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CONTENTS 1

The general advice for the use of lecture notes is that, you should read the notes in advance, and
take notes from lectures. Let me quote what Nobel laureate William Faulkner (1897-1962), who grow
up in Oxford (USA), said when an interviewer asked that “Mr. Faulkner, some of your readers claim
they still cannot understand your work after reading it two or three times. What approach would you
advise them to adopt?” Faulkner answered, “ Read it a fourth time.” This advice applies to these
notes and books on analysis too — you need to come back and read them again and again.

The structure of the lecture notes for Analysis II (Oxford Edition) was based on the hand-written
notes by Professor Heath-Brown. I have tried to maintain the precise, rigor and simplicity style.
Thanks must also go to the previous lecturers of the course who have made substantial improvement
over the past years. While there are many excellent textbooks you should use for a comprehensive and
systematic account. I should recommend two classics, one by W. Rudin: Principles of Mathematical
Analysis (3rd Edition), the other by T. M. Apostol: Mathematical Analysis (Second Edition).

I do not implement a numbering system in lectures, however, if necessary, I may quote statements
with numbers referring to the lecture notes.

4. Several notations I will use frequently through the lectures:
* C: the set of all complex numbers — the complex plane
¢ R: the set of real numbers — the real line; R C C.
¢ Q: the set of rational numbers, Q C R .
e V: “for all”, “for every one”, “whenever”

» 3J: “there exist(s)”, “there is (are)”,

* iff stands for “if and only if”

If z = x+ iy is a complex number, then its |z| = \/x2 +y? is called the absolute value of z (also
called the modulus of z).

Comments will be put in square brackets [- - - | giving further information.

Please send any comments you may have, or any typos and errors you may spot while you are
enjoying your reading to gianz@maths.ox.ac.uk
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Chapter 1

Function Limits and Continuity

In this chapter, we are going to

1) introduce the definition of limits for functions, including left-hand side and right-hand side
limits for functions on intervals, and some variations of function limits;

2) derive essential properties of functions limits, and establish relationship between function limits
and limits for sequences;

3) introduce the concepts of continuity and uniform continuity for functions;

4) prove several important theorems about continuous functions on intervals, such as the intermedi-
ate value theorem, boundedness and bounds of continuous functions on closed and bounded intervals,
uniform continuity of continuous functions on closed and bounded intervals;

5) study the continuity of monotone functions on intervals, and establish the inverse function the-
orem (continuity part) for strictly monotone functions on intervals;

6) discuss the uniform convergence of series of functions, and prove that the continuity is preserved
under uniform convergence.

1.1 Function Limits

Let us recall several facts about limits for sequences, which were covered in your Analysis I.

Limits for sequences and completeness

Definition 1.1.1 1) A sequence (z,) of real (or complex) numbers has a limit I, denoted by z, — |
as n — oo, or lim,_,0 2, = 1, if for every € > 0, there is a real number N such that for every n > N,
|zn — 1| < €. [Some authors require N being a positive integer, but we do not demand for this].

2) A sequence (z,,) of numbers converges if it has a limit | for some number I.

3) A sequence (z,) of numbers is called a Cauchy sequence if for every € > O there exists real
number N such that for any n,m > N

|Zn_Zm| < E.

That is, (z,) is Cauchy if
|20 — Zm| — 0 as n,m — oo.

Here |x,; — x| — 0 as n,m — oo means that for any given € > 0 there is N such that |x, — x,,| < €
whenever n,m > N.
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Remark 1.1.2 We may use symbol ¥ to mean “for every”; “whenever”; “for all”, and use notation
symbol 3 to mean “there exist(s)”; “there is (are)”.
s. t. is the abbreviation of “such that”, “iff ” stands for “if and only if” and “resp.” for “respec-

tively”.

Remark 1.1.3 According to definition, a sequence (z,) does not converge to I [that is, either (z,)
diverges or z, — a # 1], if and only if there exists € > O, for every natural number k, there is at least
one n; > k such that

|20, — 1| > €.

In general, to formulate a contra-positive proposition: Replace symbol V (“for every”) by 3
(“there exist(s)”), and 3 by V, and negate the statement.

Theorem 1.1.4 (Cauchy’s Criterion, The General Principle for Convergence) A sequence (z,) of
(real or complex) numbers converges if and only if it is a Cauchy sequence.

In this sense, the real line R and the complex plane C are complete [as metric spaces. We will
study this topic in Paper A2 in your second year].

Remark 1.1.5 According to Cauchy’s criterion, (z,) diverges [i.e. (z,) does not converge to a finite
limit], if and only if there is € > 0, such that for every k € N, there are integers ny,, n, > k such that

|Zﬂk1 _an2| >E.

A sequence (a,) of real numbers is increasing (or called non-decreasing) if a1 > a, for n =
1,2,3,---. An increasing sequence (a,) has a finite limit if it is bounded from above, or a, — c. In
fact

an — sup{ag: k> 1} =sup{a; : k> m}

as n — oo (for any m) with the convention that sup {a; } = o if the sequence (a,) is unbounded from
above. Similarly, if (a,) is decreasing (or called non-increasing), then

a, — inf{ay : k > 1} =inf{ay : k > m}

as n — oo (for any m) with the convention that inf {a; } = —oo if the sequence (a,) is unbounded from
below.
For a bounded sequence (a,) of real numbers, its upper limit

limsupa, = lim sup{a; : k > n}
n—soo n—eo

and its lower limit

liminfa, = lim inf{ay : k > n}
n—oo n—oo

respectively.
Compactness

The following theorem demonstrates the ”compactness” of a bounded subset.

Theorem 1.1.6 (Bolzano-Weierstrass’ Theorem) A bounded sequence in R (or in C) has a sub-
sequence which converges to some number. That is, a bounded sequence of numbers possesses a
convergent sub-sequence.
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Proof. First we prove this for real sequences. Suppose (a,) is a bounded sequence of real numbers.
Then the tail supremum
cn =sup{ag: k> n}

exists for every n =1,2,---, and (c,) is bounded and decreasing. Therefore (c,) has a limit denoted
by c. For each k = 1,2,---, there is n; > k such that a,,

1
Ck—z<ank§6k

and clearly we can choose ny so that k — ny strictly increasing. Then (ay, ) is a sub-sequence of (ay),
and by Sandwich lemma, a,,, — c. This proves the case of real sequences.

Suppose z, = a, + byi is a bounded sequence of complex numbers. then both (a,) and (b,) are
bounded sequences. Hence we can extract a convergent sub-sequence (ay, ). Now (b, ) is a bounded
real sub-sequence from which one can extract a convergent sub-sequence (bn;(). Then (zn;{) is a con-
vergent sub-sequence of (z,,). ®

We will use frequently the following consequence of the Bolzano-Weierstrass theorem.

Corollary 1.1.7 A bounded sequence (z,) in R (or in C) converges to a limit | if and only if every
convergent sub-sequence of (z,) has the same limit.

Proof. [—; “only if ” part; Necessity] Proved in Analysis I: any sub-sequence of a convergent
sequence tends to the same limit.

[<= “if” part; Sufficiency] Let us argue by contradiction [If you cannot prove a statement directly,
then formulate the contra-positive, and prove it is wrong]. Suppose (z,) were divergent. Since (z,)
is bounded, according to Bolzano-Weierstrass’ Theorem, one can extract a sub-sequence (an) from
(zn) which converges to some number /;. Let (y,) = (z4) \ (z4,) [the sub-sequence of (z,) with all z,,
removed] which must be a sub-sequence otherwise (z,,) converges to /. If (y,) did not tend to /;, then
there is € > 0 such that for every j € N, there is an integer n; > j such that

[which is the contra-positive to that y, — [1]. Since (ynj) is bounded, according to Bolzano-Weierstrass’
Theorem, there is a convergent sub-sequence (z,, ) of (y,;), so that limz, = I, for some . Since

’Z;lk_ll‘ > € Vk7

which yields that
lim |Z;¢k_ll| = |12—ll| >e>0.
k—roo

[Here we have used the fact that if a,, — a then |a,| — |a|: you should be able to prove this by using
definition of sequence limits]. Therefore /; # I,. Thus we have found two sub-sequences of (z,)
converging to distinct limits, which is a contradiction to the assumption. m

Limit points
Definition 1.1.8 Let E C R (resp. C). p € R (resp. C) is called a limit point (or an accumulation
point, a cluster point ) of E, if for every € > 0, there is z € E other than p, i.e. 7 # p, such that
lz—p| <e.

A point of E which is not a limit point of E is called an isolated point of E.
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Proposition 1.1.9 p € R is a limit point of an interval [a,b] ( (a,b], [a,b) or (a,D)) if and only if
p € |a,b], where a,b are two numbers.

[Exercise]
Concept of function limits

Mathematicians call a mapping from a subset E of R (or C) to R (or C) a function with domain
E. That is, a real (resp. complex) valued function f on E C R (or E C C) is a correspondence (i.e.
a mapping) which assigns each x of E to a unique real (resp. complex) number f(x). E is called the
domain of f. f(E) = {f(x):x € E} is called the range of f. That is, f(E) is the image of E under
the mapping f.

Example 1.1.10 f(x) = v/ 1 —x? with domain E = [—1,1]|. What is its graph? Its graph looks con-
tinuous, and f(E) = [0,1].

Example 1.1.11 Let

f(X): ﬁa #x:§€(071]7and(p7Q):1’
0, ifxe(0,1]isirrational,

The domain of f is (0,1]. It is not easy to sketch the graph of f.

Example 1.1.12 f(x) = xsin 1 with its domain R\{0}. As x tends to 0, f oscillates but tends to 0, so
that f has limit O as x goes to 0.

Definition 1.1.13 Let E C R (or C), and f : E — R (or C) be a real (or complex) function. Let p be
a limit point of E [ but p is not necessary in E], and | be a number. If for every € > 0 there is 0 > 0
[which may depend on p and €] such that for every x € E with 0 < |x — p| < 6 we have

[f(x) =1 <e,
then we say f tends to | as x goes to p [along E], written as

lim f(x) =1
or f(x) =l asx — p [along E]. In this case we also say f (or f(x)) has limit I, or say f(x) converges
tol asx— p.

[Do a sketch to demonstrate the meaning of the definition]. To underscore that we are taking limit

along E, we also write the limit as
lim f(x)=1.

x€E x—p

This will be the case for side limits which will be introduced shortly.

Remark 1.1.14 f doesn’t converge to [ as x — p [that is, either f has no limit or f(x) — a # [
as x — p], then there is € > 0, for every 0 > 0 there exists x € E such that 0 < |x — p| < & but

[f(x) —1[ > &

Example 1.1.15 Let f(x) = |x|%sinl for x # 0, where o > 0 is a constant. [E =R\{0}]. Show that
f(x) > 0asx—0.
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Proof. Since |x°‘ sin %‘ < |x|%* for any x # 0, therefore, for every € > 0, we may choose 0 = gl/a,

Then

1
x%sin— —0‘ <|x|%*<e
x
whenever 0 < |x—0| < 8. According to definition, |x|*sin1 — 0 as x — 0.

Proposition 1.1.16 Let f : E — R (or C) and p be a limit point of E. If f has a limit as x — p, then
the limit is unique.

Proof. [Proof by contradiction]. Suppose f(x) — I; and also f(x) — I, as x — p, where [ # I,.
Then %]l 1 — 2] > 0, so that, according to definition of function limits, there is §; > 0 such that

1
]f(x)—ll\ < 5’11—12‘ VxeEs. t.0< \x—p[ <0y,
and there exists & > 0 such that
1
If(x)—h| < 5\11—12] VxeEs t.0<|x—p|< 6.

Let § = min{d;,65,}. Since p is a limit point of E, there is x € E such that 0 < |x — p| < 8, and
therefore

lli—bL| = |f(x)—hL—f(x)+1;] [+] and -1 technique]
< |f(x)=04L|+]|f(x)—L| [Triangle Ineq.]
1 1
—|l; =1 =l =1
< 2\ I 2|+2| 1 — D

|l — b

which is impossible. Thus we have completed the proof. m

Theorem 1.1.17 [Function limits via limits for sequences.] Let f : E — R (or C) where E C R (or
C), p be a limit point of E, and | € C. Then lim,_,, f(x) =l if and only if for any sequence (p,) in E
such that p,, # p and p, — p, we have

lim f(pn) =1.

n—oo

[lim,_,, f(x) = if and only if f tends to the same limit / along any sequence in E converging to
p-]
Proof. [Necessity] Suppose lim,_,, f(x) = [. Then for every € > 0, there is a number 6 > 0 such
that
If(x)=Ill<e VxeEwithO<|x—p|<d.

Let p, € E be a sequence such that p,, — p and p,, # p. Then, according to the definition for sequence
limits, there is N € N such that for every n > N, |p, — p| < 8. Since p, # p for every n, we also have
|pn — p| > 0, and therefore

0<|pn—p| <6 Vn>N.

Hence, for every n > N
|f(pn) _l| <E&.

According to definition of sequence limits, f(p,) — [ as n — oo.
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[Sufficiency] Let us argue by contradiction. If lim,_,, f(x) = [ were not true, then there is € > 0,
foreachn=1,2,--- [withd = %] there is [at least] one point x,, € E, such that 0 < |x, — p| < }1 but

|f(xn)_l| > €.

Therefore we have constructed a sequence (x,) which converges to p, x,, # p, but (f(x,)) does not
tend to /, which is a contradiction. m

Proposition 1.1.18 [Algebra of limits] Let p be a limit point of E, and f, g be two real (or complex)
functions on E. Suppose lim,_,, f(x) = A and limy_, , g(x) = B. Then
1) lime,, (f(x) £ g(x)) =A%B;
2)lim,,, f(x)g(x) =AB;
3)if B#0,
flx) _A

x=pg(x) B’
Proof. Using AOL for sequence limits together with Theorem 1.1.17. [Exercise]. m

Example 1.1.19 Show that lim,_osin does not exist.

Proof. Letx, = 5= andy, = Then x, — 0 and y, — 0, but

1
2nn+m/2"

1 1
limsin— =0and limsin— =1.
n—soo Xn n—soo Vn

So that lim,_.¢ sin)—lC doesn’t exist according to Theorem 1.1.17. m

Example 1.1.20 [A very useful fact about function limits] Iflim,_, , f(x) =1 # 0, then there is 6 > 0,
such that for x € E with 0 < |x — p| < 8 we have

In particular, |f(x)| > 0 for all x € E such that 0 < |x— p| < 0.

Proof. Since lim,_,, f(x) = and |/| > 0, applying the definition of function limits to f at p with
€ = |1|/2 which is positive, there is 0 > 0, for x € E such that 0 < |x — p| < § we have

]

<=

) —1 < 5

Using triangle inequality we then deduce that

f@I = 1+ (f(x) =1
> |l =1f(x) =1
1]
> || —==—=
=5 =3

forevery x € E suchthat 0 < |[x—p|<6.m
Left-hand limits and right-hand limits limits for functions on intervals

For functions defined on an interval, we may talk about right-hand and left-hand limits, which
however are special cases of our definition for function limits.
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Definition 1.1.21 1) Let f be a real or complex function in |a,b) and p € [a,b). Then we say the
right-hand limit of f at p exists and equals [, written as lim,_,,, f(x) = [ (or limy, f(x) = [, or
limys p xsp f(x) = 1), if for every € > 0, there is 6 > 0, for any x € [a,b) such that 0 < x— p < § one
has
lf(x)—1] <e.

2) Let f: (a,b] — R (or C), and let p € (a,b]. Then we say the left-hand limit of f at p exists and
equals 1, written as limy_,,_ f(x) =1 (or limq, f(x) = [, or limy<p, ., f(x) = 1), if for every € > 0,
there is 6 > 0, such that for any x € (a,b], 0 < p—x < & one has

If(x) -1 <e.

