a,b), and f (a) = f (b), then there exists a point ξ ∈ (a,b) such that f ′(ξ ) = 0.

Proof. If f is constant on [a,b], then f ′(x) = 0 for every x ∈ (a,b), so that any point ξ ∈ (a,b)
will do. Since f is continuous, f attains its maximum and minimum on [a,b]. That is, there are
x1, x2 ∈ [a,b] such that f (x1) = minx∈[a,b] f (x) and f (x2) = supx∈[a,b] f (x). If f is not constant, then
f (x1) 6= f (x2). Since f (a) = f (b), at least one (denoted by ξ ) of x1 and x2 belongs to (a,b). ξ must
be a local extremum and therefore, by Fermat’s Theorem, f ′(ξ ) = 0.

Corollary 2.2.7 Suppose f : R→R is differentiable, then between any two distinct roots of f (x) = 0
there is a root of f ′(x) = 0.

Example 2.2.8 f (x) = sinx and f ′(x) = cosx. Study the zeros of f and f ′.

2.2.2 Mean Value Theorems
Theorem 2.2.9 (Mean Value Theorem, MVT) If f : [a,b]→ R is continuous on [a,b], and f is
differentiable on (a,b), then there is a point ξ ∈ (a,b) such that

f ′(ξ ) =
f (b)− f (a)

b−a
.

Proof. The idea is to rotate the graph to the level position, so we can apply Rolle’s theorem.
Analytically, observe that the line equation of the chord through (a, f (a)) and (b, f (b)) is given by

y = f (a)+
f (b)− f (a)

b−a
(x−a)
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where the ratio ( f (b)− f (a))/(b−a) is the slope of the chord. The idea is to apply Rolle’s theorem
to the function

F(x) = f (x)−
[

f (a)+
f (b)− f (a)

b−a
(x−a)

]
.

Clearly F is continuous on [a,b] and is differentiable on (a,b),

F ′(x) = f ′(x)− f (b)− f (a)
b−a

and F(a) = 0 = F(b). According to Rolle’s Theorem, there is ξ ∈ (a,b) such that F ′(ξ ) = 0, that is
f ′(ξ ) = f (b)− f (a)

b−a .

In applications, we often write MVT as

f (b)− f (a) = f ′(ξ )(b−a)

for some ξ ∈ (a,b). Since ξ ∈ (a,b), ξ can be written as ξ = a+ θ(b− a) for some θ ∈ (0,1).
Therefore, if we set h = b−a, then b = a+h, so that the MVT becomes

f (a+h)− f (a) = f ′(a+θh)h

or in the form:
f (a+h) = f (a)+ f ′(a+θh)h

[which is a special case of Taylor’s Theorem], for some θ ∈ (0,1).

Theorem 2.2.10 (Cauchy’s Mean Value Theorem) Suppose f and g : [a,b]→ R are continuous, f
and g are differentiable on (a,b), and g′ 6= 0 on (a,b), then there is a point ξ ∈ (a,b) such that

f ′(ξ )
g′(ξ )

=
f (b)− f (a)
g(b)−g(a)

.

Proof. First we show that g(b) 6= g(a). In fact, if g(a) = g(b), then by Rolle’s Theorem, there is
x0 ∈ (a,b), g′(x0) = 0, which is a contradiction to the assumption.

We employ the same idea as in the proof for MVT, and apply Rolle’s Theorem to the following
function

F(x) = f (x)−
[

f (a)+
f (b)− f (a)
g(b)−g(a)

(g(x)−g(a))
]

.

Then F is continuous on [a,b], and differentiable in (a,b),

F ′(x) = f ′(x)− f (b)− f (a)
g(b)−g(a)

g′(x)

and F(a) = F(b) = 0. According to Rolle’s Theorem, there is a point ξ ∈ (a,b) such that F ′(ξ ) = 0,
that is

f ′(ξ ) =
f (b)− f (a)
g(b)−g(a)

g′(ξ ) .

Since g′(ξ ) 6= 0, so that, by dividing g′(ξ ) both sides,

f (b)− f (a)
g(b)−g(a)

=
f ′(ξ )
g′(ξ )

.
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Corollary 2.2.11 Suppose f : (a,b)→ R is differentiable at every x ∈ (a,b). Then
1) [Identity Theorem] f is constant on (a,b) if and only if f ′ = 0 on (a,b).
2) [Monotone property] f is increasing (resp. decreasing) on (a,b) if and only if f ′(x)≥ 0 (resp.

f ′(x)≤ 0) for all x ∈ (a,b).
3) If f ′(x)> 0 for all x ∈ (a,b), then f is strictly increasing on (a,b).

Proof. 1) Suppose f ′(x) = 0 for every x ∈ (a,b), then by applying MVT to f on [x,y], where x, y
are any two points in (a,b). Then f (x)− f (y) = f ′(ξ )(x− y) for some number ξ between x and y.
Since f ′(ξ ) = 0, so that f (x) = f (y). Therefore f is constant in (a,b). The proofs of 2) and 3) are
similar.

Proposition 2.2.12 Let f be differentiable on (a,b), and f ′(x) > 0 for every x ∈ (a,b). Then f is
strictly increasing on (a,b) and its inverse function f−1 is differentiable on (c,d), and

d
dy

f−1(y) =
1

f ′( f−1(y))

for every y ∈ (c,d), where c = limx↓a f (x) and d = limx↑b f (x).

Proof. Since f is differentiable on (a,b), so it is continuous on (a,b). Since f ′(x) > 0 for every
x∈ (a,b), so f is strictly increasing on (a,b). The conclusion now follows immediately from Theorem
2.1.9.

Example 2.2.13 Show that the general solution for f ′(x) = f (x) ; x ∈ (0,∞), is f (x) = Aexp(x)
where A is a constant.

Proof. Let g(x) = f (x)
exp(x) which is differentiable as expx 6= 0 and both f and exp are differentiable.

Then

g′(x) =
f ′(x)exp(x)− f (x)exp′(x)

exp(x)2

=
f (x)exp(x)− f (x)exp(x)

exp(x)2 [Use the facts: exp′ = exp and f ′ = f ]

= 0

so that g = A on (0,∞) for some constant [Identity Theorem]. Therefore f (x) = Aexp(x) for all
x ∈ (0,∞).

Now we are in a position to study the exponential function expx for x ∈ (−∞,∞) and its inverse
the logarithm function ln.

Proposition 2.2.14 1) exp(a+b) = exp(a)exp(b) for all a,b ∈ R.
2) exp(x)> 0 for any x∈ (−∞,∞), and x→ exp(x) is strictly increasing, exp(x)→∞ as x→∞ and

exp(x)→ 0 as x→−∞. Therefore the inverse function of exp exists, called the logarithm function,
denoted by lnx for x ∈ (0,∞).

3) ln : (0,∞)→ (−∞,∞) is differentiable, and d
dx lnx = 1

x .

Proof. 1) For any (fixed real) c, consider g(x) = exp(x)exp(c− x). Then

g′(x) = exp′(x)exp(c− x)− exp(x)exp′(c− x)
= exp(x)exp(c− x)− exp(x)exp(c− x)
= 0
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so that g is constant [Identity Theorem]. Clearly exp0 = 1, so that g(x) = g(0) = expc for every x
and c. That is

exp(x)exp(c− x) = exp(c) ∀x .

Setting x = a and c = a+b we obtain

exp(a+b) = exp(a)exp(b) .

2) If x≥ 0 then

exp(x) = 1+ x+
x2

2!
+

x3

3!
+ · · ·+ xn

n!
+ · · ·

≥ 1

and if x < 0, then
1 = exp(x− x) = exp(−x)exp(x)

so that
0 < exp(x) =

1
exp(−x)

≤ 1 ∀x < 0 .

In particular, by using MVT, since exp′(x) = exp(x) > 0 for every x ∈ (−∞,∞), exp(x) is strictly
increasing on (−∞,∞). Since limx→∞ exp(x) = ∞, and exp(x)→ 0 as x→ −∞, by IVT, exp maps
(−∞,∞) 1-1 and onto (0,∞). Thus exp has a continuous inverse exp−1 defined on (0,∞), which is
denoted by ln. Since the derivative of exp′(x) = exp(x) > 0, so that, according to Theorem 2.1.9,
exp−1 = ln is differentiable on (0,∞), and

ln′(y) =
1

exp′(ln(y))
=

1
exp(ln(y))

=
1
y

.

That is, d
dx lnx = 1

x for any x > 0.