For simplicity, the left-hand limit (resp. the right-hand limit) is denoted by f(p—) (resp. f(p+)).

Obviously, lim,_,, f(x) exists if and only if both the left-hand and the right-hand side limits at p
exist and equal.

There are some variations of function limits which are quite useful as well.

Definition 1.1.22 1) Let f be a real or complex function defined on (a,) (resp. (—oo,b)). We say
f(x) = 1 as x — o (resp. x — —oo), written as limy_, f(x) =1 (resp. limy_,_o f(x) = 1), if every
€ >0, there is N, such that x > N (resp. x < —N)

|f(x)—1] <e.
2) Let f be a real or complex function defined on {z:|z| > R} for some R > 0. Then f(z) — [ as
7 — oo, if for every € > 0, there is N > 0, such that for any |z| > N we have

[f(z) =1 <e.

One can generalize the definition of limits at oo (resp. —oo) for function f with domain E, such that
oo (resp. —oo) is a limit point of E.

Exercise 1.1.23 1) Give definitions of lim,_,y, f(x) = oo, limy_,y, f(x) = —oo, lim,_, o f(x) =0 and
etc.
2) Formulate a statement that f does not tend to | as x — oo.

Example 1.1.24 Show that lim,_; (1 + )—lc)x =limy ., o (1 + )—16))6 exists.

We will develop a powerful tool, the L’Hoptial rules, in the later part of the course to evaluate this
kind of limits. Here we prove this based on sequence limits.
Leta, = (1 + %)n Then

() = s () s () (- 2)
(1) 02 (5),

so that a,, is increasing. Moreover

1 1 1
O S an<l+1+§+§+...+a
< 24 ! + ! et
- Ix2 2x3 (n—1)n
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Hence {a,} is increasing and bounded, so that lim,,_,. a, = sup,, (1 + }l)n exists. This limit is denoted
by e.
If x > 0, we use [x] to denote the integer part of x. Obviously [x] > x— 1 — oo as x — co. Since

<1+§>x - (1+Ldil>m

B 1 \P 41
- O+M+J W2 ¢

(1<) = ()

the Sandwich Rule (or called the Squeezed Lemma) [Analysis I. You should formulate a version for
function limits and prove it !] implies that

1 X
lim (1+—) =e.
X—yo0 X
For negative x, we set y = —x > 0. Then \leq
" 1\
() = (=)
X y
- (5) -G=)
y y—1
1! 1
= (14— 1+— ) —e.
y—1 y—1

We will show that e =} % and study the exponential function exp after we establish powerful
tools.

and

1.2 Continuity of functions

In the definition of lim,_,, f(x), the point p may not belong to the domain E of f. Even f(p) is
well-defined, the limit of f at p may not coincide with its value f(p).

Definition 1.2.1 Let f : E — R (or C), where E C R (or C), and p € E [ so p belongs to the domain
of f1. If for every € > 0 there is 8 > 0, such that for every x € E with |x — p| < 8 we have

[f(x)—=f(p)l <e,

then we say that f is continuous at p.

According to definition, f is continuous at any isolated point of E.
If p is a limit point of E, then f is continuous at p, if and only if

1. p belongs to the domain of f,i.e. f(p) is well defined,

2. lim,_,, f(x) exists,
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3. and lim,_,, f(x) equals the value of f at p.

1

Example 1.2.2 Let a > 0 be a constant. The function f(x) = |x|%sin | is not continuous at x =0 as

f is not well-defined. Redefine the function to be

_ [ K¥sing ifx#0,
g(x>_{ 0 ifx=0.

Then g is continuous at x = 0.

Example 1.2.3 Let f: (0,1] — R defined by

f(x):{ ¢ ifx="tand(p,q)=1,

0, if xisirrational.

(here (p,q) = 1 means that p and q are co-prime, i.e, p,q have no common factor). Then f is
continuous at irrationals of (0,1], and is not continuous at rationales.

Proof. Suppose that xy € (0, 1) is irrational, so by definition of f, f(xo) = 0, hence

B 0 if x is irrational,
|f(X)—f(X())|— %1 ifx:’?;and(pg):l.

For every € > 0, there are only finite many pairs of positive integers p and ¢ such that p < g and

qg < %, so that
o= min{

If |x — xg| < &, then x is either irrational and f(x) = 0, or x is rational but 0 < f(x) < €, so that

[f(x) = f(xo)| <e.

By definition, this shows that f is continuous at irrational number x.

If xo = IE) € (0,1] is rational, then, for € = 21—q > (0 and for whatever how small § > 0, there is an
irrational number ¥ € (0, 1] such that |¥ — §| < & [Here we use the fact that rational numbers are dense
in R, a fact proved in Analysis I in MT], so that

1
xo—g‘:pgqandqg—}>0.
q €

16)= ) =7 > e.
f 1s not continuous at rational numbers. B
Proposition 1.2.4 If f and g are continuous at p, so are f +g; fg and f/g (provided g(p) #0).
[Definition + Algebra of function limits].
Example 1.2.5 Let f : C — C (or R — R) be a polynomial. Then f is continuous in C (or R).

Theorem 1.2.6 If f : E — Cand g: f(E) — C, and h : E — C is the composition function of g and
f defined by
h(x) = (go f)(x) =g(f(x)) forx€E.

If f is continuous at p € E and g is continuous at f(p), then h is continuous at p.



12 CHAPTER 1. FUNCTION LIMITS AND CONTINUITY

[Composition of two continuous functions is continuous. ]
Proof. For any € > 0, since g is continuous at f(p), there is §; > 0 such that for any y € f(E) with
ly— f(p)| < 6 we have

ls(v) —s(f(p))l <e,
so that for x € E such that |f(x) — f(p)| < 61, then

8(f(x)) —g(f(p))| <&

Sincef is continuous at p, so there is § > 0, for any x € E such that |x — p| < §, we have

[f(x) = F(p)l < b1

Therefore

lg(f(x))—g(f(p)] <&

for any x € E such that |x — p| < 0. By definition % is continuous at p. =

Let f be a real or complex function on [a,b) (resp. (a,b]) and p € [a,b) (resp. p € (a,b]). We
say f is right (resp. left) continuous at p if f(p+) = f(p) (resp. f(p—) = f(p)) [i.e. the right-hand
(or the left-hand) limit of f at p exists and equals f(p)]. According to definition, f is continuous at

p € (a,b) if and only if f(p+) = f(p—) = f(p).

Example 1.2.7 Consider function
[ x ifx>0,
f(x)_{x—l—l ifx<0.

Then f(0+) =0 and f(0—) = 1. f is not continuous at 0.

1.3 Continuous functions on intervals

In this part we are going to prove several important results about continuous functions on intervals.
Intervals are simple but important subsets of the real line R. Some authors insist that an interval

is bounded, in this course however an interval may be bounded or unbounded. Hardly we need a

definition of intervals though — one can either list all possible intervals, or give a formal definition.

Definition 1.3.1 We say a non-empty subset E C R possesses the interval property, if x,y € E, then
E contains any real number z between x and y, that is, [x,y| C E (or [y,x] CE if y <x).

Proposition 1.3.2 Assume that E C R is non-empty and possesses the interval property.

(i) If E is unbounded from above and is also unbounded from below, then E = (—oo,00).

(ii) If E is unbounded from below but bounded from above, then E = (—oo,b] or E = (—oo,b),
where b = supE.

(iii) If E is unbounded from above but bounded from below, then E = |a,>) or E = (a,°), where
a =infE.

(iv) If E is bounded, then E = (a,b), E = (a,b], E = [a,b) or E = [a,b], where a = infE and
b=supkE.
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Proof. Let us prove (ii). The proofs of the others are similar. If E is unbounded from below, and
bounded above, then b = sup E exists. Let us show that (—oo,b) C E. Suppose x < b, then by definition
of supE, there is xg € E such that b > xo > x. Since E is unbounded from below, there is A € E such
that A < x. Therefore A,xp € E and A < x < x¢, and since E possesses the interval property, so x € £
too. Thus (—eo,b) C E. On the other hand E C (—oo, b] by definition of b. Therefore E = (—oo,b] or
E = (—o0,b) depending on whether b € E or not. The proof is complete. m

In the rest of the course we will only deal with functions on intervals.

By definition, a real or complex valued function f is continuous on a (bounded) closed interval
[a,b] (where a and b are two real numbers), by definition, if f is continuous at every xo € [a,b]. That
is, for every xo € (a,b),

f(x0) = f(xo+) = flxo—) = lim f(xo),

X—rX(

fla)=flat+) = lim f(x)

x>a,x—a

and

f(b)=f(b—)= lim f(x).

x<b,x—b

In terms of € — &, for any given € > 0, for every xy € (a,b), there is § > 0 such that
|f(x) — f(x0)| < € for every x € (xg— &,x0+ 0)
and there are 8, > 0 and &}, > 0, such that
|f(x)— f(a)| < € for any x € [a,a+ &,)

and
|f(x)— f(b)| < & forany x € (b— Jp,b].

These properties of a continuous function f on [a, b] will be used in our arguments below.

1.3.1 Intermediate Value Theorem

Intermediate Value Theorem (in short, IVT) is one of the most important result about continuous
functions on intervals, which lies in the foundation for many concepts you will meet in your Part A
to Part C. The concept of connectivity of topological spaces (Paper A2 and Paper AS) has its origin
in IVT.

Theorem 1.3.3 (Intermediate Value Theorem (IVT)). Let f : [a,b] — R be continuous, and let C be
a number between f(a) and f(b). Then there is & € [a,b] such that (&) = C. Therefore [f(a), f(b)] C

f([a,0]) (or [f(b), f(a)] C f([a,b]) if f(b) < f(a)), where f([a,b]) = {f(x) : x € [a,]]}.

Proof. We may assume that f(a) < f(b), otherwise consider the function — f(x) instead. If f(a) =
f(b),or C = f(a) or f(b), then the conclusion is clearly true with & = a or b. We may further assume
that C = 0 otherwise consider f(x) — C instead. Therefore we assume that f(a) < 0 < f(b), and want
to show that there is & € (a,b) such that f(&§) = 0.

Do a sketch of the graph of f, which is a continuous curve, and observe that the first crossing point
through the x-axis of the curve must be a zero of f. Therefore we define

& =inf{x € [a,b] : f(x) >0},
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where {x € [a,b] : f(x) > 0} denotes the subset of |a, b] consisting of all x € [a,b] such that f(x) > 0.
Since f(b) > 0, so that

{x€la,b]: f(x) >0}

is non-empty and bounded, thus its infinimum & exists by the completeness axiom of real numbers.
We prove that f(&) = 0. To this end, we first show that & € (a,b) by using the continuity of f at a
and at b. In fact, since f(a) < 0 and f(b) > 0, and f is continuous at a and at b, there are §; > 0 and
0, > 0 such that

|f(x)— fla)] < —@ forx € [a,a+ ;)
[Here we have applied the definition of continuity to f at a with € = — f(a)/2 which is positive], and
f(b)

() = f(b)| < 5~ forx € (b— &, 0]
[Similarly here we have used the definition of continuity for f at b with € = f(b)/2 > 0]. Therefore

flx) < @ < 0forx € [a,a+ &)

and

flx) > @ > 0 for x € (b— 8,b].

By definition of £, the inequalities above yield that & > a+ 8, > a and that § < b— &, < b. Therefore
& € (a,D).

We next show that f(&) = 0 by using continuity of f at &. By definition of &, f(x) < 0 for every x
such that a < x < &, since f is continuous at &, so that

f(&)=f(&—)= lim f(x)<0.
x<&x—E
We next show that f(£) can’t be negative. If f(&) < 0, then since f is continuous at &, there is § > 0
such that
f(6)

700 = 1(&)] < -1 for ve (65,6 +5)

[Here using the definition of continuity for f at & with € = —f(&)/2 — which were positive by
contradiction assumption], so that

flx) < @ <Oforxe (§—-6,£E+0)

and therefore f(x) <0 for all x € [a,& + §). Hence we must have & > & + 8, which is a contradiction.
Hence f(&) = 0. The proof is complete. m

In the previous proof, & = inf{x € [a,b] : f(x) > 0} is the first x-coordinate at which the graph of
f crosses the x-axis, but & is not necessary the first root of f(x) = 0 greater than a. Of course we
may locate the first zero of the function f on [a,b], which is given by n = inf{x € [a,b] : f(x) > 0}.
Under the conditions that f is continuous on [a,b] and f(a) < 0 < f(b), one can show that f(1) = 0.
This gives a slightly different proof of the IVT.

Proof. (Proof of IVT — a constructive proof) The case that C = f(a) or C = f(b) is trivial, so we
assume that C # f(a) or f(b). Therefore f(a) < C < f(b) or f(b) < C < f(a). Let g(x) = f(x) —C.
Then g(a) and g(b) have different sign, g(a)g(b) < 0. Let x; = a and y; = b. Divide the interval
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[x1,y1] at its center %(xl + y1) into two equal parts. If g(%(xl +y1)) =0 then & = %(xl +y1) will
do. Otherwise, we choose x, = x; and y, = (%(xl +yp) if g(%(xl +y1)) >0, 0rx; = %(xl +y1) and
y2 =y if g(%(xl +y1)) <0. Then g(x2)g(y2) < 0; [x2,y2] C [x1,y1] and

1

2 —x|=5(b-a).
Apply the previous argument to [x;,y,] instead of [, b], to obtain [x3,y3] C [x2,y2], such that
1 1
3 —x3] = 5lv2 —x0f = 5 (b—a)

and g(x3)g(y3) < 0. By repeating the same procedure, we may find some [xz,yx] C [a,b], g(xx) =0
or g(y) = 0 then & = x; or y; will do.

Otherwise, we may construct two sequences (x,) and (y,) such that g(x,)g(v,) <0, [xu,yn] C
[u—1,¥n—1] forany n=2,--- , and

1
|yrt_xn| = _|)’n—1 _xn—1|
2
1
s ...:F|y1—xl‘
_ b-a
o on—1 -

Obviously, (x,) is a bounded increasing sequence, and (y,) is a bounded decreasing sequence, thus
xp — & and y, — &’ for some &, &’ € [a,b] [Analysis I: bounded monotone sequences converge].
Since

. , 1
r}g?o|yn_xn| —’}g?ow(b_a) =0,

so & = &’. Since g is continuous at &,

0> lim g(xn)g(yn> = nlgrolog(xn) r}gl;log(yn) = g<§>27

n—eo

which yields that g(£)? = 0, and therefore g(&) = 0 [As g(&) is a real number], so that () =C. m

Remark 1.3.4 Given C between f(a) and f(b), & may be not unique. From the proof we can see
that, if [xn,yn] is a decreasing net of closed intervals (i.e. [xn,yn] C [Xn+1,Yn+1] for each n) such that
the length y, —x, — 0, then (°°_, [xn,y,] exactly contains one point (and in particular is not empty).

Remark 1.3.5 The proof of the IVT also provides a method of finding roots to f(§) = ¢, but other
methods may find roots faster if additional information about f (e.g. that f is differentiable) is avail-
able.

The following corollary is the general form of IVT for real valued functions of one real variable.

Theorem 1.3.6 Let E C R be an interval, and f be real-valued and continuous on E. Then f(E) =
{f(x) : x € E} is an interval too.

Proof. If E is empty, then there is nothing to prove, so we assume that E is a non-empty interval.
Then f(E) is non-empty. Let A,B € f(E). We prove that for every real number C between A and
B, C also belongs to f(E). Let a,b € E such that f(a) = A and f(b) = B. Since E is an interval,
by Proposition 1.3.2, [a,b] C E (or [b,a] C E if b < a), f is continuous on [a,b] (or [b,a]). By IVT
applying to f on [a,b] (or [b,a]), there is § between a and b such that f(&) = C, which implies that
C € f(E). According to Proposition 1.3.2, f(E) is an interval. m
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Theorem 1.3.7 If f is a real valued function which is continuous on R, then f maps an interval to
an interval, that is, if E C R is an interval, then so is its image f(E) = {f(x) :x € E}.