Exercise 2.2.15 Define e = exp(1). Show that (i) 1 < e < 3; (ii) e is irrational.

Example 2.2.16 For x≥ 0, we have
(i) exp(−x)≤ 1;
(ii) exp(−x)≥ 1− x;
(iii) exp(−x)≤ 1− x+ x2

2 .
In general we have, for any natural number n,

exp(−x)≤
2n

∑
k=0

(−1)k xk

k!
and exp(−x)≥

2n+1

∑
k=0

(−1)k xk

k!
(2.2.1)

for any x≥ 0.

Proof. (i) Let f (x) = exp(−x). Then f ′(x) =−exp(−x)< 0, so that f is decreasing in [0,∞). In
particular f (x)≤ f (0) = 1 for all x≥ 0.

(ii) Let g(x) = exp(−x)−1+ x. Then g′(x) =−exp(−x)+1≥ 0 [By (i)], so that g is increasing,
thus g(x)≥ g(0) = 0.

(iii) Consider h(x) = exp(−x)−1+ x− x2

2 . Then

h′(x) =−exp(−x)+1− x≤ 0
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so that h is decreasing in [0,∞). Hence h(x)≤ h(0) = 0.
To prove (2.2.1) we use an induction argument on n. We have proven the case where n = 0.

Suppose (2.2.1) is true for n. Consider

f (x) = exp(−x)−
2(n+1)

∑
k=0

(−1)k xk

k!
.

Then

f ′(x) =
∞

∑
k=2(n+1)+1

(−1)kk
xk−1

k!
=

∞

∑
k=2(n+1)+1

(−1)k xk−1

(k−1)!

= −
∞

∑
k=2(n+1)+1

(−1)k−1 xk−1

(k−1)!
=−

∞

∑
k=2(n+1)

(−1)k xk

(k−1)!

= −

(
exp(−x)−

2n+1

∑
k=0

(−1)k xk

(k−1)!

)
≤ 0 [Induction Assumption]

so that f (x) is decreasing in [0,∞). Hence f (x)≤ f (0) = 0, that is

exp(−x)≤
2(n+1)

∑
k=0

(−1)k xk

k!

for all x≥ 0. A similar argument shows that

exp(−x)≥
2(n+1)+1

∑
k=0

(−1)k xk

k!

for all x≥ 0.

Proposition 2.2.17 For x > 0 and a ∈ R, define xa = exp(a lnx). Then (i) x0 = 1; (ii) x1 = x ; (iii)
xa+b = xaxb (iv) xaya = (xy)a ; (v) (xa)b = xab ; (vi) d

dxxa = axa−1. [If n is positive integer, then xn

coincides with the product x · · ·x (n times) as you expect].

Proof. [Careful arguments based on the definition of xa are required here.]
(i) By definition for x > 0

x0 = exp(0lnx) = exp0 = 1.

[But be careful, 00 is not defined]
(ii) Similarly x1 = exp(lnx) = x for x > 0 as ln is the inverse of exp : (−∞,∞)→ (0,∞).
(iii) By definition for x > 0 we have

xa+b = exp((a+b) lnx) = exp(a lnx+b lnx)
= exp(a lnx)exp(b lnx)

= xaxb.

(iv) Since exp(A+B) = expAexpB, by setting A = lnx and B = lny where x,y > 0, we have

exp(lnx+ lny) = xy
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which implies that
ln(xy) = lnx+ lny

for all x,y > 0. Hence

xaya = exp(a lnx)exp(a lny) = exp(a(lnx+ lny))
= exp(a ln(xy)) = (xy)a

for any x,y > 0.
(iv) For x > 0

(xa)b = (exp(a lnx))b = exp [b ln(exp(a lnx))]
= exp(ba lnx)

= xab.

(v) According to chain rule, xa = exp(a lnx) is differentiable on (0,∞), and

d
dx

xa = exp′ (a lnx)(a lnx)′

= exp(a lnx)a
1
x

= axa 1
x
.

Since
x−1 = exp(− lnx) =

1
exp(lnx)

=
1
x

therefore
d
dx

xa = axax−1 = axa−1

for x > 0, as we have expected.

2.2.3 π and trigonometric functions
As an application of Mean Value Theorem and Intermediate Value Theorem, we study the exponential
function and the trigonometric functions, the approach is credited to the genius Gauss.

MVT and IVT allow us to identify the minimal positive period 2π of sin, cos functions, and to
derive their important properties.

Good references on this topic are:
1) L. V. Ahlfors: Complex Analysis. Chapter 2 Section 3.
2) W. Rudin: Real and Complex Analysis. Prologue, pages 1-4.
We have introduced three functions expz, sinz and cosz by means of power series, namely

expz =
∞

∑
n=0

zn

n!
, sinz =

∞

∑
n=0

(−1)n z2n+1

(2n+1)!
and cosz =

∞

∑
n=0

(−1)n z2n

(2n)!

for z ∈ C. Let e = exp1 so lne = 1 by definition of ln being the inverse function of exp on R. For
x ∈ R, according to the definition of power ex, we have

ex = exp(x lne) = expx.
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This is the reason why expz is also denoted by ez. From their definitions, expx, sinx and cosx are real
for every x ∈ R. cos0 = 1, sin0 = 0, cos(−z) = cosz and sin(−z) =−sinz. Moreover

d
dz

sinz = cosz and
d
dz

cosz =−sinz.

Lemma 2.2.18 1) We have
cos(x+ y) = cosxcosy− sinxsiny

and
sin(x+ y) = sinxcosy+ sinycosx.

for x,y ∈ R. [In fact the addition formulas hold for complex numbers x and y too, will do in your A2
paper].

2) sin2 x+ cos2 x = 1 for x ∈ R. [The identity holds well for complex x, A2 paper].
3) |sinx| ≤ 1 and |cosx| ≤ 1 for every x ∈ R.

Proof. To show 1) for every c ∈R, a fixed number but arbitrary, we apply Identity Theorem to the
function

f (x) = cosxcos(c− x)− sinxsin(c− x)

for x ∈ R. Then

f ′(x) =−sinxcos(c− x)+ cosxsin(c− x)
− cosxsin(c− x)+ sinxcos(c− x)
= 0

so that, according to Identity Theorem, f is constant on R. Hence f (x) = f (c) for every x ∈R. Since
cos0 = 1, so that f (c) = cosc, and therefore

cosc = cosxcos(c− x)− sinxsin(c− x)

for any c and x. Setting c= x+y we obtain the first identity. To obtain the second one, we differentiate
both sides of the cos identity in x for any fixed y, and obtain that

−sin(x+ y) =−sinxcosy− cosxsiny

which gives the addition formula for sin.
2) Since cos0 = 1, by setting y = −x in the cos identity and using the facts that cos(−x) = cosx

and sin(−x) =−sinx, one obtains the well known equality.
3) follows directly from 2) as sinx and cosx are real numbers for any real x.

Lemma 2.2.19 The following inequalities hold for x≥ 0: (i) sinx≤ x; (ii) cosx≥ 1− x2

2! ; (iii) sinx≥
x− x3

3! and (iv) cosx≤ 1− x2

2! +
x4

4! .

Proof. (i) Consider f (x) = sinx− x. Then f (0) = 0 and f ′(x) = cosx− 1 ≤ 0, so that f is
decreasing on [0,∞), and therefore f (x)≤ f (0) for every x≥ 0, that is, sinx≤ x for x≥ 0.

To show (ii) we study function f (x) = cosx− 1+ x2

2! . Then f ′(x) = −sinx + x ≥ 0 for x ≥ 0
according to (i), so that f is increasing on [0,∞), which yields (ii).

The proofs of (iii) and (iv) are similar, so let us prove (i)-(iv) in one go. Consider function

h(x) = cosx−1+
x2

2!
− x4

4!
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for x≥ 0. Then

h(0) = 0, and h′(x) =−sinx+ x− x3

3!
,

h′(0) = 0, and h′′(x) =−cosx+1− x2

2!

h′′(0) = 0, and h(3)(x) = sinx− x

and
h(3)(0) = 0, and h(4)(x) = cosx−1.

Now, since h(4)(x)≤ 0 for any x≥ 0, so that h(3) is decreasing and therefore h(3)(x)≤ h(3)(0) = 0
for x ∈ [0,∞). This in turn implies that h

′′
is decreasing on [0,∞), so that h

′′
(x)≤ h

′′
(0) = 0 for x≥ 0.