In Paper A2, we will show that the only connected subsets of R are intervals, so the previous
Corollary may be stated as the following

Theorem 1.3.8 If f: R — R is continuous (i.e. f is continuous at every x € R), and if E C R is
connected, then so is f(E).

1.3.2 Boundedness

A real or complex function f is bounded on E, if the image f(E) of E under the function f, which is
the subset { f(x) : x € E}, is bounded. That is, there is non-negative constant M such that

lf(x)| <M Vx€E.

Theorem 1.3.9 If f : [a,b] — R (or C) is continuous, where a < b are two real numbers, then f is
bounded on [a,D).

Proof. Let us prove this theorem by contradiction. Suppose f were unbounded, then for every
n € N, there is [at least one] x,, € [a,b] such that |f(x,)| > n. According to Bolzano-Weierstrass’
Theorem, we may extract a convergent sub-sequence (x, ) from (x,). Let x,, — p. Since [a,b]
contains all its limiting points, so that p € [a,b]. Since f is continuous on |a, b], so it is continuous at
p, thus according to Theorem 1.1.17,

lim f('xnk) = f(p).

n—oo

Therefore (f(x,)) must be bounded [from Analysis I: any convergent sequence is bounded], which
is a contradiction to the assumption that |f(xp, )| > nx > k for every k. Therefore f is bounded, and
the proof is complete. m

In order to state the next important theorem about continuous functions on closed intervals, we
introduce the following notations.

Let f : E — R be a real-valued function on E, where E is non-empty. Then f(E) = {f(x) :x € E}
is a non-empty subset of R. If f(E) is bounded from above, that is, f(E) has an upper bound, then
sup,cx f(x) (or denoted by sup f) is the least upper bound of f(E), called the supremum of f on E,
that is,

sup f(x) =sup{f(x) :x € E}.

xeE

Similarly, if f(E) is bounded from below, that is, f(E) has a lower bound, then inf,cg f(x) denotes
the greatest lower bound of f(E), the infimum of f on E, so that

;gf(x) =inf{f(x):x€E}.

The existence of the least and the greatest bounds for a bounded real function f is guaranteed by the
completeness of the real number system.

Suppose f is a real valued function which bounded from above on E. Then M = sup, . f(x) if
and only if f(z) < M [so M is an upper bound on E] and for any given € > 0 there is z¢ € E such
that f(z¢) > M — € [that is, any real which is smaller than M can not be a upper bound of f on E].
Similarly, if f is bounded from below on E, then m = inf,cg f(x) if and only if f(z) > m [so m is a
lower bound on E] and for every € > 0 there is z¢ € E such that f(z¢) < m+ € [that is, any real which
is greater than m is not a lower bound of f on E].
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Theorem 1.3.10 If f : [a,b] — R is continuous, then f attains its bounds on |a,b]. That is, there are
X1,X2 € [a,b] such that
fln) = sup f(x) and f(x2)= inf f(x)

x€la,b] x€la,b]

respectively.

Proof. [That is, sup and inf are attained. Note that x|, x, are not necessary unique. In short, we
may say “a continuous function on a closed bounded interval is bounded and attains its bounds”.]
We give two different proofs for this important theorem.

(Ist Proof) According to Theorem 1.3.9, f is bounded on [a,b], so that m = inf,¢[, 5 f(x) exists
by the completeness of the real number system [Analysis I]. By definition, f(x) > m for all x € [a, b],
and for every n = 1,2, -- -, there is an x, € [a, b] such that

1
m< f(x,) <m+—.
n

Since (x,) is bounded, according to Bolzano-Weierstrass’ Theorem, we may extract a convergent
subsequence (x,, ) : x,, — p. Then p € [a,b]. Since f is continuous at p, lim,_,, f(x) = f(p), so that
f(xn,) = f(p) according to Theorem 1.1.17. While

mgf(xnk)gm~l-nl (1.3.1)
k

for all k, so by letting k — oo in the previous inequality (1.3.1) we obtain that

1
m < lim f(x,,) = f(p) < lim <m+—> =m
k—yo0 k—yoo ng
[or by Sandwich lemma for sequence limits] which implies that f(p) = m = inf,¢[, ;) f(x).
(2nd Proof) [More elegant proof — again argue by contradiction.] Let us prove that the supremum
of f is attained by contradiction. Let M = supy, ;) f. Suppose M were not attained on [a,b], so that

f(z)<M  Vzé€|a,b].

Then
1

8 =+——
—f(x)
is positive and continuous on [a,b]. Therefore, according to Theorem 1.3.9, g is bounded on [a,b].
Hence there is a positive number M such that

(x) ! < M
8WX) = 5 > Mo
M — f(x)

for every x € [a,b]. It follows that
1
<M—-——<M
1) M- <

for all x € [a, D], which is a contradiction to the assumption that M is the least upper bound of f on
[a,D]. m

Remark 1.3.11 The proofs of the previous two theorems rely on the following facts:
1) [a,b] is bounded;
2) |a,b)] is closed (i.e. |a,b] contains all limit points of [a,b]);
3) f is continuous.
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Remark 1.3.12 In Paper A2 in your second year, we will study the concepts of open/closed subsets,
compact spaces and compact subsets. A subset A of R (or C) is called closed if A contains all its limit
points. A subset A of R or C is compact if and only if A is bounded and closed.

In terms of compact subsets, we have

Theorem 1.3.13 1) If f is a continuous real or complex valued function on a compact subset E, then
f(E) is also a compact subset.

2) If f is a continuous real valued function on a compact subset E C R or on a compact subset
E C C, then f attains its bounds, that is, there are x1, x, € E such that

fx1) < f(x) < f(x) foreveryx € E,
so that f(x1) = infycg f(x) and f(x2) = sup,cg f(x).

Remark 1.3.14 The proofs of Theorem 1.3.20, 1.3.9, 1.3.10 rely on the compactness of the closed
interval |a,b] [via Bolzano-Weierstrass’ theorem], and the proof of IVT relies on the fact that [a,b] is
unbroken, i.e. [a,D| is “connected”. For details about “connectedness”, see W. Rudin’s Principles,
page 93, Theorem 4.22 and Theorem 4.23.

As a consequence we have the following important

Corollary 1.3.15 Let f: [a,b] — R be continuous, M = sup,c(, ) f(x) and m = infyc( ) f(x). Then
for any ¢ € [m,M] there is at least one & € |a,b] such that f(&) = c. Therefore

f([a7b]) = [m>M] .

Proof. Let E = [a,b] an bounded and closed interval. Since f is continuous on E, so f is bounded,
thus m = inf f(E) and M = sup f(E) exist. By definition f(E) C [m,M]. On the other hand, f(E)
is an interval too (Theorem 1.3.6) and m,M € f(E) by Theorem 1.3.10, [m,M] C f(E). Therefore
f(E)=[m,M]. m

Example 1.3.16 Suppose f : [0,1] — [0, 1] is continuous, then there is a fixed point of on [0,1], that
is, there is & € [0,1] such that f(&) = &. In fact, g(x) = f(x) — x is continuous on [0,1], and g(0) =
f(0)>0and g(1) = f(1)—1<0, so, by IVT, there is § € [0,1], such that f(§) =&.

1.3.3 Uniform Continuity

Recall that f with its domain E is continuous at xo € E, if for any given € > 0 one can find a number
0 > 0 such that

[f(x) = f(x0)| < &

holds for all x € E satisfying that |x — x| < 8. In general, the positive number é depends not only on
€ but also on xy, and the dependence of § on € and x( measures the degree of “continuity” of f on E.

Example 1.3.17 Show that for every xo # 0, lim,_,, )_1( = xio Therefore % is continuous at any x # 0.
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Proof. Since
1 1

X X

B |x — xo]

ol

thus, if |x — xp| < ‘XZ—O| [so we need to choose & smaller than ‘)62—‘)'], then

|xo

x| > |xo| — |x —x0| > —| [by using the triangle inequality]

2
so that
11 |x — xo| | |
- = < x—xp| .
x x| |xllxol T [xof?

[Thus in order to ensure that ))1—5 — xio‘ < € we only need ﬁ |x —x0| < € and |x —xp| < @]. Choose

2
0 = min {@, %} [which is positive as xy # 0]. Then

1 1

-——l<e

X X0
whenever |x — x| < 8. Hence % — xio as x — xp. Note that 6 depends on € and also on x( as well, so
that the degree of “continuity” of f(x) = % is not uniform in x € (0,0). m

Example 1.3.18 Suppose that f is Lipschitz continuous in E in the sense that there is a constant M
such that

[f(x) = F )] < Mlx -]

for any x,y € E. Then f is continuous at any xo € E.

Proof. Let x) € E. For every € > 0, choose 6 = MLH [which depends only on € but not on xy € E].
Then

[f(x) = flxo)| < Mx—xo|

€
< M E
= (M+1) <

whenever x € E such that |x — x| < 8. Therefore for a given € > 0 we can find a number § > 0 that
works for all xy € E, so that f is uniformly continuous on E.
For example, f(x) = /x is Lipschitz continuous on [1,):

B =yl
£ (x) f(y>|——\/}+\/y

for all x,y > 1, so that \/x is uniformly continuous on [1,cc). &

<|x—y|

Definition 1.3.19 Let f : E — R (or C). f is uniformly continuous on E, if for every € > 0, there is
0 > 0, such that for all y,x € E with |y —x| < 8 we have

fv)—f)] <e.

The following theorem is important in the theory of Riemann integrals, which will be the analysis
topic in Trinity Term.
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Theorem 1.3.20 If f : [a,b] — R (or C) is continuous, then f is uniformly continuous on |a,b.

Proof. [This theorem says that a continuous function on a closed interval (or in general on a
compact space, i.e. a bounded and closed subset of R or C, see W. Rudin’s Principles, Theorem 4.19,
page 91) is uniformly continuous. ]

Let us argue by contradiction. Suppose that f were not uniformly continuous, then, 3 € > 0, such
that for any n [with § = %], 3 a pair of points x,, y, € [a,b], |x, —yu| < % but

f () = f ()| = €.

[which is the contra-positive to the uniform continuity]. Since (x,) is bounded, by Bolzano-Weierstrass’
Theorem, we may extract a convergent subsequence (x,, ) from (x,) which converges to some p. p
must be a limit point of [a,b], so that p € [a,b]. Since

‘yl’lk _p’ S ‘x}’lk _)’nk‘ + ’x}’lk _p|
1
< —+|xq—pl—0
ng

Thus x,, — p and y,, — p. Since f is continuous at p,
0.< &< fim [£(x) = )| = 1£(p) = £(p)] =0

which is impossible. Here we have used again the following fact about sequence limits: a, — a as
n — oo implies that |a,| — |a| asn — . &

Proposition 1.3.21 If f is a real or complex valued function which is uniformly continuous on E C R
or C, then f maps a Cauchy sequence in E to a Cauchy sequence. That is, if (x,) is a Cauchy
sequence, where x,, € E forn=1,2,---, then (f(x,)) is also a Cauchy sequence.

Proof. For any given € > 0, since f is uniformly continuous on E, there is 0 > 0, whenever x,y € E
such that |x —y| < & we have

f(x)—fy)] <e.
Since (x;,) is Cauchy, there is N > 0 such that for all n,m > N,

|f(xn) _f(xm)| <E€

for all n,m > N. Therefore (f(x,)) is a Cauchy sequence. ®

This is the best for what we can say about Cauchy sequences for a function on a general domain.
Actually the converse of the previous proposition is not true in general as the following example
shows.

Xp —Xm| < 6. Hence

Example 1.3.22 f(x) = x? is continuous on [0,0) but not uniformly in [0,0). While f maps a Cauchy
sequence to a Cauchy sequence.

In fact, for every n =1,2,---, let x,, = n+% and y, = nthenx, —y, = % tends to zero as n — oo,
but

1
70n) = )l =2+ 5 >2,

so f is not uniformly continuous. We claim that f maps a Cauchy sequence into a Cauchy sequence.
In fact, if (a,) is a Cauchy sequence of [0,c0), then (a,) must be bounded, thus there is A > 0 such
that all a, € [0,A], and therefore (a,) is a Cauchy sequence in [0,A]. Since f is uniformly continuous
on [0,A] by Theorem 1.3.20, so (f(ay,)) is also a Cauchy sequence by Proposition 1.3.21 applying to
f on the closed interval [0,A]. Therefore f(x) = x*> maps a Cauchy sequence into a Cauchy sequence,
but is not uniformly continuous on E.

While the converse is true if the domain E is bounded.
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Proposition 1.3.23 Let E be a bounded subset of R or C. Then a real or complex valued function f
is uniformly continuous on E if and only if f maps Cauchy sequences of E into Cauchy sequences.

Proof. By Proposition 1.3.21 we only need to show the sufficiency. That is, we prove that if
E is bounded, and if f maps a Cauchy sequence to a Cauchy sequence, then f must be uniformly
continuous on E. Suppose f were not uniformly continuous on E, so by definition there is an € > 0
such that for every n there is a pair x,, y, in E such that |x, —y,| < % but

|f(xn) = f(n)] > €.

Since (x,) C E, so it is a bounded sequence, therefore by Bolzano-Weierestrass’ theorem, we may
extract a convergent sequence (x,, ). Hence (x,, ) is a Cauchy sequence, and, by AOL,

Yne = Xy + (Yo — X))

tends to the same limit of (x,, ). Now define as;+1 = xp,, and axx = yp,. Then (ay) is convergent, so it
is a Cauchy sequence of E, while

|f(aok+1) — flaw)| > €

for all , so the image (f(ax)) is not Cauchy. This is a contradiction. m
Example 1.3.24 f(x) = \/x is uniformly continuous in [0,).

Proof. For every € > 0, since /x is continuous on [0, 1], according to Theorem 1.3.20, it is
uniformly continuous the closed interval [0, 1]. Hence 38; > 0, Vx,y € [0, 1] such that [x —y| < &; we
have

Va— 5 < g (132)

On [1,00), the function +/x is Lipschitz. In fact, for x,y > 1,

_ b=yl 1
NEERVE] —mé—\x—yl

and therefore +/x is uniformly continuous on [1,00).

[In fact we can prove that \/x is Lipschitz continuous on [a, ) for any positive number a, but it is
not Lipschitz continuous on [0, o0)].

Thus 38, > 0, Vx,y > 1 such that |x — y| < & we have

VE— 3] < ; (1.3.3)

Let 0 = min{&;, 8 }. Let x,y € [0,00) such that |x —y| < &. If both x and y belong to [0, 1] or both in
[1,00), then

€
|\/?_C—\/§|<§<8~

If x€[0,1] and y > 1, since |[x —y| < §, so that |x — 1| < & and |y — 1| < 8, and therefore

VE-VEl < VR VIV
£

E
+

~ —e¢.
< 2

2
Hence

Vx— il <e

whenever x, y € [0,0) such that |x — y| < 8. By definition, f(x) = \/x is uniformly continuous in the
unbounded interval [0,0). ®
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1.3.4 Monotonic Functions and Inverse Function Theorem

We study in this part the continuity of monotone functions on intervals.

A function f: E — R, where £ C R is a subset, is increasing (or called non-decreasing) on E
if x,y € E and x <y implies that f(x) < f(y). Similarly we may define decreasing (or called non-
increasing) functions on E. A function on E is monotone if it is increasing on E or it is decreasing
on E. A function f is strictly monotone (resp. strictly increasing) on E if f is monotone (resp.
increasing) on E and f is also 1-1. If f: E — R is 1-1, then f defines an inverse function f~! with
its domain f(E) = {f(x) :x € E}.

Definition 1.3.25 Let f be a real valued function on E C R.

1) If f(x) < f(y) (resp. f(x) > f(y)) whenever x <y and x,y € E, then we say f is increasing
(resp. decreasing) in E.

2) A function is called monotone on E if it is increasing on E or decreasing on E.

3) If x <y implies that f(x) < f(y) (resp. f(x) > f(y)) then f is said to be strictly increasing
(resp. strictly decreasing) on E.

Theorem 1.3.26 Let f be a monotone function on (a,b), and xy € (a,b). Then
1) The right-hand limit f(xo+) and left-hand limit f(xo—) exist, f(xo) lies between f(xo—) and

f(xo+).
2) f is continuous at xq if and only if f (xo+) = f(xo—). In general, the difference f(xo+)— f(x0—)
is the "jump” or “increment” of f at xo.

Proof. We may assume that f is increasing (i.e. non-decreasing) on (a,b), otherwise we consider
— f instead. Let xo € (a,b). Then {f(x) :a < x < xp} is clearly a non-empty subset of R. Since f is
non-decreasing, this subset is bounded from above by f(xp), so that

I= sup f(x)=sup{f(x):a<x<xp}

a<x<xq

exists. By definition of /, for every € > 0, there is x¢ < x¢ such that
I—e<f(xe) <L
Let & = xp — x¢. Then for every x € (xp — 8,xp), xo > X > X, so that
I—& < flxe) < flx) <1,

which implies that
If(x)—1] <e.
By definition of left-hand side limits

flxo—) = sup f(x).

a<x<xgp

Similarly we have
flxo+) = inf f(x)=inf{f(x):x0 <x<b}.

xo<x<b
Since f is increasing, we have
fxo—) < f(x0) < f(x0+).
Finally, by definition, lim,_,, f(x) exists if and only if f(xo+) = f(xo—). Since f(xo) is sandwich
between f(xo—) and f(xp+), so this is equivalent to that f is continuous at xo.
There are similar results for monotone functions on other types of intervals.



1.3. CONTINUOUS FUNCTIONS ON INTERVALS 23

Theorem 1.3.27 Let f be a monotone function on an interval E C R. Then f is continuous on E if
and only if f(E) ={f(x) :x € E} is an interval.

Proof. If f is continuous, and E is an interval, then by IVT, f(E) is an interval too.

Suppose f is monotone and f(E) is an interval, let us show that f is continuous on E. We may
assume that f is increasing on E otherwise consider — f instead. We may assume E = (a,b), as the
other cases may be reduced to this case. For example, if E = [a,b), where a is a number, then we
define f(x) = f(a)+ (x—a) for x < a, so f is increasing and continuous on (—oo,b), so we consider
this extension of f on (—eo,b) instead.

If there were xo € (a,b) such that f were not continuous at xp, we may deduce a contradiction.
In fact, according to Theorem 1.3.26, (f(xo—), f(x0)) or/and (f(xo0), f(xo+)) is non-empty. Suppose
(f(x0—), f(x0)) is non-empty for example, then we can choose a number C € (f(xo—), f(xo)), and
choose x| € (a,xp) and x; € (xp,b). Then

f(x1) < flxo—) <C < flxo) < flx2)

so C is between f(x;) and f(xz), but C ¢ f(E). Therefore, by Proposition 1.3.2, f(E) can’t be an
interval, which contradicts to the assumption. m

Lemma 1.3.28 Let E C R be an interval. Suppose [ : E — R is continuous and 1-1 on E, then f
must be strictly monotone on E.

Proof. We may assume that E = [a,b] (where a < D) is a bounded and closed interval without
losing generality, as any interval E can be written as

E = [an, by)

n=1

where (a,) is decreasing and (b)) is increasing.

We may assume that f(a) < f(b) otherwise consider —f instead. We prove that f is strictly
increasing on [a, b].

To this end, we first show that f(a) < f(x) < f(b) for every x € (a,b). If for some x € (a,b),
f(x) < f(a), then by IVT applying to continuous function f on [x,b], there is a £ € [x, b] such that
fla) = f(&). Since a < x < &, this is a contradiction to the assumption that f is 1-1. Hence f(x) >
f(a) for every x € (a,b). Similarly, we can show that f(x) < f(b) for any x € (a,b). Ifa <x <y <b,
then considering continuous function f on [a,y], since f(a) < f(y), and f is 1-1 on [a,y], so that
f(a) < f(x) < f(v), which implies that f is strictly increasing on [a,b]. ®

Now we are going to prove the inverse function theorem. The first part of this theorem is about
the continuity of inverse functions, the second part is about the differentiability of inverse functions
which will be dealt with in the next chapter.

Theorem 1.3.29 (Inverse Function Theorem). Let E C R be an interval, and f : E — R be continu-
ous and 1-1 on E. Then the inverse function =" is continuous on f(E), where f(E) = {f(x) :x € E}.

Proof. By IVT (Theorem 1.3.6), f(E) is an interval, and according to Lemma 1.3.28, f is strictly
monotone on E. Therefore f~! is well-defined on the interval f(E) and is strictly monotone too. By
definition f~!'(f(E)) = E which is an interval, so by Theorem 1.3.27 applying to f~!' on f(E), we
may deduce that f~! is continuous on f (E). This completes the proof. m
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Proof. [Another proof via €-6 definition.] By Lemma 1.3.28, under the assumptions, f is strictly
monotone on £. We may assume that f is strictly increasing otherwise study —f instead. Without
losing generality we may assume that E = (a,b) is open, otherwise, for example if E = [a,]), we may
extend the definition of f continuously to (—oo,b) by setting f(x) = f(a) + (x —a) for x < a which is
continuous and 1-1 on (—oo, D).

Let f~! be the inverse of f, with its domain f(E) = {f(x) :a <x < b}. Since f is continuous,
according to IVT (Theorem 1.3.6), f(E) is again an interval. Since f is strictly increasing, f(E) =
(¢,d) is also an open interval, where

=1 dd=1i .
c ;gllf(X) an ;gf(X)

[Note that ¢ can be —oo, and d can be oo]. Let yo € (c,d). We are going to show that f~! is continuous
at yo. Let xo = £~ '(yo) € (a,b). For every &€ > 0, we may choose 0 < & < & such that

(X() —81,X0+81) - (a,b).
Since f is strictly increasing,

0 = min{f(xo+ &) —yo,y0 — f(x0o — €1)}

is positive, and
(yo—8,y0+6) C (c,d).

For every y such that [y — yo| < 8, since f is strictly increasing
) =x€ (xo—erx0+er)

which implies that
o) = )| <er<e

so by definition f is continuous at y. Since yy € f(E) is arbitrary, so f~! is continuous on f(E).
Thus we have completed the proof. m

Theorem 1.3.30 (Inverse Function Theorem for functions on closed intervals) Let f be a strictly
increasing and continuous real function on [a,b]. Then the inverse function f~' is well defined on

[f(a), f(b)] and is continuous.

Proof. [There is a similar result for decreasing functions.] In this case f(a) and f(b) are the
minimum and the maximum of f respectively, so that f([a,b]) = [f(a), f(b)]. Therefore f~! is well-
defined on [f(a), f(b)]. The continuity of f~! follows from Theorem 1.3.29 now. m

We are now able to give a complete picture about monotone continuous functions on intervals.

Theorem 1.3.31 Let E be an interval and f : E — R be a real valued function. Then the following
statements are equivalent:

(i) f is 1-1 and continuous on E;

(ii) f is continuous, and f is strictly increasing on E or strictly decreasing on E;

(iii) f is 1-1, monotone on E, and f(E) = {f(x) : x € E'} is an interval.

If f satisfies any of conditions (i)-(iii), then f is continuous on interval E, f(E) is an interval, f
maps E one-to-one and onto f(E), and the inverse function f~ is continuous on f(E). Moreover
f(E) = (c,d), [c,d), (¢,d] or [c,d], where ¢ = infg f and d = supy, f, with the convention that if f is
unbounded from below then infg f = —oo, and similarly if f is unbounded from above then supg, f = oo.



1.3. CONTINUOUS FUNCTIONS ON INTERVALS 25

Theorem 1.3.32 If f: (a,b) — R is monotone, then f is continuous on (a,b) except at most countably
many points.

Proof. Suppose f is increasing in (a,b), and A C (a,b) denotes the collection of discontinuous
points of f. If x <y, x,y € (a,b), then, since f is increasing

flat) = inf f(1) = inf f(1) < sup (1) =sup (e) = f(y-).

y>r>x X<t<y 1<y

Hence
fx=) < fl+) < f—) < fO+)
which implies that

(fx=), fa) N (=) f+) =9 (1.3.4)

for any x # y, x,y € (a,b). By Theorem 1.3.26, x € A if and only if f(x—) < f(x+), that is, the
open interval (f(x—),f(x+)) is non-empty. For any x € (a,b) at which f is discontinuous, then
(f(x—), f(x+)) is non-empty, so that we may choose a rational number r, € (f(x—), f(x+)) [using
the fact that rationales are dense in R]. By (1.3.4) r, are different for different x, thus x — r, is
injective from A to Q. Therefore A is at most countable. m

Example 1.3.33 Let {c,} be a sequence of positive numbers such that ¥ c, converges. Let (x,) be a
sequence of distinct numbers in (a,b) [For example all rationales in (a,b)]. Consider

flx)= Z ¢ (a<x<b),

n:x, <x

where the summation takes over those indices n for which x, < x. If there are no x, < x, then the
sum is assumed value zero. [Exercise: f is well defined on (a,b)]. Then f is increasing on (a,b),
discontinuous at each x,, with an jump f(x,+) — f(x,—) = ¢y, and is continuous at any other point of
(a,b). Moreover f is a left-continuous at x,: f(x,—) = f(x,).

To study this function, which looks like a step function with infinitely steps, we may consider its
partial sum sequence
Ju(x) = Z Ck

k<nx;<x

where we do the sum over only those indices k which fulfill two constraints that £ < n and also that
Xx < x. By assumption we have

S ick.

k=n+1

fE—f=| YL «

k>nx, <x

Note the right-hand side in the inequality is independent of x, so that

sup £ (x) = fu(0)] < ), a—0

k=n+1

as n — oo, hence f, — f uniformly in (a,b), a concept we are going to introduce shortly. Let A =
{xx :k=1,2,---}. Then for every n, f, is continuous at every x € (a,b) \ A, and is left continuous at
every xi, so as the uniform limit of f,, f is continuous at every x € (a,b) \ A, and is left continuous at
every x, see the big theorem below which we are going to prove for a general case.

Exercise 1.3.34 Modify the definition of f in the example so that f is right-continuous at each x,,.
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1.4 Uniform Convergence

Let E be a subset of R or C, and f : E — C be continuous at p € E. Then
lim £ (x) = f(p) = f(limx) ,

X—)p X—)p
that is, we may interchange the function operation f and the limiting process lim,_. ,. In many situa-
tions, we would like to understand if the order of performing two (or more) operations is relevant or
not.

Consider a sequence (f,) of functions defined on E (C R or C). If for every x € E, the se-
quence f,(x) — f(x), then we say that f,, converges (to f) on E, and f is the limit function, written
lim, o f, = f in E or f, — f on E. We are interested in the following question: can we exchange
the order of taking two limits lim;, . and lim,_, :

lim lim f,(x) and lim lim f,(x) ?
In particular, if all f,, are continuous at p, is the limit function lim,,_,. f;, continuous at p as well?

We may ask the same question for series of functions. If the sequence of partial sums

i Vx€eE

converges for every x € E, then we will use
) fo
n=1

to denote the limit function of (s,), called the sum of the series ), | f,. Can we exchange the
summation Y ~_; [which by definition is understood as lim, e Y ;_;] and lim,_, ,:

lim Z Sul(x i lim f,(x

X— p X*> P
In other words, can we work out the limit lim,_,, of the infinite sum }” | f, term by term?

Example 1.4.1 Consider the sequence of functions [sketch their graphs!]
_ 0 ifx>gy
f”(x)_{ —mx+1 f0<x<l.
Then

gggofn<x>=f<x>z{ A

fn(x) converges to f(x) for every x € [0, 1] [but not uniformly, see definition below]. The limit function
f is not continuous at 0, although all f, are continuous on [0, 1]. Indeed

lim lim f,(x) = lim f(x) =

x—0n—re0 x—0
while
lim lim =liml=1
n—>oox90fn( ) n—oo
so that

lim lim f,(x) # lim lim f,(x) .

x—0n—roe n—reo x—0
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Definition 1.4.2 Let f,, and f be real (or complex) functions on E, wheren =1,2,---
1) If for every € > 0, there is N € N such that for all x € E and for all n > N

[fu(x) — f(x)] <e,

then we say f, converges to f uniformly on E, written as f, — f uniformly on E as n — oo.
2) Define the sequence of partial sums

zn: Vx€eE

If s, — s uniformly on E, then we say the series ) ~_, f, converges uniformly on E.
By definition, f, — f uniformly on E implies point-wise convergence that

lim f,(x) = f(x) Vx€eE.

n—yoo

Theorem 1.4.3 Let f,,, f : E — R (or C). Then f,, — f uniformly on E if and only if
lim sup | f,(x) — f(x)[ = 0.
=0 ycE
Proof. Recall the notation used here:

sup | (x) = f ()] = sup {|a(x) = f(¥)| : x € E}
xe
which is the supermum of the function |f,, — f| over E, or oo if the function |f, — f| is unbounded on
E.

“=>". Suppose f, — f uniformly on E, then for any given € > 0 there is N such that Vx € E and
n > N we have

) = )] < 5.

[That is, § is an upper bound of {|f,(x) — f(x)| : x € E}]. Hence Vn > N

—

sup | f(x) =/ (x)]

< [Think about why we have “ <7, not “ < 7]
xekE
<

M N m

Accordmg to definition, lim,_seSup,cg | fn(x) —
“<=". Suppose limy, e SUp. x| fu(x) — f(¥)]

sup | f(x) — f(x)] < &.

xekE

fx)|=0.
=0, then Ve > 0 3N such that Vn > N

Therefore forallx € E andn > N
| fu(x) = f(X)] < sup|fu(x) — fF(x)] <&
xeE
By definition f,, — f uniformly on E. m

Exercise 1.4.4 Prove that f, — f uniformly in E if and only if for any sequence (x,) in E

r}grolo|fn(xn) —f(x)[ =0
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[Hint: Formulate the contrapositive to that f, — f uniformly in E7].

Theorem 1.4.5 (Cauchy’s Criterion for Uniform Convergence) Let f, : E — R (or C). Then f,
converges uniformly on E, if and only if for every € > 0, there is N € N such that for n,m > N we
have

sup | f(x) — fin(x)] < €. (1.4.1)

xekE

Proof. “—>". Suppose f,, converges uniformly on E with limit function f, then V € > 0, 3N such
that Vn > N

sup £, (x) — F(x)] <

xekE 2
Since
|fn(x) _fm(x)| < |fn(x> _f(x>| + |fm(x) _f(x)l
so that for any n,m > N,

sup |fu(x) = fm(¥)| < sup|falx) = £ ()] +sup|fm(x) — f(x)]

x€E x€E x€E
€ £

272
= E.

“«<=". Conversely, suppose (1.4.1) holds. Then for any x € E, (f,(x)) is a Cauchy sequence, so
that it is convergent. Let us denote its limit by f(x). For every € > 0, choose an integer N such that
for all n, m > N and x € E we have

E
|fn(x) _fm(xﬂ < 5
For any fixed n > N and x € E, letting m — oo in the above inequality we obtain
@) = F@] = i |fu() — fulo)
< Z
-2
< &

[Think about why “ <, not “ <~ ?]