Hence h′ is decreasing on [0,∞), so that h′(x)≤ h′(0) = 0 for x≥ 0, which implies that

−sinx+ x− x3

3!
≤ 0 for every x≥ 0.

That is (iii). It follows then that h is decreasing on [0,∞), so that h(x) ≤ h(0) = 0 for x ≥ 0, which
proves the inequality

cosx≤ 1− x2

2!
+

x4

4!
for all x≥ 0.

Lemma 2.2.20 cos0 = 1, cos2 < 0, and cos is strictly decreasing on [0,2] and sinx > 0 for all
x ∈ (0,2]. Therefore there is a unique ξ ∈ (0,2) such that cosξ = 0 and sinξ = 1. Define π = 2ξ .

Proof. By definition cos0 = 1. By Lemma 2.2.19

cos2≤ 1−2+
16
4!

=−1
3
< 0.

Since cos is continuous, according to IVT, there is a number ξ ∈ (0,2) such that cosξ = 0. We next
show that cos is strictly decreasing on [0,2]. In fact, by Lemma 2.2.19

sinx≥ x− x3

3!
= x
(

1− x2

3!

)
= x
(

1+
x√
6

)(
1− x√

6

)
> 0

for x ∈ (0,
√

6). In particular sinx > 0 for x ∈ (0,2], and therefore

cos′ x =−sinx < 0 for x ∈ (0,2],

which yields that cos is strictly decreasing on [0,2], so that cos is 1-1 on [0,2]. Therefore ξ is the
unique zero of cos on the interval [0,2]. Since sinξ ≥ 0 and cos2 ξ + sin2

ξ = 1, we must have
sinξ = 1.

Lemma 2.2.21 cos π

2 = 0, sin π

2 = 1, cosπ = −1, sinπ = 0, cos 3π

2 = 0, sin 3π

2 = −1, cos(2π) = 1
and sin(2π) = 0. Moreover cos and sin are periodic functions with their least positive period 2π .



2.2. MEAN VALUE THEOREM (MVT) 55

Proof. By Lemma 2.2.20, cos π

2 = 0, π

2 ∈ [0,2], and sin π

2 = 1. Hence

cosπ = cos
π

2
cos

π

2
− sin

π

2
sin

π

2
=−1

and it follows that sinπ = 0. Now

cos
3π

2
= cos

π

2
cosπ− sin

π

2
sinπ = 0

and
cos(2π) = cosπ cosπ− sinπ sinπ = 1.

Similarly we may verify that sin 3π

2 =−1 and sin(2π) = 0. Now using the addition formula again

cos(x+2π) = cosxcos(2π)− sinxsin(2π) = cosx.

Taking derivative both side we obtain that sin(x+2π) = sinx.
We next show that 2π is the least positive period of cos, and also sin.
Suppose there is a positive number q > 0 such that 4q is a period, that is cos(4q+x) = cosx for all

x, then by differentiating the last equality we also sin(4q+x) = sinx, so 4q is a period of sin. Suppose
4q < 2π . Then 0 < q < π

2 , so that cosq > 0 and sinq > 0 by the definition of π

2 above. On the other
hand, by the addition angle identity

1 = cos0 = cos(4q) = cos2(2q)− sin2(2q) = 1−2sin2(2q)

which yields sin(2q) = 0. Using addition angle identity again

0 = sin(2q) = 2sinqcosq > 0

which is a contradiction. Therefore 2π is the minimal positive period.

Lemma 2.2.22 sinx = 0 if and only if x = kπ for k ∈ Z. Similarly cosx = 0 if and only if x = kπ + π

2
for k ∈ Z.

Proof. By angle addition formula

sinπ = 2sin
π

2
cos

π

2
= 0

and using the periodicity we deduce that sin(kπ) = 0 for every k∈Z, and consequently cos(kπ) =±1.
Suppose sinx = 0, then we may write x = kπ +q for some k ∈ Z and q ∈ [0,π). Since

0 = sinx = sin(kπ +q) = sin(kπ)cosq+ sinqcos(kπ)

= sinqcos(kπ),

so that sinq = 0. Hence 0 = sin q
2cos q

2 . If q > 0, then 0 < q
2 < π

2 < 2, so that sin q
2 > 0 and cos q

2 > 0,
which is a contradiction. Hence q = 0 and the proof is complete for the first part.

Since

cosx = cos(x− π

2
)cos

π

2
− sin(x− π

2
)sin

π

2
=−sin(x− π

2
),

cosx = 0 if and only if sin(x− π

2 ) = 0, and therefore if and only if x− π

2 = kπ for k ∈ Z.
Question. Is expz for z ∈ C a periodic function? If so, what is its period?
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Remark 2.2.23 In general, we have

cosx≤
2n

∑
k=0

(−1)k x2k

(2k)!
, cosx≥

2n−1

∑
k=0

(−1)k x2k

(2k)!

for x ∈ (−∞,∞), and

sinx≤
2n

∑
k=0

(−1)k x2k+1

(2k+1)!
, sinx≥

2n−1

∑
k=0

(−1)k x2k+1

(2k+1)!

for all x ∈ [0,∞). These inequalities can be proven by using induction (in one induction argument for
all 4 inequalities together).

Example 2.2.24 (Several important inequalities) Let 0 < x < π

2 . Then
1) sinx < x < tanx ; [which yields that cosx < sinx

x < 1, so that limx→0
sinx

x = 1.]
2) 2

π
< sinx

x < 1. [1) + 2) implies that max{cosx, 2
π
}< sinx

x < 1 for x ∈ (0,π/2)].

Proof. To prove the first inequality, consider f (x) = tanx−x, x∈ [0,π/2). Then f is differentiable
on (0,π/2) and

f ′(x) =
1

cos2 x
−1 > 0 ∀x ∈ (0,π/2) .

f is strictly increasing [Apply MVT to any [x1,x2], where xi ∈ (0,π/2)]. Thus f (x) > f (0) for any
x ∈ (0,π/2) which yields the inequality 1).

2) If g(x) = x− sinx then g′(x) = 1− cosx > 0 for any x ∈ (0,π/2). Hence g is strictly increasing
on [0,π/2], so that sinx < x for all x ∈ (0,π/2). Now consider

h(x) =
sinx

x
x ∈ (0,π/2] .

Then

h′(x) =
cosx(x− tanx)

x2 < 0 ∀x ∈ (0,π/2)

so that h is strictly decreasing, so that g(x)> g(π/2) for any x ∈ (0,π/2).

Example 2.2.25 Show that
t

1+ t
< ln(1+ t)< t ∀t > 0 .

Proof. In fact, by applying MVT to ln on [1,1+ t], we have

ln(1+ t)− ln1 = log′(ξ )(1+ t−1)

=
t
ξ

for some ξ ∈ (1,1+ t). Since 1 < ξ < 1+ t, and t > 0, we have t
1+t <

t
ξ
< t. Therefore

ln(1+ t) = ln(1+ t)− ln1 =
t
ξ

belongs to ( t
1+t , t).
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Example 2.2.26 (Euler’s constant) Let

γn =
n

∑
k=1

1
k
− lnn.

Then limn→∞ γn exists, the limit is denoted by γ . γ is called the Euler constant.

Proof. In MT, we have demonstrated that the harmonic series

1+
1
2
+

1
3
+ · · ·+ 1

n
+ · · ·

is divergent, and the partial sum ∑
n
k=1

1
k , which is increasing in n, grows like lnn. Equipped with

MVT, we are now in a position to prove this statement.
Firstly we write

lnn = (lnn− ln(n−1))+ · · ·+(ln2− ln1)

so that

γn =
n−1

∑
k=1

(
1
k
− (ln(k+1)− lnk)

)
+

1
n
.

Apply MVT to lnx on the interval [k,k+1] for each k = 1,2, · · · . Since ln is differentiable on [k,k+1],
there is ξk ∈ (k,k+1) such that

ln(k+1)− lnk
k+1− k

=
1
ξk

that is
ln(k+1)− lnk =

1
ξk

for some ξk ∈ (k,k+1). Therefore

1
k
− (ln(k+1)− lnk) =

1
k
− 1

ξk
=

ξk− k
kξk

which yields that

0 <
1
k
− (ln(k+1)− lnk)<

1
k2

for k = 1,2, · · · . Since ∑
1
k2 is convergent, so by the comparison test for series,

n−1

∑
k=1

(
1
k
− (ln(k+1)− lnk)

)
converges as n→ ∞. Since 1

n → 0 as n→ ∞, we may thus conclude, by AOL, that

γn =
n−1

∑
k=1

(
1
k
− (ln(k+1)− lnk)

)
+

1
n

converges as n→ ∞, that is limn→∞ γn = γ exists. Moreover

0 < γ ≤
∞

∑
n=1

1
n2 =

π2

6

which is however not a good estimate for the Euler constant γ . In fact γ = 0.57721566490 · · · .
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Example 2.2.27 (i) Suppose f is continuous in [x0,x0 +δ ] and differentiable in (x0,x0 +δ ) for some
δ > 0 and suppose limx↓x0 f ′(x) exists, then the right-derivative of f at x0 exists and

f ′(x0+) = lim
x↓x0

f ′(x) .