According to definition, f;, — f uniformly on £. m

Remark 1.4.6 [Cauchy’s criterion of uniform convergence for series] A series Y| fn is uniformly
convergent in E if and only if for every € > 0, there is N such that forn > m > N

i Ji(x)

k=m+1

sup
xekE

<E.

[Apply Cauchy’s criterion to the partial sum sequence (s,): s, = Y5 fil-
As a consequence, we prove the following simple but useful test for uniform convergence of series.

Theorem 1.4.7 (Weierstrass M-Test [for Uniform Convergence of Series]) Let (f,) be a sequence of
(real or complex) functions defined on E. If there is a sequence of real numbers (M,,) such that

| fn(x)| < M, forall x € E

[i.e. M, is an upper bound of |f,| on E] for n =1,2,---, and Y,,_| M, converges, then Y., f,
converges uniformly on E. Moreover

ifn(X)

S;WWS;%
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Proof. The proof of the last inequality, though obvious, is left as an exercise. By Cauchy’s criterion
for series of numbers, for every € > 0, there exists an integer N such that

n
Z M, <¢e forall n>m>N.
k=m-+1

Let s, = Y/ _, fx be the partial sum sequence of }." | f,,. Then for any n > m > N and for every x € E

Y, filx)
k=m+1

Z | fi(x)] [Triangle Inequality]
k=m+1

C F o

k=m+1

[$n(x) =sm(x)| =

IN

That is, [s, — 5,,/| is bounded above by Y7, . | My and therefore

n
sup [s, (x) — sm(x)| < Z My <e.
xeE k=m+1

Hence, according to Cauchy’s criterion for uniform convergence, (s,) converges uniformly in £. m

Example 1.4.8 Let E = [0,1] and

x
) = T
Then lim,,_,o fn(x) = 0 for every x € E. Since
1 2nx 1

—0

0 < fu(x)

— M
2n1+n2x2 — 2n

so that f, — f uniformly on [0, 1].

Example 1.4.9 Let
nx

W)=
Then lim,,_ye fn(x) = 0 for every x € [0,1]. While f,(1/n) =1/2, so that

forxe0,1].

sup [(x) — £()] = 2 = 0.as n — oo
xe0,1] 2

and therefore f,, converges point-wise but not uniformly in [0, 1].

Example 1.4.10 Y~ ,x" converges to ﬁ for x € (—1,1), but not uniformly. [y, ox" converges

uniformly on [—r,r] for any 0 < r < 1, see also Theorem 2.1.15 below].

Indeed, s,(x) = Y7_ xk = % tends to ﬁ for any |x| < 1. On the other hand

’x’n—i—l

1=

sn(x) —

1—x
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so that
41
1 Gl
sup [su(x) — P —
xe(—1,1) I—x -5
_ n+2 N

=1 antl oo

(1+57)

Hence )" ,x" does not converge uniformly in (—1,1).

Theorem 1.4.11 Let f,,, f : E — R (or C), and f,, — f uniformly in E. Suppose all f,, are continuous
at xo € E, then the limit function f is also continuous at xy. Therefore

Jlim lim f,(x) = lim f,(xo) = lim lim f,(x).

[The uniform limit of continuous functions is continuous. ]
Proof. For € > 0, since f,, — f uniformly on E, there is N, such that for every n > N and x € E

f26) = £ < 5.

Since fy1 is continuous at xg, there is 6 > 0 (depending on xy and €) such that for x € E satisfying
|x —x0| < 6, we have

v (¥) = fvst (x0)| < g .

Hence, for every x € E such that |x — x| < &, by using the Triangle Inequality,

|f(x) = fxo)] < [f(x) = fve1(x)| +]f(x0) = fvs1(x0)|
+[fv1(x) = fv1(x0) |

< £ 8 8
33 3

According to definition, f is continuous at xo. B

Remark 1.4.12 [Version for series] If }.,"_| fun converges uniformly on E and every f, is continuous
at xo € E, then

LD WACES WA
0p=1 n=1

In particular, if f, is continuous on E for all n and Y, f, converges uniformly on E, then Y, , f, is
continuous on E.

Corollary 1.4.13 Suppose the convergence radius of the power series Y .~ anx" is 0 < R < oo, then
for every 0 <r <R, Y anx" converges uniformly on the closed disk {x : |x| < r}. Therefore,
Y~ anx" is continuous on the open ball {x : |x| < R}.

Proof. According to the definition of convergence radius, )" ; a,x" is absolutely convergent for
|x| <R. In particular, }.>_, |a,|r" is convergent. Since for any x such that |x| <r

lanx"| < |an|r"
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therefore, by Weierstrass M-test, ).~ a,x" converges uniformly on {x : x| < r}. It follows that, ac-
cording to Theorem 1.4.11, as the uniform limit of continuous functions, f(x) =Y~ ,a,x" is continu-
ous on {x: |x| < r} for any 0 < r < R. Suppose |xp| < R, then we may choose r such that |xo| < r <R,
so that f(x) is continuous at xq. Since xo € {x: |x| < R} is arbitrary, f(x) = Y.;”_,a,x" is continuous
on{x:|x|<R}. m

In general a power series Y, a,x" is not uniformly convergent on the disk {x : |x| < R}, where R
is its convergence radius, but the previous corollary implies that it is continuous on {x : |x| < R}. The
end points R and —R need to be handled differently.

Theorem 1.4.14 (Abel’s theorem) If the series Y, a, converges, then Y ,a,x" converges uni-
formly on [0, 1]. Therefore, Y., yanx" is continuous on [0, 1], and

Proof. Let s, (x) =Y} a;x!' be the partial sum sequence associated with the power series ¥ a,x".
We want to show that (s,) satisfies the uniform Cauchy principle on [0, 1]. We have already seen that
for n > m we have

[5n() — s (x)| =

n
Z akxk
k=m+1
and we want to control the right-hand side uniformly in x € [0, 1].

Since } a, is convergent, its partial sum sequence ) ;_ax is a Cauchy sequence, according to the

General Principle of Convergence Sequences, from Analysis 1. Thus, for every € > 0, there is N such
that, for every n > m > N we have

<E. (1.4.2)

Fix m > N, set

k
k= Z aj for k>m+1, ¢, =0.
j=m+1

[We may use the following observation — at this stage, from now on, we will only deal with the
series with the terms a;x* for k > m+ 1, while these terms for k < m will not play any role in our
argument afterwards. Thus we can employ a trick that we can simply assume that all ay = O for
k<m!].

Then (1.4.2) implies that |c;| < € whenever k > m, and a; = ¢ — ¢;_1. We have

n n
Z akxk = Z (Ck—Ck,1>/\J(
k=m-+1 k=m+1
n v n
= Z CiX — Z ck_lxk
k=m+1 k=m+1
n—1

= Z Ck <xk —xk+1> + cpx”
k=m+1



32 CHAPTER 1. FUNCTION LIMITS AND CONTINUITY

[The last equality is called the Abel’s summation formula — which is a discrete version of integration
by parts]. Hence, for every x € [0, 1],

n—1

< Y e (xk—xkﬂ) + |cnlx"
k=m+1
n—1
< € Z (xk—xk+1> + ex”
k=m+1
el <e.

n

Z akxk

k=m+1

According to definition, Y, a,x" converges uniformly on [0, 1]. Therefore Y~ ,a,x" continuous on
[0, 1]. In particular

The following Dini’s theorem is interesting, but not examinable in paper M2.

Theorem 1.4.15 (Dini’s Theorem). Let f, be a sequence of real continuous functions on |a,b]. Sup-
pose lim,_,« fn(x) = f(x) for any x € [a,b], where f is a continuous function on [a,D|, and suppose
that

fn(x) > frur1(x) YV nandVx € [a,b],

then f, — f uniformly in [a,b].

Proof. Let g,(x) = f,(x) — f(x). Then g, is continuous for every n, g, > 0 and lim,,_,c g, (x) =0
for any x € [a,b]. Suppose (g,) were not uniformly convergent on [a,b]. Then there is an € > 0, such
that for each k there are a natural number n; > k and a point x; € [a,b] such that

|&n (k)| = g (xk) > €.

[which is the contra-positive to that (g,) converges to 0 uniformly on [a,b]]. We may choose ny so
that k — n; 1s increasing, and may assume that x; — p. [Otherwise we may argue with a convergent
subsequence of (x;), according to Bolzano-Weierstrass’ Theorem]. Then p € [a,b]. Since g,(x) is
decreasing in n for every x € [a, b, thus for every k fixed, for all / > k, we have

€ < gn (%) < gn(x1) . (1.4.3)
Letting [ — o in the above inequality, we obtain
e< }Lngo 8n, (x1) = &n, (D) [since gy, is continuous at p],
which is a contradicts with the assumption that limy_,.. g, (p) =0. m
Corollary 1.4.16 Suppose the series of functions Y, | g,(x) converges to its sum S(x) for x € [a,b],
suppose gn(x) > 0 for every n and every x € |a,b|, and suppose all g, and its limit function S are

continuous on |a,b), then Y.,, | g, converges to S uniformly on |a, D).

Proof. Apply Dini’s Theorem to f,, =S — Y}, g« to conclude that f,, | 0 uniformly on [a,b]. m
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Example 1.4.17 Let f,(x) = —— for x € (0,1). Then lim,_. f,(x) = 0 for every x € (0,1), f, is

T+nx
decreasing in n, but f, does not converge uniformly. Dini’s theorem does not apply for this case,

since (0,1) is not compact.

The proofs of the following two theorems related to the concept of uniform convergence will be
given in the Trinity term.

Theorem 1.4.18 If f,, — f uniformly in |a,b] and if every f, is continuous in |a,b], then

b b b
[ o= = fim [

Similarly, if the series Y, fn converges uniformly in [a,b] and if all f, are continuous, then we may
integrate the series term by term

b oo oo b
a p=| n=1J4a

Let us however immediately point out that the notion of uniform convergence is not the right
condition for integrating a series term by term: we may exchange the order of integration fab (which
involves a limiting procedure) and lim,_,.. under much weaker conditions. The search for correct
conditions for term-by-term integration led to the discovery of Lebesgue’s integration [Second year
A4 paper: Integration]. For details, see W. Rudin’s Principles, Chapter 11 (page 300).

Theorem 1.4.19 Let f, — f in (a,b) (convergence point-wisely). Suppose f,, exists and is continuous
on (a,b) for every n, and if f,, — g uniformly in (a,b). Then f exists and is continuous in (a,b), and

4 lim f,(x) = lim 4 Jn(x) .

dx n—oo n—eo dx

Similarly, if ¥ f,, converges in (a,b), if every f, exists and is continuous in (a,b), and if Y., f}, converges

uniformly in (a,b), then
d oo (o]
dx n=1 n=1
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Chapter 2

Differentiability

In this chapter, we are going to

1) give the definition of the derivative of a function of a real variable and differentiability, and prove
important properties of derivatives such as algebra of derivatives, the chain rule and differentiability
of polynomials and inverse functions;

2) state the theorem that the derivative of a function defined by a power series is given by the
derived series, whose proof is given in the notes too but the proof is not examinable in paper M2;

3) prove Fermat’s theorem about vanishing of the derivative at a local maximum or minimum, and
as its application prove Darboux’ intermediate value theorem and Rolle’s Theorem;

4) establish the most important result in this course, the Mean Value Theorem (MVT), together
with simple applications: the identity theorem and a study of monotone functions;

5) give a definition of 7 and give a study of exponential and trigonometric functions;

5) prove Cauchy’s (generalized) Mean Value Theorem and I’Hopital’s rules;

6) establish Taylor’s Theorem with remainder in Lagrange’s form by using MVT, and give exam-
ples of Taylor’s Theorem and the binomial expansion with arbitrary index.

The whole chapter is about the Mean Value Theorem and its substantial applications.

2.1 The concept of differentiability

In this course we study the differentiability of real (or complex)-valued functions on E, where E is a
subset of the real line R. The study of differentiation of complex functions on the complex plane C is
a totally different story from the real case here. The existence of complex coordinates or the complex
structure has a completely different meaning, so that it requires another theory — Complex Analysis
[Second year A2 paper: Metric Spaces and Complex Analysis].

2.1.1 Derivatives, basic properties

Let us begin with the definition of differentiability of a function, and derivatives.

Definition 2.1.1 /) Let (a,b) C R be an open interval, f be a real or complex valued function defined
on (a,b), and xy € (a,b). If
L )~ ()

X—X0 X — X0

exists (a real or complex number), then the limit is called the derivative of f at xy and is denoted by
1 (x0) or %(xo).

35
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2)If f: (a,b] = R (or C) and xy € (a,b), then the left-derivative of f at xy is defined by

xTxo X —Xp
provided the limit exists. Similarly, if f : [a,b) — R (or C) and x¢ € [a,b), then the right-derivative of
f at xg is defined by
o) i L)

f'(xo+) him o

provided the limit exists.
3)If f:D— Cwhere D C C, zg € D such that there is a (small § >0) D(z9,6) ={z€ C:|z—2z0| <0} C

D, then the [complex] derivative of f at zq is defined to be

f/(Zo> — lim f(2) _f(ZO),

7—20 Z—20

provided the limit exists.

Remark 2.1.2 Let y = f(x). There are other notations for derivatives

% or % [used by G. W. Leibnitz]
Y or f'(xo) [introduced by J. L. Lagrange]
Dy or Df(xo) [used by A. L. Cauchy, in particular for vector-valued functions of several vari-

ables].

Remark 2.1.3 1) According to definition, f'(xo) exists if and only if both side derivatives f'(xo—)
and f'(xo+) exist, and f'(xo—) = f'(xo+). If f: (a,b) — C and f'(xy) exists, then we say f is
differentiable at x.

2) f is differentiable on (a,b) if it is differentiable at every point in (a,b).

3) f is differentiable on |a,b) if it is differentiable on (a,b) and both f'(a+) and f'(b—) exist.

Remark 2.1.4 Here we have abused the notations f'(xo+) and f'(xo—). Recall that if g is a function
defined in (a,b) and xo € (a,b), then g(xo+) and g(xo—) represent the right-hand limit and the left-
hand limit of g at xy:

g(xo+) =limg(x) and g(xo—)=limg(x),
xJxo xTxg

respectively. According to definition here, if f is differentiable in (a,D) [so that the derivative function
I of f is awell defined on (a,b)], f'(xo+) and f'(xo—) do not mean the right-hand and the left-hand
limits of the derivative function f' at xo! However, we will show rhat, if lim, |, f'(x) exists, then
the right-hand limit of f’; lim, ., f'(x); does coincide with f'(xo+) we have defined here. A similar
statement holds for f'(xo—) as well.

Here is a simple example to show the difference. Consider f(x) = x*sin % forx#£0, and f(0) =0.
Then we can show, by using definition of derivatives, that f'(0) = 0 [Exercise] and

1 1
f'(x) = 2xsin — —cos — for x # 0.
x x

Therefore f'(0+) = f'(0—) = f/(0) = 0, but the right-hand and left-hand limits of [ at 0: neither of
limy o f'(x) and limyg f'(x) exists!
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Exercise 2.1.5 1) If f'(xo—) > 0 (resp. f'(xo—) < 0), then there is a number & > 0 such that f(x) <

f(xo0) (resp. f(x) > f(x0)) for every x € (xo — 8,x0].
2) If f'(xo+) > 0 (resp. f'(xo+) <O0), then there is 8 > 0 such that f(x) > f(xo) (resp. f(x) <

f(x0)) for any x € [xg,x0+ 0).
3)If f'(x0) > O (resp. f'(xo) <O0), then there is § > 0 such that

(f(x) = f(x0)) (x —x0) >0

(resp.
(f(x) = f(x0)) (x —x0) <0)
forall x € (xo— 6,x0+ 0).

If f is differentiable at x, i.e. f'(xo) exists, then

fx) = f(x0)

— f'(x0) — 0 as x — xg
X —X0

and therefore the increment of f near xy can be expressed as

f(x) = f(x0) = £ (x0) (x = x0) + 0(x,%0)
so that

f(x) = f(x0) + ' (x0) (x = x0) +0(x,x0),
where o(x,x) is a function of x and xj satisfying that

fim 215:%0)
X—=x0 X — X0

=0.

The part of the increment f(x) — f(xo) linear in x — xg, namely f”(xq)(x—xo), is called the differential
of f at xo, a concept we will not study further in this course. The linear part of f(x) near xo:

[ (x0) + £ (x0) (x — x0)
is called the linear approximation of the function f(x) about xq. The linear function
y = f(x0) + f(x0) (x — x0)

is the equation of the tangent line of f at (xo, f(xo)), which has been defined in your A-level course.
We next prove several standard facts about differentiability.

Theorem 2.1.6 Let f: (a,b) — R (or C). If f is differentiable at xo € (a,b), then f is continuous at
X0

Proof. Since

Jim (f(x) - f(x0)) = lim f(x))c:)]:o ) (x — x0)
= lim fx) = f(xo) lim (x —xp)
X—X0 X — X0 X=X
= f/(X()) x 0
=0

where the second equality follows from the algebra of limits. Therefore lim,_,y, f(x) = f(xo), thus
according to definition f is continuous at xj. H
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Theorem 2.1.7 If f, g : (a,b) — R (or C) are differentiable at xy € (a,b), then

1) (f£8) (x0) = f'(x0) £ & (x0) ,

2) (Product rule) (fg)'(xo) = f'(x0)g(x0) + f(x0)g (x0) [This means that the mapping f — f’ is a
derivation],

3) and if in addition g(xy) # 0

<J_‘>/(x - f'(x0)g(x0) — f(x0)8' (x0)
g) g*(xo) '

Proof. 1) follows from AOL for limits. 2) Let 2 = fg. Then we can write

h(x) —h(xo0) = g(x0) (f (x) — f(x0)) + f(x) (g(x) —&(x0))-
Dividing both sides by x — xo, and taking limit x — xo to obtain

o A —h(xo) o(s0) Tim f&) =S o) £(x) lim g(x) — g(xo)

X—X0 X — X0 X—X0 X — X0 X—X0 X—X0 X —X0

= f(x0)g(x0) + f(x0)g (x0) [Algebra of limits]

where we have used the fact that g(x) — g(xo) as x — xo [Theorem 2.1.6].

To prove 3), we need to show f /g is well defined near x. Since g is continuous at xg, for € = b”(zﬂ

which is positive as g(xg) # 0, there is § > 0, for any x € (a,b) such that |x—xg| < 0 we have

|g(x0)|
5

lg(x) —g(x0)| <
It follows that

1g(¥)| = lg(x0)[ — |g(x) —g(xo)|  [Triangle Inequality]

Ig(xo)l ~0 v

~ T

for all x € (a,b) such that |x —xo| < 8. Let h = g on (a,b) N (xg—0,x0+ 8). Then

M) ) L[ )~ f )
x—x0  g(x)g(xo) 8(x0) x

Letting x — xo we prove 3). ®

Theorem 2.1.8 (The chain rule for derivatives) Suppose f : (a,b) — R is differentiable at xy € (a,b),
g : (¢,d) — Ris differentiable at yo = f(xo) € (¢,d), and f((a,b)) C (c¢,d), then h = go f is differen-
tiable at xo and

1 (x0) = &' (v0) f'(x0) -

Proof. Let

8(y) —8(o) _dGo) Wy £
Y=o

and v(yg) = 0. Since g is differentiable at yy, v(y) — 0 =v(yp) as y — yo, and therefore v is continuous
at yo. We may write the increment

v(y) =

g(y) —g(0) = (v —y0) (&' (o) +v(»))
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which is valid for every y € (c,d). In particular

g(f(x)) —8(f(x0)) = (f(x) — f(x0)) (&' (vo) +v(f(x)))

for any x € (a,b), so that
MO ZRO0) _ gy LI ) LI =) B

for all x # xo. Since f is differentiable at xy, f continuous at xo [Theorem 2.1.6], and therefore
f(x) = yo as x — xp, which in turn yields that v(f(x)) — 0 as x — xp. Letting x — xp in (2.1.1) we
obtain

xlggclo%ﬁo()m) = g/<y0)gir§0%){yw
+ i v((0) Jig T
g (30)f (x0) +0 x f'(xo)
= f'(x0)8'(vo) -

Theorem 2.1.9 Let f be real valued continuous and 1-1 function on (a,b), and xo € (a,b). If f is
differentiable at xo and f'(xg) # 0, then the inverse function f~! is differentiable at yo = f(xo) and
the derivative of f~' at yq is given by

d

1 .
d_yf ()’0) =

1
(1))

Proof. According to IVT, since f is continuous on (a,b), f((a,b)) is an interval. Since f is 1-1,
by Lemma 1.3.28, f is strictly monotone (i.e. strictly increasing on (a,b), or is strictly decreasing on
(a,b)), hence f((a,b)) must be an open interval (Theorem 1.3.31), denoted by (c,d), where

c=limf(x) andd= ligylf(x).

xla

According to the Inverse Function Theorem (continuity part), the inverse function f~! is continuous
on (c,d). Hence yo = f(x0) € (c,d). If y — yo, where y # yp and y € (c,d), then since f~! continuous,

x=f"' =) =x0
and x # xo as f is 1-1, and x € (a,b). Therefore, by AOL
1) _ =1
im0 = 00) _ . x—xo
Y=o Y=o y=yo f(x) = f(x0)

, |
= hm )

X —Xp
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exists, so that f~! is differentiable at yo and

I
~ f'xo) S (0))

d .
Ef (»o)
which completes the proof. m

Example 2.1.10 Consider function

_f xsinlif x#£0;
f(x)_{o lf XZO,

which is continuous on R. Since

lim S0 = f0) _ lim sinl
x—0 x—0 x—0 X

doesn’t exist, f is not differentiable at 0. f is differentiable at any other point, and

1 1 1
f/(x)=sin———cos—  Vx#0.
X ox x

Note that lim,_q f'(x) does not exist [Why ?]
Example 2.1.11 Let f(x) = x? sin)]—c (x #0) and f(0) =0. Then
x—0 X

) .1
= limxsin— =0
x—0 X

and

1 1
f'(x) =2xsin— —cos—  Vx#0.
x x

Therefore f is differentiable everywhere, the derivative function f’ is not continuous at 0: lim,_,q f’(x)
doesn’t exist.

Example 2.1.12 f(x) = |x| is continuous but not differentiable at 0. But the left (right)-derivative of
f at 0 exists, and f'(0—) = —1 and f'(0+) = 1. Note that lim, o f'(x) = f'(0+) and lim,_,+o f'(x) =
f(0-).

Definition 2.1.13 If f is differentiable on (a,b), then the second-order derivative

[+ —f'(x)
h

/! — 1
fr(x) lim

if the limit exists, which is denoted also by f®)(x). Inductively define f"*V)(x) to be the derivative of
f () for any n, as long as the derivative exists.

Theorem 2.1.14 (Leibnitz Formula) If F = fg, then

W)= V() 0 ()00 ()
PO =% () s
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2.1.2 Differentiability of power series

Power series are important class of differentiable functions.

Theorem 2.1.15 Consider the power series

f@) = Y and
n=0
= aytaz+--+ap '+ (2.1.2)

Let R be its convergence radius, and assume that 0 < R < oo, Then
1) The power series obtained by differentiating f term by term

g(Z) = Z nanznil
n=1
= aj+2az-+na,?" 4 (2.1.3)

has the same convergence radius R.
2) The [complex] derivative
o S0 = ()
f(z) = lim o

exists for every z satisfying that |z| < R, and f'(z) = g(z). That is
d (o) [ee]
— Z an?' = Z na,?"~'  foranyl|z| <R. (2.1.4)
dz n=0 n=1

Proof. [This theorem says that we may differentiate a power series term by term. Proof is not
examinable in Prelims Paper Il — this theorem will be revisited in Paper A2.]

1) Let |z] <R. Setr = 3(|z] +R) (or r =2|z| + 1 if R=0). Then |z < r <Rand g = @ €[0,1).
We have the following facts:

(@) Yoo lan|r" < oo [Analysis 1: a power series converges absolutely inside its convergence disk],

(b) {nq”fl} is bounded. [Indeed ¥ ng"~! converges (by the ratio test), so that lim,_c ng" ' =0:
but we don’t need these stronger results here].

Let b, = ng"~!. Then

bn+1 n+1

bn:nq

which is smaller than 1 for n large enough. Thus (b,) is decreasing for large n, so that lim,_.b,
exists, and therefore (nq”_l) is bounded. Let nq”_l < M for some M > 0, for every n.
©) Yo nanz”_lconverges absolutely. Indeed

’nfl —

Ina,?" | < nlayz ng" a, |

< —|ap|r" Vn> 1
,

so that, by the comparison test [Analysis 1]

o)

- M
Y nlay||z" ! < = Y lan|r" < oo
n=1

n=1

Similarly we may prove that the convergence radius of ¥'°_; na,z"~! can not be greater than that of
Ln—o@nZ".
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2) We are going to show that the complex derivative f’(z) exists and equals g(z) at every point z
such that |z| < R. Let r = 1(|z] +R) (or r = |z| + 1 if R = ). Then r < R, and |z| < r. For any point
w # z such that |w| < r, consider

fw) =1 (2) v, (W=
o 8@ = ,E“"<w_z " )
- ian<w;:§n—nzn_l); (2.1.5)
n=2

where we have added the series f(w), f(z) and g(z) term by term, which is justified as all these series
are absolutely convergent [Analysis 1: a power series converges absolutely inside the convergence
disk]. Our aim is to show that

fw)—f(2)

w—2z

—g(z) =0 asw—z.

To this end we use the following identity

w'—2" 1 2 2 1
=7+ WA T W

w—z

[Exercise. Apply the geometric series

2 I
1+x+x"4+---+x = Vn>1
1—x
to x = w/z or z/w]. Therefore, for any w # zand n > 2
n___n
w < —I’lZn_l — Zn_l+Zn_2W+"'+ZWn_2+Wn_1
w—z
_anl_znfl__ _anl_znfl
n—1
-y (Zn—l—kwk n—1>
k=1
n—1
-y L1k (wk Zk)
k=1
Let
n—1
hn<W)—a ZZn ! k<Wk Zk> > n_2737
k=1
Then (w) )
Jw)—f(z -
—8(2) =Y ha(w)
w—z n=2

All hy, are continuous in C (polynomials in w), and h,(z) = 0 (for all n > 2). We claim that )"~ , i, (w)
converges uniformly in |w| < r. In fact

n—1

anl Yl (Il + |2)
k=1

< 2njan|rt.

[ (W) |

IN
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By 1), Y n|a,|r"~! < oo, so that Y2, h, (w) converges uniformly in closed disk {w : |w| < r} [Weier-
strass M-test, Chapter 2]. Hence Y., , i, (w) is continuous in the disk |w| < r [Theorem 1.4.11: the
uniform limit of continuous functions is continuous]. Therefore

(o]

lim izh,, w)=Y hi(z)=0

n=2
so that
w—z w—z w—z w—2z
= lim Y (W) +2(2)
n=2

= g(2).
This completes the proof. m

Now we are in a position to study several important elementary functions.

Example 2.1.16 It was the great mathematician Gauss who studied the exponential function exp as
a function on the complex plane, and made the link between exp and trigonometric functions sin and
cos. The modern approach we present as the following is essentially due to him.

The exponential function is defined by the power series
o 2

Z
4 n __ — 4.
expz=¢ _nzzon!z =1z 2!

which converges everywhere in C (that is, its convergence radius is o). Substituting z by iz or —iz,
and using the fact that i*" = (—1)" we obtain that

and

o7 — i (‘U"Zzn_ii (=" 2+
= (2n)! = (2n+1)!

which allows to define the trigonometric functions sin and cos in terms of the exponential function
exp, namely

. e & (=) 5 2 2
sing=———=9Y —_ =74
T Y PR VI 3175
and 1) N
et o2 o () on 7 7
cosz = = e P ST RTI
2 &) 21

which have infinite convergence radius, and therefore both are differentiable. It follows immediately
the Euler formula .
e“ =cosz+ising

which is valid for every complex number z.
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According to Theorem 2.1.15 exp is differentiable in C and its derivative may be calculated by
differentiate term by term. Hence

d o Zn—l o Zn—l o 7"
d—Zexpz—’;n nl = (n—l)!_ngba_e)(pz'
Similarly
9= Y @t ) Y T cose
dz o 2n+1)! = (2n)!
and 2n—1 2n—1
d - " - It :
40082 nz::l( ) "o n=l< ) 2 D)1 sinz

Example 2.1.17 Let us consider exp as the function on R. Then exp0 = 1, x — expx is strictly
increasing on [0,0). Since expx > 1+ x for every x > 0, so that exp maps [0,0) one-to-one and onto
[1,00). [Indeed it is strictly increasing from (—oo,0) one to one and onto (0,0), see below Corollary
2.3]. LetIn: [1,00) — [0,c0) denote the inverse function of f = exp on [0,). By definition, In1 =0
and In is strictly increasing on [1,0). Since d% expx = expx > 0 for all x > 0, according to Theorem
2.1.9, f~Vis differentiable on [1,o0) and, for every y € [1,)

d In 1 1 1
—_— y = — = — = —.
dy o) )y
Therefore In is differentiable and
d 1
Zlnx=-=-
dx nx X

forall x > 1.

We will study exp on (—oo,00) and its inverse In, which is defined on (0, ), after we establish the
important Mean Value Theorem.

2.1.3 Van der Vaerden’s example

The following example of a continuous function on R which is nowhere differentiable was constructed
by B. L. Van der Waerden [For your reading — I don’t think I’ll have time to work through this
example].

Let us begin with a simple continuous function

h(x) = x 1 0<x<1;
V=Y 2—x ifl<x<2

and extend & to be a periodic function with period 2, i.e. h(x+2) = h(x) for x € R. Then # is
continuous on R. Consider the series

Fx) = i‘b G)nh(ﬂx) |

By the Weierstrass M-test, ) (%)nh(4”x) converges uniformly in R, thus f is continuous on R
[Theorem 1.4.11] and

[eS] 3 n
’f(@\ﬁZ(Z) =4 foreveryx€c€R.
n=0
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Let x € R, m € N and set k = [4"x] the integer part of 4”x: k is the unique integer such that
k<4"x<k+1.
Let oy, =4 "k and f3,, = 47" (k+ 1). Obviously
O < x < By

and 1
ﬁm—ocm:4—m—>0 asm — oo .

In particular, lim,, e &, = lim,, . 3,, = x. We are going to show that

L F(Ba) — (o)

m—eo [, —

does not exist, so that f is not differentiable at x. Since x is arbitrary, f is nowhere differentiable.
If n > m, then 4" f3,, — 4" o, is an even number, and if n < m then there is no integer between 4" f3,,,
and 4" ;. Therefore

@) —nwan)| = {
Hence
1B~ rlew) = 3 (3) 0 -hwa)
- ¥ (5) twp e
so that
B -sian) > (3) =% (3) s -nwra)
) EeC)
(-2
SENE
Therefore
) Sl T4

and it follows that lim W does not exist. Hence f is not differentiable at any point x.