[Recall that, here, f ′(x0+) does not mean the right-hand limit of the derivative function f ′, but the
limit

lim
x↓x0

f (x)− f (x0)

x− x0
.

It shows that, if the right-hand limit of f ′ exists, i.e. limx↓x0 f ′(x) exists, then limx↓x0 f ′(x) coincides
with f ′(x0+), which justify the abuse of notations]. In particular, if limx→x0 f ′(x) exists, then f is dif-
ferentiable at x0, and f ′(x0) = limx→x0 f ′(x) [However, f can be differentiable at x0, but limx→x0 f ′(x)
may not exist. Example?]

(ii) Show that f (x) = xarcsinx+
√

1− x2 is differentiable on [−1,1]. [arcsin : [−1,1]→ [−π

2 ,
π

2 ]

is the inverse of sin, and
√

x is the inverse of x2 in [0,∞)].

Proof. (i) Indeed, for any x ∈ (x0,x0 +δ ) we apply the MVT to f on [x0,x]

f (x)− f (x0) = f ′(ξx)(x− x0) .

Clearly, as x→ x0, ξx→ x0 so that limx↓x0 f ′(ξx) = limx↓x0 f ′(x), and therefore

f ′(x0+) = lim
x↓x0

f (x)− f (x0)

x− x0

= lim
x↓x0

f ′(ξx) = lim
x↓x0

f ′(x) .

(ii) First let us compute the derivative of arcsin on (−1,1). According to Theorem 2.1.9

d
dx

arcsinx =
1

sin′(arcsinx)

=
1

cos(arcsinx)
.

Since sin is increasing in [−π

2 ,
π

2 ], so its inverse arcsin is continuous on [−1,1] with values in [−π

2 ,
π

2 ].
In particular cos(arcsinx)≥ 0. Since cos2+sin2 = 1, so that

cos(arcsinx) =

√
1− (sin(arcsinx))2

=
√

1− x2 .

Therefore [Theorem 2.1.9]

d
dx

arcsinx =
1√

1− x2
∀x ∈ (−1,1) .

[Exercise: Carefully work out the derivative d
dx
√

x via Theorem 2.1.9]. Hence

f ′(x) = arcsinx+
x√

1− x2
− x√

1− x2
= arcsinx

on (−1,1). However limx→±1 f ′(x) =±π

2 exist, so that f ′(−1+) =−π

2 and f ′(1−) = π

2 . f is differ-
entiable in [−1,1].
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2.3 L’Hôpital rule
[ Theorems of G. F. de l’Hospitales, French mathematician, and Joh. Bernoulli] In this section, all
functions are real-valued functions. We state several versions of the technique under the name of
L’Hôpital rule.

Theorem 2.3.1 Suppose f , g are differentiable on (a,a+ δ ) (for some δ > 0), and limx↓a f (x) =
limx↓a g(a) = 0, then

lim
x↓a

f (x)
g(x)

= lim
x↓a

f ′(x)
g′(x)

provided that the limit on the right-hand side exists.

Proof. Since f ,g are differentiable so they are continuous on (a,a+ δ ). Let us define f (a) =
g(a) = 0. Then f ,g are continuous on [a,a+δ ). Let

l = lim
x↓a

f ′(x)
g′(x)

which exists by the assumption. Therefore for every ε > 0 there is 0 < δ1 ≤ δ such that∣∣∣∣ f ′(x)
g′(x)

− l
∣∣∣∣< ε for every x ∈ (a,a+δ1).

On the other hand, for every x ∈ (a,a+ δ1), by applying Cauchy’s Mean Value Theorem to f , g on
[a,x], there is ξx ∈ (a,x) such that

f (x)
g(x)

=
f (x)− f (a)
g(x)−g(a)

=
f ′(ξx)

g′(ξx)
.

Since ξx ∈ (a,x)⊆ (a,a+δ1), ∣∣∣∣ f (x)
g(x)
− l
∣∣∣∣= ∣∣∣∣ f ′(ξx)

g′(ξx)
− l
∣∣∣∣< ε.

By definition we have

lim
x↓a

f (x)
g(x)

= l.

Similarly

Theorem 2.3.2 Suppose f , g are differentiable on (a− δ ,a) (for some δ > 0), and limx↑a f (x) =
limx↑a g(x) = 0, then

lim
x↑a

f (x)
g(x)

= lim
x↑a

f ′(x)
g′(x)

provided that the limit on the right-hand side exists.

Theorem 2.3.3 (L’Hôpital Rule) Suppose f and g are continuous on (a−δ ,a+δ ) (for some δ > 0)
and differentiable on (a−δ ,a+δ )\{a}, f (a) = g(a) = 0, then

lim
x→a

f (x)
g(x)

= lim
x→a

f ′(x)
g′(x)

provided the limit on the right-hand side exists.
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Example 2.3.4 Show that (i) limx→0
sinx

x = 1; (ii) limx→0
1−cosx

x2 = 1
2 ; (iii) limx→0

ln(1+x)
x = 1; (iv)

limx→0(1+ x)
1
x = e ; (v) Find limx→0

ex−e−x−2x
x−sinx .

Solutions. (i) This is a 0
0 type limit, so we may apply L’Hoptial’s rule to evaluate its limit. sinx and

x are differentiable everywhere, both tend to zero as x→ 0, and

lim
x→0

sin′ x
x′

= lim
x→0

cosx = 1

exists, so that

lim
x→0

sinx
x

= lim
x→0

sin′ x
x′

= 1 [L’Hôpital Rule].

(ii) This is again a 0
0 type limit. We have

lim
x→0

1− cosx
x2 = lim

x→0

sinx
2x

[provided this limit exists]

= lim
x→0

cosx
2

[provided this limit exists]

=
1
2

.

Here we have used L’Hôpital Rule twice.
(iii) (0

0 type) Attempt to apply L’Hôpital Rule. ln(1+x) is continuous and differentiable for x near
0, and log(1+0) = 0, so that we attempt to evaluate the limit by using L’Hôpital Rule.

lim
x→0

ln(1+ x)
x

= lim
x→0

ln′(1+ x)
x′

[provided this limit exists]

= lim
x→0

1
1+ x

= 1 .

(iv) (1∞ type =⇒ exp(0
0) type, then use the continuity of exp) According the definition ap,

(1+ x)
1
x = exp

(
1
x

ln(1+ x)
)

Since exp is continuous on R, so that [By (iii)]

lim
x→0

(1+ x)
1
x = lim

x→0
exp
(

ln(1+ x)
x

)
= exp

(
lim
x→0

ln(1+ x)
x

)
[exp is continuous at 1]

= exp1 = e .

Example 2.3.5 limx→0(1+ax)
1
x = expa for any a ∈ R. In particular

lim
n→∞

(
1+

a
n

)n
= expa .
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If a = 0, then limx→0(1+ax)
1
x = limx→0 1 = 1 = exp0. If a 6= 0, then

lim
x→0

(1+ax)
1
x = lim

x→0
exp
(

1
x

ln(1+ax)
)

[By definition]

= exp
(

lim
x→0

1
x

ln(1+ax)
)

[Continuity of exp]

= exp
(

lim
x→0

a
1+ax

)
[if the limit exists, L’Hôpital Rule]

= expa .

Theorem 2.3.6 If f ,g : (a,a+δ )→R are differentiable, where δ > 0, g′(x) 6= 0, f (x)→∞, g(x)→∞

as x ↓ a, and limx↓a
f ′(x)
g′(x) exists (or ∞ or −∞), then

lim
x↓a

f (x)
g(x)

= lim
x↓a

f ′(x)
g′(x)

.

Proof. Suppose that limx↓a
f ′(x)
g′(x) = K is finite [Otherwise we may consider limx↓a

g(x)
f (x) instead].

We may assume that g′ 6= 0 [That g′ 6= 0 near a is implied in the assumption that limx↓a
f ′(x)
g′(x) exists].