2.2 Mean Value Theorem (MVT)

Next we are going to study functions by using the tools we have developed, namely function limits
and derivatives.
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2.2.1 Local maxima and minima

If f: E — Ris areal function on E, then a € E is a local maximum (resp. local minimum) if there is
ad >0, such that (a—6,a+ 8) C E and for every x € (a— §,a+9).

f(x) < fla) (resp. f(x) > f(a)).

A local maximum or minimum is called a local extremum.

Lemma 2.2.1 Let 6 >0anda € R.
1) If f(x) < f(a) for every x € (a— 8,a] and if f'(a—) exists, then f'(a—) > 0. Similarly
2)If f(x) < f(a) for every x € [a,a+ &) and if f'(a+) exists, then f'(a+) <O.

Proof. 1) Since
f(x)—f(a) <0, forallxe (a—3,a)

so that
fx) =) >0 forallxe€ (a—3,a)
x—a
and therefore, as f'(a—) exists,

xta xX—a

The proof of 2) is similar, as for x € (a,a+ 6), (x) — f(a) < 0 so that

M <0 forallx € (a,a+9)
xX—a
and therefore
Flat) = tim I =@

|
Similarly we have

Lemma 2.2.2 Let § > 0and a € R.
1)If f(x) > f(a) for every x € (a— 8,a] and if f'(a—) exists, then f'(a—)
2)If f(x) > f(a) for every x € [a,a+ &) and if f'(a+) exists, then f'(a+)

< 0. Similarly
> 0.
As a consequence we have the following important

Theorem 2.2.3 (Fermat’s Theorem) Let f : E — R. Suppose that a is a local extremum of f, and fis
differentiable at a. Then f'(a) = 0.

Since f is differentiable at @ we have
f(a+)=f'(a=) = f(a)

so according to the previous lemma, f’(a) = 0.
[Fermat’s theorem says that a local extremum must be a stationary point.]

As an interesting application, we show the following Intermediate Value Theorem for derivative
functions.
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Theorem 2.2.4 (Darboux’ Intermediate Value Theorem) If f : [a,b] — R is differentiable on |a,b],
and f'(a) < A < f'(b), then there exists a point & € (a,b) such that f'(&) = A.

Proof. Let g(x) = f(x) —Ax. Then g is differentiable in [a,b], so that g is continuous in [a,b].
Therefore g attains its bounds. Moreover

so that g’'(a) = f'(a) —A < 0 and g'(b) = f/(b) —A > 0. Since g’(a) < 0 there exists §; > 0 such
that g(x) < g(a) for x € (a,a+ 6). Similarly, since g’(b) > 0, there is &, > 0 such that g(x) < g(b)
for x € (b — 8,,b). Therefore a or b cannot be the minimum of g on [a,b], so that g must have its
minimum (though not necessary unique) & € (a,b), which is thus a local minimum of g. By Fermat’s
theorem, g'(§) =0. m

Example 2.2.5 Consider f(x) = x* sin% if x#0, and f(0) = 0. f is differentiable everywhere, but
the derivative function

1
f'(x) = 2xsin— —cos —
x x

is not continuous at 0, and thus IVT [Chapter 1: IVT for continuous functions on closed intervals]
does not apply to ' on [—1,1] for example, but f" attains all values between f'(—1) and f'(1),
according to the Darboux IVT.

Theorem 2.2.6 (Rolle’s Theorem, 1691) If f : [a,b] — R is continuous on the closed interval [a,b,
differentiable on (a,b), and f(a) = f(b), then there exists a point & € (a,b) such that f'(§) = 0.

Proof. If f is constant on [a,b], then f'(x) = 0 for every x € (a,b), so that any point & € (a,b)
will do. Since f is continuous, f attains its maximum and minimum on [a,b]. That is, there are
x1, X2 € [a,b] such that f(x1) = min,c(, ;) f(x) and f(x2) = sup,c(, p f(x). If f is not constant, then
f(x1) # f(x2). Since f(a) = f(b), at least one (denoted by &) of x| and x; belongs to (a,b). & must
be a local extremum and therefore, by Fermat’s Theorem, f” (5) =0. m

Corollary 2.2.7 Suppose f : R — R is differentiable, then between any two distinct roots of f(x) =0
there is a root of f'(x) = 0.

Example 2.2.8 f(x) = sinx and f’(x) = cosx. Study the zeros of f and f’.

2.2.2 Mean Value Theorems

Theorem 2.2.9 (Mean Value Theorem, MVT) If f : [a,b] — R is continuous on |a,b|, and f is
differentiable on (a,b), then there is a point & € (a,b) such that

re= =1

Proof. The idea is to rotate the graph to the level position, so we can apply Rolle’s theorem.
Analytically, observe that the line equation of the chord through (a, f(a)) and (b, f(b)) is given by

= s+ 110

(x—a)
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where the ratio (f(b) — f(a))/(b —a) is the slope of the chord. The idea is to apply Rolle’s theorem
to the function

b) —
P = £ | fla) + =T g
Clearly F is continuous on [a,b] and is differentiable on (a,b),
F/(X) _ f/(x> N f(bziﬁ(a)

and F(a) = 0 = F(b). According to Rolle’s Theorem, there is & € (a,b) such that F'(§) = 0, that is
(&) = f(bgff(“). -
—a

In applications, we often write MVT as
f(b) = f(a) =f' (&) (b—a)

for some & € (a,b). Since & € (a,b), & can be written as & = a+ 0(b — a) for some 6 € (0,1).
Therefore, if we set h = b — a, then b = a + h, so that the MVT becomes

fla+h)—f(a)=f'(a+6Oh)h

or in the form:
fla+h)= f(a)+ f'(a+6h)h

[which is a special case of Taylor’s Theorem], for some 6 € (0, 1).

Theorem 2.2.10 (Cauchy’s Mean Value Theorem) Suppose f and g : [a,b] — R are continuous, f
and g are differentiable on (a,b), and g’ # 0 on (a,b), then there is a point & € (a,b) such that
f(8) _ fb)—f(a)

g'(&)  g(b)—gla)

Proof. First we show that g(b) # g(a). In fact, if g(a) = g(b), then by Rolle’s Theorem, there is
xo € (a,b), g’ (xp) = 0, which is a contradiction to the assumption.
We employ the same idea as in the proof for MVT, and apply Rolle’s Theorem to the following

function
— ) | @) TP =D e
P = 79 | () + L= 9 g(a)
Then F is continuous on [a, b], and differentiable in (a,b),
1eoy /x_f(b)_f(a !(x

P = - L=y
and F(a) = F(b) = 0. According to Rolle’s Theorem, there is a point & € (a,b) such that F'(£) =0,
that is

/ - f(b) _f(a) /
re-LaL8e.

Since g'(&) # 0, so that, by dividing g’ (£) both sides,
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Corollary 2.2.11 Suppose f : (a,b) — R is differentiable at every x € (a,b). Then

1) [1dentity Theorem] f is constant on (a,b) if and only if f' =0 on (a,b).

2) [Monotone property] f is increasing (resp. decreasing) on (a,b) if and only if f'(x) > 0 (resp.
f'(x) <0) for all x € (a,b).

3)If f'(x) > 0 for all x € (a,b), then f is strictly increasing on (a,b).

Proof. 1) Suppose f/(x) = 0 for every x € (a,b), then by applying MVT to f on [x,y], where x, y
are any two points in (a,b). Then f(x) — f(y) = f'(§)(x —y) for some number & between x and y.
Since f'(&) =0, so that f(x) = f(y). Therefore f is constant in (a,b). The proofs of 2) and 3) are
similar. m

Proposition 2.2.12 Let f be differentiable on (a,b), and f'(x) > 0 for every x € (a,b). Then f is
strictly increasing on (a,b) and its inverse function = is differentiable on (c,d), and

doqgy_ 1
T T

foreveryy € (c,d), where ¢ =limy, f(x) and d = limyy, f(x).
Proof. Since f is differentiable on (a,b), so it is continuous on (a,b). Since f'(x) > 0 for every

x € (a,b), so f is strictly increasing on (a,b). The conclusion now follows immediately from Theorem
2.19.m

Example 2.2.13 Show that the general solution for f'(x) = f(x) ; x € (0,00), is f(x) = Aexp(x)
where A is a constant.

Proof. Let g(x) = ef: 1’.())86) which is differentiable as expx # 0 and both f and exp are differentiable.
Then

f'(x)exp(x) — f(x) exp’(x)
exp(x)?
IC) eXp(;zp—(x];gx) exp(¥) [Use the facts: exp’ =exp and f' = f ]

gx) =

=0

so that g = A on (0,0) for some constant [Identity Theorem]. Therefore f(x) = Aexp(x) for all
x € (0,00). m

Now we are in a position to study the exponential function expx for x € (—oo,00) and its inverse
the logarithm function In.

Proposition 2.2.14 /) exp(a+b) = exp(a)exp(b) for all a,b € R.

2) exp(x) > 0 for any x € (—eo,0), and x — exp(x) is strictly increasing, exp(x) — oo as x — oo and
exp(x) — 0 as x — —oo. Therefore the inverse function of exp exists, called the logarithm function,
denoted by Inx for x € (0,).

3)In: (0,00) — (—o0,00) is differentiable, and %{lnx = %

Proof. 1) For any (fixed real) ¢, consider g(x) = exp(x) exp(c —x). Then

g(x) = exp/(x)exp(c—x)—exp(x)exp’(c—x)
= exp(x)exp(c—x) —exp(x)exp(c—x)
=0
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so that g is constant [Identity Theorem]. Clearly exp0O = 1, so that g(x) = g(0) = expc for every x
and c. That is
exp(x)exp(c —x) =exp(c) Vx.

Setting x = a and ¢ = a + b we obtain
exp(a+b) = exp(a)exp(b) .

2) If x > 0 then

X x"
exp(x) = 1+x+§+§+.“+ﬁ+“.
> 1

and if x < 0, then
1 =exp(x —x) = exp(—x)exp(x)

so that
1

exp(—x)
In particular, by using MVT, since exp’(x) = exp(x) > 0 for every x € (—oo,00), exp(x) is strictly
increasing on (—oo,00). Since limy_;.exp(x) = oo, and exp(x) — 0 as x — —oo, by IVT, exp maps
(—o0,00) 1-1 and onto (0,0). Thus exp has a continuous inverse exp~! defined on (0,), which is

denoted by In. Since the derivative of exp’(x) = exp(x) > 0, so that, according to Theorem 2.1.9,
exp~! = In is differentiable on (0, ), and

0 <exp(x) = <1 Vx <O0.

1
exp/(In(y))  exp(in(y))

In'(y) =

1
.
That is, % Inx = % foranyx >0. m

Exercise 2.2.15 Define e = exp(1). Show that (i) 1 < e < 3; (ii) e is irrational.

Example 2.2.16 For x > 0, we have
(i) exp(—x) < 1;
(ii) exp(—x) > 1 —x;
(iii) exp(—x) < 1 —x+ 5.
In general we have, for any natural number n,

2n Xk 2n+1 xk
exp(—x) < Z(—l)"F and  exp(—x)> Y (_1)kﬁ (2.2.1)
k=0 : k=0 :

for any x > 0.

Proof. (i) Let f(x) = exp(—x). Then f'(x) = —exp(—x) < 0, so that f is decreasing in [0,c0). In
particular f(x) < f(0) =1 for all x > 0.

(ii) Let g(x) = exp(—x) — 1 +x. Then g’(x) = —exp(—x) + 1 > 0 [By (i)], so that g is increasing,
thus g(x) > g(0) = 0.

(iii) Consider h(x) = exp(—x) — 1 +x— "72 Then

H(x)=—exp(—x)+1-x<0
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so that / is decreasing in [0, ). Hence h(x) < h(0) = 0.
To prove (2.2.1) we use an induction argument on n. We have proven the case where n = 0.
Suppose (2.2.1) is true for n. Consider

2(nt1) X
f) =exp(—0)— ¥ (~1)T.
k=0 :
Then
g xk—l ) xk_l
flx) = Y (D= —1)
k=2(n+1)+1 L e ) (k—1)!
0 .Xk_] oo .Xk
= — ( 1)/(—1 — Z (_l)k
k_Z(EI)Jrl (k=D! 5 (k—1)!
2n+1 ' Xk
= —|exp(—x)— -1
P - L D
< 0 [Induction Assumption]

so that f(x) is decreasing in [0, ). Hence f(x) < f(0) = 0, that is

2(n+1) kxk
(1)< Y (-
k=0
for all x > 0. A similar argument shows that
2(nt1)+1 k
(0= Y (-1
k=0 :

forallx>0.m

Proposition 2.2.17 For x > 0 and a € R, define x* = exp(alnx). Then (i) x° = 1; (i) x' = x ; (iii)
x4t = xaxb (iv) X%y = (xy)® ; (v) (x)b = x® ; (vi) %x" = ax*" L. [If n is positive integer, then x"
coincides with the product x - - - x (n times) as you expect].

Proof. [Careful arguments based on the definition of x“ are required here.]
(i) By definition for x > 0
X" =exp(0lnx) = exp0=1.

[But be careful, 0V is not defined]
(ii) Similarly x! = exp (Inx) = x for x > 0 as In is the inverse of exp : (—oo,00) — (0,00).
(iii) By definition for x > 0 we have

X0 = exp ((a+b)Inx) = exp (alnx + blnx)

= exp (alnx)exp (bInx)
= x%P,
(iv) Since exp(A + B) = expAexpB, by setting A = Inx and B = Iny where x,y > 0, we have

exp (Inx+1Iny) = xy
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which implies that
In(xy) = Inx+Iny
for all x,y > 0. Hence
x?y* = exp (alnx)exp (alny) = exp (a (Inx+Iny))
= exp (aln(xy)) = (xy)*

for any x,y > 0.
(iv) Forx > 0

(x))? = (exp (alnx))? = exp[bIn (exp (alnx))]
= exp (balnx)

= x?.

(v) According to chain rule, x* = exp (alnx) is differentiable on (0,c0), and

—x* = exp (alnx) (alnx)’

dx
1
= 1 -
exp (a nx)ax
1
=ax‘’—.
X
Since . .
~1
— Iy = — =
* exp (~Inx) exp(Inx) x
therefore J
Y a_ a —1_ a1
S = axtx ax

for x > 0, as we have expected. m

2.2.3 = and trigonometric functions

As an application of Mean Value Theorem and Intermediate Value Theorem, we study the exponential
function and the trigonometric functions, the approach is credited to the genius Gauss.

MVT and IVT allow us to identify the minimal positive period 27 of sin, cos functions, and to
derive their important properties.

Good references on this topic are:

1) L. V. Ahlfors: Complex Analysis. Chapter 2 Section 3.

2) W. Rudin: Real and Complex Analysis. Prologue, pages 1-4.

We have introduced three functions expz, sinz and cosz by means of power series, namely

Z .
expz= Y —, sinz=) (—1)"——— and cosz= ) (—1)"
an”! ,;) (2n+1)! ,;;, (2n)!

for z € C. Let e =exp1 so Ine = 1 by definition of In being the inverse function of exp on R. For
x € R, according to the definition of power e*, we have

e =exp(xlne) = expux.
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This is the reason why expz is also denoted by e*. From their definitions, expx, sinx and cosx are real
for every x € R. cos0 = 1, sin0 = 0, cos(—z) = cosz and sin(—z) = — sinz. Moreover

—sinz = cosz and — cosz = —sinz.
dz dz

Lemma 2.2.18 /) We have
cos (x+y) = cosxcosy — sinxsiny

and
sin(x+y) = sinxcosy + sinycos.x.

for x,y € R. [In fact the addition formulas hold for complex numbers x and y too, will do in your A2

paper].
2) sin® x+cos?x = 1 for x € R. [The identity holds well for complex x, A2 paper].
3) |sinx| < 1 and |cosx| < 1 for every x € R.