∀ε > 0 there is a number δ1 (< δ ) such that∣∣∣∣ f ′(x)
g′(x)

−K
∣∣∣∣< ε

2
∀x ∈ (a,a+δ1) . (2.3.1)

Now we choose a number c in (a,a+ δ1) [c is fixed from now on]. For any x ∈ (a,c) we apply
Cauchy’s MVT to f , g on [x,c]: there is a number ξx ∈ (x,c) such that

f (c)− f (x)
g(c)−g(x)

=
f ′(ξx)

g′(ξx)
.

Since ξx ∈ (x,c)⊂ (a,a+δ1), by (2.3.1)∣∣∣∣ f (x)− f (c)
g(x)−g(c)

−K
∣∣∣∣= ∣∣∣∣ f ′(ξx)

g′(ξx)
−K

∣∣∣∣< ε

2
∀x ∈ (a,c) . (2.3.2)

[However, we cannot conclude from (2.3.2) that f (x)− f (c)
g(x)−g(c) → K as x ↓ a (although it does !!), as there

is no guarantee that ξx will tend to a as x ↓ a]. Now we consider

f (x)
g(x)
−K =

f (x)− f (c)+ f (c)
g(x)

−K

=
f (c)
g(x)

+
f (x)− f (c)
g(x)−g(c)

g(x)−g(c)
g(x)

−K

=
f (c)
g(x)

+
f (x)− f (c)
g(x)−g(c)

(
1− g(c)

g(x)

)
−K

=
f (c)
g(x)

+

(
f (x)− f (c)
g(x)−g(c)

−K
)(

1− g(c)
g(x)

)
+K

(
1− g(c)

g(x)

)
−K

=
f (c)
g(x)

+

(
f (x)− f (c)
g(x)−g(c)

−K
)(

1− g(c)
g(x)

)
− Kg(c)

g(x)

=
f (c)−Kg(c)

g(x)
+

(
1− g(c)

g(x)

)(
f (x)− f (c)
g(x)−g(c)

−K
)
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[Why we are interested in this? Explained in the lecture], so that∣∣∣∣ f (x)
g(x)
−K

∣∣∣∣ ≤ ∣∣∣∣ f (c)−Kg(c)
g(x)

∣∣∣∣+ ∣∣∣∣1− g(c)
g(x)

∣∣∣∣ ∣∣∣∣ f (x)− f (c)
g(x)−g(c)

−K
∣∣∣∣

≤
∣∣∣∣ f (c)−Kg(c)

g(x)

∣∣∣∣+ ε

2

∣∣∣∣1− g(c)
g(x)

∣∣∣∣
for any x ∈ (a,c). Since g(x)→ ∞ as x ↓ a so that

lim
x↓a

f (c)−Kg(c)
g(x)

= 0

and

lim
x↓a

(
1− g(c)

g(x)

)
= 1 .

[Algebra of limits]. Thus there is δ2 > 0 [and δ2 < min{δ1,c−a}] such that∣∣∣∣1− g(c)
g(x)

∣∣∣∣< 4
3

and
∣∣∣∣ f (c)−Kg(c)

g(x)

∣∣∣∣< ε

3

for every x ∈ (a,a+δ2). Therefore∣∣∣∣ f (x)
g(x)
−K

∣∣∣∣< ε

3
+

4
3

ε

2
= ε ∀x ∈ (a,a+δ2) .

By definition, limx↓a
f (x)
g(x) = K.

Theorem 2.3.7 Suppose f ,g : (a,∞) → R are continuous and differentiable, with f (x) → 0 and
g(x)→ 0 as x→ ∞. If g′(x) 6= 0 on (a,∞) and f ′(x)

g′(x) → l, then limx→∞
f (x)
g(x) = l.

Proof. Apply L’Hôpital Rule to functions F(x) = f (1
x ) and G(x) = g(1

x ).

Example 2.3.8 limx→∞
lnx
xµ = 0 [∞

∞
type] and limx→∞

xµ

ex = 0 [∞

∞
type] for any µ > 0.

Let g(x) = xµ = exp(µ lnx). Then g′(x) = µxµ−1. By L’Hôpital rule

lim
x→∞

lnx
xµ

= lim
x→∞

1
x

µxµ−1 [provided this limit exists]

= lim
x→∞

1
µxµ

= 0 .

Example 2.3.9 For any µ > 0, limx↓0 xµ lnx = 0 . [0 ·∞ type =⇒ ∞

∞
type]

Again use L’Hôpital Rule

lim
x↓0

xµ lnx = lim
x↓0

lnx
x−µ

= lim
x↓0

ln′ x
(x−µ)′

[if this limit exists]

= lim
x↓0

1
x

−µx−µ−1 = lim
x↓0

xµ

−µ
= 0 .
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Example 2.3.10 Show that

lim
x→0

(
sinx

x

) 1
1−cosx

=
1
3
√

e
.

[Idea: first turn 1∞ type limits into exp
(0

0 type
)

limits, then use the continuity of exp] Since

f (x) =
(

sinx
x

) 1
1−cosx

is even function, so that we only need to show that limx↓0 f (x) = 1
3√e

. According to definition

f (x) = exp
(

1
1− cosx

ln
sinx

x

)
= exp

(
lnsinx− lnx

1− cosx

)
.

By L’Hôpital Rule,

lim
x↓0

lnsinx− lnx
1− cosx

= lim
x↓0

cosx
sinx −

1
x

sinx
[provided it exists]

= lim
x↓0

xcosx− sinx
xsin2 x

= lim
x↓0

cosx− xsinx− cosx
sin2 x+2xsinxcosx

[if exists, use L’Hôpital again]

= − lim
x↓0

x
sinx+2xcosx

= − lim
x↓0

1
cosx+2cosx−2xsinx

= −1
3

.

Since exp is continuous at −1
3 , so that

lim
x↓0

(
sinx

x

) 1
1−cosx

= lim
x↓0

exp
(

lnsinx− lnx
1− cosx

)
= exp

(
lim
x↓0

lnsinx− lnx
1− cosx

)
[by continuity of exp]

= exp
(
−1

3

)
.

There is a discrete version of the L’Hôpital Rule, which was first discovered by O. Stolz.

Theorem 2.3.11 (O. Stolz) Suppose (xn) and (yn) are two sequences of real numbers such that
(i) yn→ ∞ as n→ ∞,
(ii) (yn) is a strictly increasing sequence (for large n), and
(iii) the limit

lim
n→∞

xn− xn−1

yn− yn−1

exists or tends to ∞ or −∞. Then
lim
n→∞

xn

yn
= lim

n→∞

xn− xn−1

yn− yn−1
.
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[The case that yn = n was proved by A. L. Cauchy].
Proof. The proof is similar to the proof of Theorem 2.3.6. Consider the case that l = limn→∞

xn−xn−1
yn−yn−1

is a number. Then for every ε > 0 there is N such that for n > N we have∣∣∣∣xn− xn−1

yn− yn−1
− l
∣∣∣∣< ε

2
.

Since (yn) is strictly increasing eventually, so we can choose N big enough such that so that yk−
yk−1 > 0 for all k > N and therefore

−ε

2
(yk− yk−1)< xk− yk−1− l(yk− yk−1)<

ε

2
(yk− yk−1).

Adding these inequalities over k = N +1, · · · ,n, where n > N, we obtain that

−ε

2
(yn− yN)< xn− yN− l(yn− yN)<

ε

2
(yn− yN)

which can be written as, since yn− yN > 0∣∣∣∣xn− xN

yn− yN
− l
∣∣∣∣< ε

2

for all n > N. Next we use the identity (similar to that in the proof of Theorem 2.3.6)

xn

yn
− l =

xN− lyN

yn
+

(
1− yN

yn

)(
xn− xN

yn− yN
− l
)

so that ∣∣∣∣xn

yn
− l
∣∣∣∣< ∣∣∣∣xN− lyN

yn

∣∣∣∣+ ε

2

for every n > N. Since yn→ ∞ so that

xN− lyN

yn
→ 0 as n→ ∞.

Therefore there is N1 > N such that ∣∣∣∣xN− lyN

yn

∣∣∣∣< ε

2
for n > N1

and therefore ∣∣∣∣xn

yn
− l
∣∣∣∣< ∣∣∣∣xN− lyN

yn

∣∣∣∣+ ε

2
< ε

for every n > N1. By definition

lim
n→∞

xn

yn
= l = lim

n→∞

xn− xn−1

yn− yn−1

and the proof is complete.
As as example, if k is a positive integer, then we can show (Exercise) by Stolz’s theorem that

lim
n→∞

1k +2k + · · ·+nk

nk+1 =
1

k+1
.



2.4. TAYLOR’S FORMULA 65

2.4 Taylor’s formula
If f is a function defined on [a,b] (where a < b) which has (right-hand) derivatives f (k)(a) at a, where
k = 0,1, · · · ,n−1 (n≥ 1 is an integer, with convention that f (0) = f ), then we may form a polynomial
of degree n−1:

Pn−1(x) = f (a)+ f ′(a)(x−a)+
f ′′(a)

2!
(x−a)2 + · · ·+ f (n−1)(a)

(n−1)!
(x−a)(n−1).

Pn−1(x) is the unique polynomial of degree n−1 whose derivatives at a up to order n−1 agree with
those of f at a. That is, P(k)

n−1(a) = f (k)(a) for all k ≤ n−1. Here are some examples:

P0(x) = f (a) [a constant function];
P1(x) = f (a)+ f ′(a)(x−a) [which is the linear approximation of f near a];

P2(x) = f (a)+ f ′(a)(x−a)+
f ′′(a)

2!
(x−a)2 [quadratic approximation about a];

· · · .

Let

En(x,a) = f (x)−Pn−1(x)

= f (x)−
n−1

∑
k=0

f (k)(a)
k!

(x−a)k (2.4.1)

be the error between f (x) and Pn−1(x).
If f has derivatives at a of any order, then we may form a power series

P(x) = f (a)+ f ′(a)(x−a)+
f ′′(a)

2!
(x−a)2 + · · ·+ f (n)(a)

n!
(x−a)n + · · ·

=
∞

∑
n=0

f (n)(a)
n!

(x−a)n, (2.4.2)

which is called the Taylor expansion of f at a. The following lemma is obvious.

Lemma 2.4.1 Let f : [a,b]→ R be differentiable up to any order, i.e. f (n)(a) exists for every n, R be
the convergence radius of the Taylor expansion (2.4.2), and x ∈ [a,b]. Then

f (x) = P(x)

if and only if En(a,x)→ 0 as n→ ∞. In this case, we must have |x−a| ≤ R.

It is therefore quite important to derive a useful formula for the error En(a,x), which is achieved
in the following Taylor’s theorem.

Theorem 2.4.2 (Taylor’s Theorem) Let f : [a,b]→ R where b > a and n ∈ N. Suppose f (k)(x) exist
for every x∈ [a,b] and f (k) are continuous on [a,b] for k = 0, · · · ,n−1, and f (n) exists on (a,b). Then
there is a number ξ ∈ (a,b) such that

f (b) =
n−1

∑
k=0

f (k)(a)
k!

(b−a)k +
f (n)(ξ )

n!
(b−a)n .
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That is, there is ξ ∈ (a,b), the error term

En(a,b) = f (b)−Pn−1(b) =
f (n)(ξ )

n!
(b−a)n

(called the remainder in Lagrange form), where Pn−1(x) = ∑
n−1
k=0

f (k)(a)
k! (x−a)k.

[There is a similar result for f : [b,a]→ R, where baswell < a.]
Proof. We use the method of “varying a constant” to prove Taylor’s theorem. Regard a in the

definition of Pn−1(b) as a variable. We therefore consider the following function

F(x) =
n−1

∑
k=0

f (k)(x)
k!

(b− x)k

= f (x)+ f ′(x)(b− x)+
f ′′(x)

2!
(b− x)2 + · · ·+ f (n−1)(x)

(n−1)!
(b− x)n−1

for x ∈ [a,b]. Then F(b) = f (b) and F(a) = Pn−1(b). F is continuous on [a,b], differentiable on
(a,b), and

F ′(x) =
n−1

∑
k=0

f (k+1)(x)
k!

(b− x)k +
n−1

∑
k=1

f (k)(x)
k!

(−1)k (b− x)k−1 [Product Rule]

=
n−1

∑
k=0

f (k+1)(x)
k!

(b− x)k−
n−1

∑
k=1

f (k)(x)
(k−1)!

(b− x)k−1

=
f (n)(x)
(n−1)!

(b− x)n−1 .

The idea of the proof is to apply Cauchy’s Mean Value Theorem to F and G on [a,b], where G, to be
chosen later, is continuous on [a,b], differentiable in (a,b) and G′(x) 6= 0 for x ∈ (a,b). According to
Cauchy’s MVT, there is a number ξ ∈ (a,b) such that

F(b)−F(a)
G(b)−G(a)

=
F ′(ξ )
G′(ξ )

=

f (n)(ξ )
(n−1)! (b−ξ )n−1

G′ (ξ )
.

Substituting F(b) by f (b), F(a) = Pn−1(b) and rearranging the above equation we obtain

f (b) = Pn−1(b)+
f (n)(ξ )
(n−1)!

(b−ξ )n−1

G′ (ξ )
(G(b)−G(a)) .

That is to say the error term can be written as

En(a,b) =
f (n)(ξ )
(n−1)!

(b−ξ )n−1

G′ (ξ )
(G(b)−G(a)) .

This is a general form of the remainder in the Taylor’s theorem, where ξ ∈ (a,b) depends on the
function G you have decided to use.

In particular, choosing G(x) = (b− x)n, G′(x) = −n(b− x)n−1 and G(b)−G(a) = −(b− a)n, so
that

En(a,b) =
f (n)(ξ )

n!
(b−a)n
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which gives the Lagrange form, and

f (b) = Pn−1(b)+
f (n)(ξ )

n!
(b−a)n .

The proof is completed.

Remark 2.4.3 Choose a function G provided it is continuous in [a,b], differentiable in (a,b), and
G′ 6= 0. According to Cauchy’s MVT, there is a number ξ between a and b, such that

F(b)−F(a)
G(b)−G(a)

=

f (n)(ξ )
(n−1)! (b−ξ )n−1

G′(ξ )

so that

f (b) = Pn−1(b)+
f (n)(ξ )
(n−1)!

(b−ξ )n−1 G(b)−G(a)
G′(ξ )

.

You may derive Taylor’s Theorem with the remainder of different forms. For example, if we choose
G(x) = x−a, then G(b)−G(a)

G′(ξ ) = b−a. Thus

f (b) = Pn−1(b)+
f (n)(ξ )
(n−1)!

(b−a)(b−ξ )n−1

for some ξ ∈ (a,b). You may for example try G(x) = (x−a)m for a power m≥ 1 to see what kind of
Taylor’s formula you can get. Of course, if you choose different G, you will have different ξ between
a and b.

If we set b−a = h so b = a+h then Taylor’s theorem may be stated as

f (a+h) =
n−1

∑
k=0

f (k)(a)
k!

hk +
f (n)(a+θh)

n!
hn

where θ ∈ (0,1) depending on a, h and n in general, and on the function f as well of course. For
example, the case that n = 2, Taylor’s theorem says that

f (a+h) = f (a)+ f ′(a)h+
1
2

f ′′(a+θh)h2

as long as f ′ and f ′′ exist on [a,a+h] or [a+h,a] (if h < 0), where θ ∈ (0,1) depending on h. This
formula is a powerful tool to study the stationary points of f .

Given a function f which has derivatives of any order near a, so that you may write down the
sequence of f (k)(a) and the power series [called the Taylor expansion of f at a]

f (a)+ f ′(a)(x−a)+
f ′′(a)

2!
(x−a)2 + · · ·+ f (n)(a)

n!
(x−a)n + · · · (2.4.3)

The power series has convergence radius R, so that (2.4.3) defines a function g on (a−R,a+R) [and
in general, you have to use other methods to study the convergence at a−R and a+R]. That is

g(x) =
∞

∑
n=0

f (n)(a)
n!

(x−a)n ∀x ∈ (a−R,a+R). (2.4.4)
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If it happens R = 0, then the Taylor expansion (2.4.4) is useless for the study of f . Otherwise, all
derivatives of the Taylor expansion (2.4.4) g at a coincide with those of f at a: g(n)(a) = f (n)(a) for
any n [Differentiating a power series term by term again and again]. We therefore have high hope that
f (x) = g(x) for all x ∈ (a−R,a+R). However, the Taylor expansion (2.4.4) relies only on the values
of f in an arbitrary small neighborhood about a, say (a−ε,a+ε) for whatever how small ε > 0, thus
there is absolutely no reason why we should have f (x) = g(x) if x 6= a, unless f (x) can be determined
by the values of f near a [and through the Taylor expansion of course!] This is the concept of analytic
functions which will be studied in paper A2: Metric Spaces and Complex Analysis.

Example 2.4.4 Let f (x) = exp(− 1
x2 ) if x 6= 0 and f (0) = 0. Then f has derivatives of all order, and

f (n)(0) = 0 for all n. In fact, for x 6= 0, we have

f (n)(x) = Qn(x)exp(− 1
x2 )

for some polynomial Qn of 1
x , so that limx→0 f (n)(x) = 0 for any n [L’Hôpital Rule]. Hence f (n)(0) = 0

[Example 2.2.27]. Thus

f (0+h) 6= f (0)+ f ′(0)h+ · · ·+ f (n)(0)
n!

hn + · · ·

for any h 6= 0, since the right-hand side is identically zero. The remainder En(0,h) = f (0+h) for all
n, which does not tend to 0 as n→ ∞ for any h 6= 0. Thus f is not analytic at 0.

Taylor’s Theorem also provides us with an explicit error estimate between f (x) and its Taylor
approximation

n−1

∑
k=0

f (k)(a)
k!

(x−a)k .

Corollary 2.4.5 Let f : [a,b]→ R have continuous derivatives of all orders on [a,b], and

En =
|b−a|n

n!
sup

ξ∈[a,b]
| f (n)(ξ )|.

Then ∣∣∣∣∣ f (x)− n−1

∑
k=0

f (k)(a)
k!

(x−a)k

∣∣∣∣∣≤ En for x ∈ [a,b] .

In particular if En→ 0 as n→ ∞, then

f (x) =
∞

∑
k=0

f (k)(a)
k!

(x−a)k uniformly on [a,b] .

Theorem 2.4.6 We have

ln(1+ x) =
∞

∑
n=1

(−1)n−1 xn

n
for x ∈ (−1,1] . (2.4.5)

In particular

ln2 =
∞

∑
n=1

(−1)n−1

n
.
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Proof. Consider f (x) = ln(1+ x). Then f (n)(x) = (−1)n−1(n−1)!(1+ x)−n, so that

f (x) =
n−1

∑
k=1

(−1)k−1 xk

k
+En(x)

where, by applying Taylor’s Theorem to f at a = 0,

En(x) =
f (n)(ξn)

n!
xn = (−1)n−1 1

n

(
x

1+ξn

)n

for some ξn between 0 and x [which depends on x and n]. Since

|En(x)|=
1
n

∣∣∣∣ x
1+ξn

∣∣∣∣n .
and therefore, if

∣∣∣ x
1+ξn

∣∣∣≤ 1 for all n, then |En(x)| ≤ 1
n , so for such x, En(x)→ 0.

Since the convergence radius of ∑
∞
k=1(−1)k−1 xk

k is 1 [Ratio Test, Analysis I], we must have |x| ≤ 1
in order that En(x)→ 0.

Now analyze the condition that
∣∣∣ x

1+ξn

∣∣∣ ≤ 1 by keeping in mind the facts that |x| ≤ 1, |ξn| < 1

and ξn is between 0 and x. The inequality
∣∣∣ x

1+ξn

∣∣∣ ≤ 1 is thus equivalent to that |x| ≤ 1+ ξn, that is,

ξn ≥ |x|−1. The last inequality is true if x ∈ [−1
2 ,1]. Thus

|En(x)| ≤
1
n
→ 0 for x ∈ [−1

2
,1],

therefore

ln(1+ x) =
∞

∑
k=1

(−1)k−1 xk

k
for x ∈ [−1

2
,1] (2.4.6)

and the convergence is uniform on [−1
2 ,1].

However we are unable to prove that En(x)→ 0 for x ∈ (−1,−1
2) (it does tend to zero though!)

by using the argument above, because we lack of enough information about ξn to make a conclusion.
Therefore we employ a different approach. Let us consider the function given by the power series

P(x) =
∞

∑
n=1

(−1)n−1 xn

n
∀x ∈ (−1,1] .

(which has a convergence radius 1). Then P(x) is differentiable on (−1,1) and P′(x) can be deter-
mined by differentiating the power series term by term [Theorem 2.1.15]:

P′(x) =
∞

∑
n=1

(−1)n−1n
xn−1

n

=
∞

∑
n=1

(−1)n−1xn−1

=
1

1− (−x)
=

1
1+ x

∀x ∈ (−1,1).

On the other hand f ′(x) = d
dx ln(1+x) = 1

1+x on (−1,1), thus f ′=P′ on (−1,1). By Identity Theorem

f (x)−P(x) = constant = f (0)−P(0) = 0
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so that

ln(1+ x) =
∞

∑
n=1

(−1)n−1 xn

n
∀x ∈ (−1,1) .

Together with (2.4.6) we thus have

ln(1+ x) =
∞

∑
n=1

(−1)n−1 xn

n
∀x ∈ (−1,1] .

Theorem 2.4.7 (The Binomial Expansion) Let p be a real number, and let P(x) be the power series

P(x) = 1+ px+
p(p−1)

2!
x2 + · · ·+ p(p−1) · · ·(p−n+1)

n!
xn + · · ·

whose convergence radius R = 1 unless p = 0 or p ∈ N. If p ∈ N, P(x) is a polynomial of degree p.
1) For any real number p we have

(1+ x)p = P(x) for x ∈ (−1,1) .

2) If p > 0 then
(1+ x)p = P(x) for x ∈ (−1,1].

Proof. If p = 0 or p ∈ N, P(x) is reduced to a polynomial, 1) and 2) follow immediately from the
ordinary binomial formula.

Let us first show that P(x) is the Taylor expansion for the function f (x) = (1+ x)p for x > −1 at
a = 0. In fact

f ′(x) = p(1+ x)p−1 ;

f
′′
(x) = p(p−1)(1+ x)p−2 ;

· · · ;
f (k)(x) = p(p−1) · · ·(p− (k−1))(1+ x)p−k

so f (k)(0) = p(p− 1) · · ·(p− (k− 1)). Hence the Taylor expansion of f (x) at a = 0 is by definition
given by

P(x) =
∞

∑
k=0

p(p−1) · · ·(p− (k−1))
k!

xk.

If p 6= 0,1,2, · · · , then, by ratio test, the convergence radius R = 1. For convenience, one may intro-
duce notation (

p
k

)
=

p(p−1) · · ·(p− (k−1))
k!

so that the Taylor’s expansion of (1+ x)p may be written as

P(x) =
∞

∑
k=0

(
p
k

)
xk

which is a polynomial of order p in the case that p is zero or a positive integer, as if p ∈ N, then(
p
k

)
= 0 for k > p. Hence the case that p ∈ N is trivial, and reduces to the elementary Binomial

expansion. In what follows, we may assume that p 6= 0,1,2, · · · .
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To prove 1), Taylor’s Theorem is not needed in fact, and the Identity Theorem does the job.
Proof of part 1). Let us apply the Identity Theorem to f (x) = (1+ x)p and its Taylor expansion

P(x) on the interval (−1,1). Both are differentiable on (−1,1), and, by chain rule,

f ′(x) =
d
dx

exp(p ln(1+ x)) = p(1+ x)p 1
1+ x

=
p

1+ x
f (x)

for x >−1, so that f satisfies the differential equation:

(1+ x) f ′(x) = p f (x)

where −1 < x < 1. One may expect that its Taylor expansion P(x) should satisfies the same differen-
tial equation. In fact, we may write

P(x) = 1+
∞

∑
n=1

p(p−1) · · ·(p− (n−1))
n!

xn

which is a power series with convergence radius R = 1, so that P(x) is differentiable on (−1,1) and
its derivative can be evaluated by differentiating it term by term:

P′(x) =
∞

∑
n=1

p(p−1) · · ·(p− (n−1))
(n−1)!

xn−1 .

Hence

(1+ x)P′(x) =
∞

∑
n=1

p(p−1) · · ·(p− (n−1))
(n−1)!

(1+ x)xn−1

=
∞

∑
n=0

p(p−1) · · ·(p−n)
n!

xn +
∞

∑
n=1

p(p−1) · · ·(p− (n−1))
n!

nxn

= p+
∞

∑
n=1

p(p−1) · · ·(p− (n−1))
n!

((p−n)+n)xn

= p+ p
∞

∑
n=1

p(p−1) · · ·(p− (n−1))
n!

xn

= pP(x) .

We apply the Identity Theorem to h(x) = P(x)/ f (x) on (−1,1), which is differentiable as well as
f (x) 6= 0 for x ∈ (−1,1). Now

h′ =
P′ f −P f ′

f 2

=
(1+ x)P′ f − (1+ x) f ′P

(1+ x) f 2

=
pP f − p f P
(1+ x) f 2 = 0

so that, according to Identity Theorem, P(x)/ f (x) is constant in (−1,1), and therefore

P(x)
f (x)

=
P(0)
f (0)

= 1 for all x ∈ (−1,1) .
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Hence

(1+ x)p = 1+
∞

∑
n=1

p(p−1) · · ·(p− (n−1))
n!

xn for x ∈ (−1,1) .

Proof of 2). By 1) we only need to show that f (1) = P(1) if p > 0. In fact, if p > 0, we prove that
f (x) = P(x) for x ∈ [0,1] via Taylor’s Theorem.

We may assume that p ∈ (0,1). Let us apply Taylor’s Theorem to f (x) = (1+ x)p which has
derivatives of any order on (−1,∞). Hence, for any x > −1, there is a number ξn between 0 and x
such that

(1+ x)p = 1+
n−1

∑
k=1

p(p−1) · · ·(p− (k−1))
k!

xk +En(x)

where

En(x) =
f (n)(ξn)

n!
xn

for some ξn ∈ (−1,1), where

f (n)(x)
n!

=
p(p−1) · · ·(p− (n−1))

n!
(1+ x)p−n.

Hence

En(x) =
p(p−1) · · ·(p− (n−1))

n!
(1+ξn)

p
(

x
1+ξn

)n

.

If x ∈ [0,1], then ξn ∈ (0,1) so that ∣∣∣∣(1+ξn)
p
(

x
1+ξn

)n∣∣∣∣≤ 2p

and therefore

|En(x)| ≤ 2p
∣∣∣∣ p(p−1) · · ·(p− (n−1))

n!

∣∣∣∣
= 2p p

(1− p)(2− p) · · ·(n−1− p)
n!

= 2p p
1− p

1
2− p

2
· · · n−1− p

n−1
1
n

≤ 2p p
n
→ 0

so that, by the Sandwich lemma, En converges to zero uniformly on [0,1]. It follows that (1+ x)p =
P(x) for x ∈ [0,1]. Together with the first part 1), 2) now follows.

For p > 0, we can show that (1+x)p = P(x) for every x ∈ [−1,1], which will be the context of the
following theorem. Before doing this, we observe that, for α > 0

lim
x>0,x→0

xα = lim
x↓0

exp(α lnx) = 0,

so we naturally define 0α = 0 for α > 0. Hence the power function xα is continuous on [0,∞) if the
power α > 0.
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Theorem 2.4.8 Let p be a real number, and P(x) denote the Taylor expansion of (1+ x)p at 0, that is

P(x) = 1+
∞

∑
n=1

p(p−1) · · ·(p− (n−1))
n!

xn. (2.4.7)

1) If p >−1 then (1+ x)p = P(x) for all x ∈ (−1,1].
2) If p > 0, then (1+ x)p = P(x) for all x ∈ [−1,1], and the convergence of the power series P(x)

is uniform on [−1,1].

Proof. Assume that p 6= 0,1,2, · · · . According to the Taylor Theorem, for every x >−1 and n∈N,
there is ξn between 0 and x such that

(1+ x)p = 1+
n−1

∑
n=1

p(p−1) · · ·(p− (n−1))
n!

xn +En(x)

where the error term is given by, as we have seen in the theorem,

En(x) =
p(p−1) · · ·(p− (n−1))

n!
(1+ξn)

p−nxn

=
p(p−1) · · ·(p− (n−1))

n!
(1+ξn)

p
(

x
1+ξn

)n

.

Step 1. If x ∈ [0,1], then
∣∣∣ x

1+ξn

∣∣∣< 1 so that

|En(x)| ≤ 2p |p(p−1) · · ·(p− (n−1))|
n!

= 2p |a(p)n|

where

a(p)n =
p(p−1) · · ·(p− (n−1))

n!

= (−1)n (−p)(1− p) · · ·((n−1)− p)
n!

.

If p ∈ (0,1) then

a(p)n = (−1)n−1 p
n

(
1− p

1

)(
1− p

2

)
· · ·
(

1− p
n−1

)
so that

|a(p)n| ≤
p
n
→ 0

which implies that En→ 0 uniformly on [0,1] for this case that p > 0.
If p ∈ (−1,0) then 1+ p ∈ (0,1) and we may rewrite

a(p)n = (−1)n (1− (p+1))(2− (p+1)) · · ·(n− (1+ p))
n!

= (−1)n
(

1− p+1
1

)(
1− p+1

2

)
· · ·
(

1− p+1
n

)
.

Let us prove the elementary inequality

1− t ≤ e−t for t ≥ 0. (2.4.8)
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Let g(t) = 1− t− e−t . Then g(0) = 0 and g′(t) = −1+ e−t ≤ 0 for t ≥ 0. Hence g is decreasing on
[0,∞) and therefore g(t)≤ 0 for all t ≥ 0.

By using this inequality we obtain, as 0 < 1+ p < 1,

|a(p)n| ≤ exp

(
−(1+ p)

n

∑
k=1

1
k

)
→ 0

as 1+ p > 0 and ∑
n
k=1

1
k → ∞. Therefore En→ 0 as n→ ∞ uniformly on [0,1] and p > −1, so that,

together with Theorem 2.4.7, we thus have

(1+ x)p = 1+
∞

∑
n=1

p(p−1) · · ·(p− (n−1))
n!

xn for x ∈ (−1,1],

and the convergence is uniform on [−1+δ ,1] for any 0 < δ < 1. This proves 1) and part of 2).
Step 2. Now we prove 2), so that we assume that p > 0. Without losing generality, let us assume

that p∈ (0,1). We want to show that (1+ x)p =P(x) for all x∈ [−1,1] and the convergence is uniform
on [−1,1]. Note that

P(x) = 1+ px+
∞

∑
n=2

a(p)nxn ∀x ∈ [−1,1],

where

a(p)n =
p(p−1) · · ·(p− (n−1))

n!
.

Of course we only need to show that P(x) is convergent at −1. According to Abel’s theorem, we
only need to prove that the power series is convergent at x =−1, that is,

1− p+
∞

∑
n=2

(−1)na(p)n

is convergent. As we have mentioned, we may rewrite

a(p)n = (−1)n−1 p
n

(
1− p

1

)(
1− p

2

)
· · ·
(

1− p
n−1

)
so that

(−1)na(p)n =−
p
n

(
1− p

1

)(
1− p

2

)
· · ·
(

1− p
n−1

)
for n≥ 2, which has a definite sign (always negative) for p ∈ (0,1). Using the elementary inequality
(2.4.8) one obtains that

0≤−(−1)na(p)n

≤ p
n

exp

{
−p

n−1

∑
k=1

1
k

}
=

p
n

exp{−pγn−1− p ln(n−1)}

=
p
n

1
(n−1)p e−pγn−1

where

γn−1 =
n−1

∑
k=1

1
k
− ln(n−1)→ γ
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the Euler constant. Hence e−pγn−1 → e−pγ as n→ ∞, and therefore sequence e−pγn−1 is bounded by
some constant C. Therefore

0≤−(−1)na(p)n < pC
1

n(n−1)p

for any n≥ 2. Since p > 0 , ∑
1

n(n−1)p is convergent, so that, by the comparison test for series,

∞

∑
n=2

(−1)n−1a(p)n

is convergent. Since∣∣∣∣ p(p−1) · · ·(p− (n−1))
n!

xn
∣∣∣∣≤ (−1)n−1a(p)n < pC

1
n(n−1)p

for every x ∈ [−1,1] and for every n ≥ 1, by M-test for uniform convergence, together with Abel’s
theorem, for p > 0, the power series

∞

∑
n=2

p(p−1) · · ·(p− (n−1))
n!

xn

converges uniformly to (1+ x)p−1− px on [−1,1], which proves 2).
For example

√
1+ x = 1+

∞

∑
n=1

1
2(

1
2 −1) · · ·(1

2 − (n−1))
n!

xn ∀x ∈ [−1,1]

and the convergence of the Taylor expansion on [−1,1] is uniform, and

1√
1+ x

= 1+
∞

∑
n=1

(−1
2)(−

1
2 −1) · · ·(−1

2 − (n−1))
n!

xn ∀x ∈ (−1,1].