Proof. To show 1) for every ¢ € R, a fixed number but arbitrary, we apply Identity Theorem to the
function
f(x) = cosxcos(c —x) — sinxsin(c — x)

for x € R. Then

f'(x) = —sinxcos(c — x) + cosxsin(c — x)
— cosxsin(c —x) +sinxcos(c —x)
=0

so that, according to Identity Theorem, f is constant on R. Hence f(x) = f(c) for every x € R. Since
cos0 = 1, so that f(c) = cosc, and therefore

cosc = cosxcos(c — x) — sinxsin(c — x)

for any c and x. Setting ¢ = x+y we obtain the first identity. To obtain the second one, we differentiate
both sides of the cos identity in x for any fixed y, and obtain that

—sin(x+4y) = —sinxcosy — cosxsiny

which gives the addition formula for sin.

2) Since cos0 = 1, by setting y = —x in the cos identity and using the facts that cos (—x) = cosx
and sin (—x) = — sinx, one obtains the well known equality.

3) follows directly from 2) as sinx and cosx are real numbers for any real x. m

Lemma 2.2.19 The following inequalities hold for x > 0: (i) sinx < x; (ii) cosx > 1 — ’5—2, (iii) sinx >

3 . 2 4
x— %y and (iv) cosx < 1 — 37 + 7.

Proof. (i) Consider f(x) = sinx —x. Then f(0) =0 and f’(x) = cosx — 1 <0, so that f is
decreasing on [0, ), and therefore f(x) < f(0) for every x > 0, that is, sinx < x for x > 0.

To show (ii) we study function f(x) = cosx— 1+ ’5—2, Then f/(x) = —sinx+x >0 for x > 0
according to (i), so that f is increasing on [0, o), which yields (ii).

The proofs of (ii1) and (iv) are similar, so let us prove (i)-(iv) in one go. Consider function

Xt

h(x) :cosx—1+2—!—4—!
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for x > 0. Then
3
h(0) =0, and h'(x) = —Sinx+x—%7

2

K(0) =0, and /" (x) = —cosx+ 1 — %

K"(0) =0, and 2 (x) = sinx —x

and
h3)(0) =0, and A (x) = cosx— 1.

Now, since 4(*)(x) < 0 for any x > 0, so that (%) is decreasing and therefore 1) (x) < h(®)(0) =0
for x € [0,00). This in turn implies that z is decreasing on [0, ), so that 4 (x) <h (0) =0 for x > 0.
Hence /' is decreasing on [0, ), so that 4’(x) < 4’(0) = 0 for x > 0, which implies that

3
—sinx+x—% <0 foreveryx>0.

That is (iii). It follows then that 4 is decreasing on [0,c), so that i(x) < h(0) = 0 for x > 0, which
proves the inequality

¥ X

cosxﬁl—a%—ﬂ for all x > 0.

Lemma 2.2.20 cos0 = 1, cos2 < 0, and cos is strictly decreasing on [0,2] and sinx > 0 for all
x € (0,2]. Therefore there is a unique & € (0,2) such that cos§ = 0 and sin§ = 1. Define © = 2&.

Proof. By definition cosO = 1. By Lemma 2.2.19

16 1
2<1-24+—=—=<0.
cos2 < + A1 3
Since cos is continuous, according to IVT, there is a number & € (0,2) such that cos & = 0. We next
show that cos is strictly decreasing on [0,2]. In fact, by Lemma 2.2.19

sinezx (1o (1 22) (1) s 0
T 31) V6 NG

for x € (0,4/6). In particular sinx > 0 for x € (0,2], and therefore
cos’x = —sinx < 0 for x € (0,2],

which yields that cos is strictly decreasing on [0,2], so that cos is 1-1 on [0,2]. Therefore & is the
unique zero of cos on the interval [0,2]. Since siné > 0 and cos® & + sin?é = 1, we must have
sinE =1. m

Lemma 2.2.21 cos5 =0, sin] =1, cosw = —1, sinw = 0, cos%” =0, sin%” =—1, cos(2m) =1

and sin(2m) = 0. Moreover cos and sin are periodic functions with their least positive period 2.
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Proof. By Lemma 2.2.20,cos 7 =0, T € [0,2], and sin 7 = 1. Hence
COST cosﬂcosﬂ s'nns'nﬂ 1
= —COS — —sin—sin — = —
2 2 2 2

and it follows that sint = 0. Now

cos 3T _ cos ncosn sin r sint =0
2 2 2 B
and
cos(2mw) =cosmwcosT—sinwsinw = 1.
Similarly we may verify that sin 37” = —1 and sin(27) = 0. Now using the addition formula again

cos(x+2m) = cosxcos(2m) — sinxsin(27w) = cosx.

Taking derivative both side we obtain that sin(x + 27) = sinx.

We next show that 27 is the least positive period of cos, and also sin.

Suppose there is a positive number ¢ > 0 such that 44 is a period, that is cos(4¢g 4 x) = cosx for all
x, then by differentiating the last equality we also sin(4g+x) = sinx, so 4¢ is a period of sin. Suppose
4g <2m. Then 0 < g < g, so that cosg > 0 and sing > 0 by the definition of % above. On the other
hand, by the addition angle identity

1 = cos0 = cos(4q) = cos>(2q) — sin*(2q) = 1 — 2sin’(2q)
which yields sin(2¢) = 0. Using addition angle identity again
0 = sin(2¢g) = 2singcosqg >0

which is a contradiction. Therefore 27 is the minimal positive period. m

Lemma 2.2.22 sinx = 0 if and only if x = kxt for k € Z. Similarly cosx = 0 if and only if x = kw4 %
fork € Z.

Proof. By angle addition formula

. . T T
sint =2sin—cos— =0
2 2

and using the periodicity we deduce that sin(k7r) = O for every k € Z, and consequently cos(km) = +1.
Suppose sinx = 0, then we may write x = k7 + ¢ for some k € Z and g € [0, 7). Since

0 = sinx = sin(kw + q) = sin(kx) cos g + singcos (k)
= singcos(kr),

so that sing = 0. Hence 0 = sin{cos%. If ¢ > 0, then 0 < 4 < § < 2, so that sin > 0 and cos { > 0,
which is a contradiction. Hence ¢ = 0 and the proof is complete for the first part.
Since
T T T, T
cosx = cos(x — =) cos — —sin(x — —)sin —

2 2 2 2
T

= —sin(x — 5),
cosx = 0 if and only if sin(x — §) = 0, and therefore if and only if x — § = kn fork € Z. m

Question. Is expz for z € C a periodic function? If so, what is its period?
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Remark 2.2.23 In general, we have

2n L 2 2n—1 a2k
Cosxgkg)(_l) 0T cosx > k;)(—l) (2)!
for x € (—oo,00), and
| . ke . 2n—1 a2k
smxgkgo(—l) Tk sinx > kgb(—l) k1)1

for all x € [0,0). These inequalities can be proven by using induction (in one induction argument for
all 4 inequalities together).

Example 2.2.24 (Several important inequalities) Let 0 < x < Z. Then
1) sinx < x < tanx ; [which yields that cosx < % < 1, so that lim,_, % =1.]

2) % < %C < 1. [1) + 2) implies thatmax{cosx,%} < % <l1forxe(0,m/2)].

Proof. To prove the first inequality, consider f(x) =tanx—x, x € [0,7/2). Then f is differentiable
on (0,7/2) and

Fx) = coizx 10 Ve (0,1/2).
f is strictly increasing [Apply MVT to any [x,x;], where x; € (0,7/2)]. Thus f(x) > f(0) for any
x € (0,7/2) which yields the inequality 1).
2) If g(x) = x —sinx then g’(x) = 1 — cosx > 0 for any x € (0,7/2). Hence g is strictly increasing
on [0,7/2], so that sinx < x for all x € (0,7/2). Now consider
hx) =% xe0,n/2].

X

Then
_ cosx(x — tanx)

K (x) = . <0 Vxe(0,7/2)

x
so that / is strictly decreasing, so that g(x) > g(x/2) for any x € (0,7/2). m

Example 2.2.25 Show that

t
— <In(l+#) <t Vt>0.
I+1

Proof. In fact, by applying MVT to In on [1, 1 +¢], we have

In(1+¢)—Inl1 = log'(&)(1+1—1)
t

g

for some & € (1,1+1). Since 1 <& < 141, and > 0, we have 17 < é < t. Therefore

ln(l‘H):ln(l—H)—lnl:é

belongs to (14,7). ™
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Example 2.2.26 (Euler’s constant) Let

n

1
'}/n:];l%—lnn.

Then lim,,_, Y, exists, the limit is denoted by Y. Y is called the Euler constant.

Proof. In MT, we have demonstrated that the harmonic series

I+ ! + ! + : +
2 3 n

is divergent, and the partial sum Y} _, %, which is increasing in n, grows like Inn. Equipped with

MVT, we are now in a position to prove this statement.

Firstly we write
Inn=(Inn—In(n—1))+---+(In2—1In1)

so that
n—1 1 1
h=Y (— — (In(k+1) —lnk)) + =
= \k n
Apply MVT to Inx on the interval [k, k+ 1] foreach k= 1,2, --. Since In is differentiable on [k,k+ 1],

there is & € (k,k+ 1) such that
In(k+1)—Ink 1
k+1—-k &
that 1s

1
In(k+1)—Ink=—
&

for some & € (k,k+1). Therefore

1 1 1 ék —k
——(nk+1)—Ink) =—-— - =
= = e =
which yields that
1 1
0< P (In(k+1) —Ink) < 2
fork=1,2,---. Since ), kiz 1s convergent, so by the comparison test for series,

¥ <%—(ln(k+1)—lnk))

k=1
converges as n — oo, Since % — 0 as n — oo, we may thus conclude, by AOL, that
n—1 1 1
=Y, (— — (In(k+1) —lnk)> + =
= \k n

converges as n — oo, that is lim,,_,.. ¥, = ¥ exists. Moreover

< 1 72
0<y<y =%
<Y_n§’1n2 6

which is however not a good estimate for the Euler constant y. In fact y = 0.57721566490---. ®
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Example 2.2.27 (i) Suppose f is continuous in [xo,xo + 6| and differentiable in (xo,xo+ 8) for some
8 > 0 and suppose limy |, f'(x) exists, then the right-derivative of f at xo exists and

f'(xo+) =lim f'(x) .
xJxo
[Recall that, here, f'(xo+) does not mean the right-hand limit of the derivative function f’, but the

limit

lim f(x) = f(x0) _

x}xg X—X0
It shows that, if the right-hand limit of f' exists, i.e. limyy, f'(x) exists, then lim, |y, f'(x) coincides
with f'(xo+), which justify the abuse of notations]. In particular, if limy_,, f'(x) exists, then f is dif-
ferentiable at xo, and f'(x) = lim,_,y, f’(x) [However, f can be differentiable at xo, but lim,_,, f'(x)

may not exist. Example?]
(ii) Show that f(x) = xarcsinx + /1 —x? is differentiable on [—1,1]. [arcsin: [-1,1] = [-F, 5]
is the inverse of sin, and \/x is the inverse of x* in [0,0)].

Proof. (i) Indeed, for any x € (xo,x0 + &) we apply the MVT to f on [xg,x]
f(x) = fxo) = (&) (x —x0) -

Clearly, as x — xo, & — xg so that limy |, f'(&y) = lim, |y, f'(x), and therefore

) — tim @ f0)

x| xo X —X0
= limf’ =lim f'(x) .
lim (&) = lim (1

(ii) First let us compute the derivative of arcsin on (—1,1). According to Theorem 2.1.9

d ) 1
—arcsiny = ————
dx sin’(arcsin x)

- 1
~ cos(arcsinx)

(SR ]

Since sin is increasing in [—7, 7], so its inverse arcsin is continuous on [—1, 1] with values in [—7,
In particular cos(arcsinx) > 0. Since cos?+sin® = 1, so that

cos(arcsinx) = \/1 — (sin(arcsinx))?
= v1—x2.

Therefore [Theorem 2.1.9]
d 1

—arcsinx =
X 1 —x2

Vxe (—1,1).

[Exercise: Carefully work out the derivative %{ x via Theorem 2.1.9]. Hence

x  x
VIi—x2 V1—-x2

on (—1,1). However lim,_, . f'(x) = 7 exist, so that f’(—14+) = -7 and f'(1-) = . f is differ-
entiable in [—1,1]. m

— arcsinx

f'(x) = arcsinx +
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2.3 L Hopital rule

[ Theorems of G. F. de I’Hospitales, French mathematician, and Joh. Bernoulli] In this section, all
functions are real-valued functions. We state several versions of the technique under the name of
L’Hopital rule.

Theorem 2.3.1 Suppose f, g are differentiable on (a,a+ ) (for some 6 > 0), and lim, |, f(x) =
limy |, g(a) =0, then
/
tim? ) i L
xla g(x)  xla g'(x)
provided that the limit on the right-hand side exists.

Proof. Since f,g are differentiable so they are continuous on (a,a+ 0). Let us define f(a) =
g(a) =0. Then f, g are continuous on [a,a+ §). Let
/
[ = tim )
xla g'(x)
which exists by the assumption. Therefore for every € > 0 there is 0 < 6; < 0 such that
f'(x)
g'(x)
On the other hand, for every x € (a,a+ 6;), by applying Cauchy’s Mean Value Theorem to f, g on
[a,x], there is &, € (a,x) such that

—l‘ <& foreveryxe (a,a+6).

Since &, € (a,x) C (a,a+ 0y),

f(x) ’ f'(&) ‘
———1 —1 .
=l <
By definition we have
im /)
lﬁﬁ) g(x) =1
|
Similarly

Theorem 2.3.2 Suppose f, g are differentiable on (a — §,a) (for some 6 > 0), and lim, f(x) =
limy, g(x) = 0, then
/
lim? &) _ g L)
xta g(x)  xta g'(x)
provided that the limit on the right-hand side exists.

Theorem 2.3.3 (L’Hépital Rule) Suppose f and g are continuous on (a— 8,a+ ) (for some 6 > 0)
and differentiable on (a — 6,a+9) \ {a}, f(a) = g(a) =0, then

tim £ jiy £
Mg g

provided the limit on the right-hand side exists.
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Example 2.3.4 Show that (i) lim,_0 3% = 1; (i) limy_,0 =555 = L (iii) lim,_,0 "0 = 1; (i)

: 1 . . X_ ,—X__
lim,_0(1 +x)x =e; (v) Find lim,_, ﬁ

Solutions. (1) Thisis a 8 type limit, so we may apply L’Hoptial’s rule to evaluate its limit. sinx and
x are differentiable everywhere, both tend to zero as x — 0, and

-/
. sin'x .
lim — = limcosx =1
x—0 X x—0
exists, so that
. . /
. sinx . osin'x St
lim —— =lim—— =1 [L"Hopital Rule].
x—0 X x—0 X

(i1) This is again a (9) type limit. We have

. 1l —cosx . sinx ) e e
hm—2 = lim —— [provided this limit exists]
x—0 X x—0 2x
. Ccosx ) e e
= lim —— [provided this limit exists]
=0 2
1
= 3

Here we have used L"Hopital Rule twice.
(ii1) (8 type) Attempt to apply L’'Hopital Rule. In(1 +x) is continuous and differentiable for x near
0, and log(1+0) = 0, so that we attempt to evaluate the limit by using L’Hdpital Rule.

In(1 In’(1
lim M = lim L/_H) [provided this limit exists]
x—0 X x—0 X
1
= lim =1.
—01+x

(iv) (1* type = exp(g) type, then use the continuity of exp) According the definition a”,

1
(1+x)% = exp (—ln(l —l—x))
X
Since exp is continuous on R, so that [By (iii)]

0 )

1
lim (1 x =1l
tig+) = tmgens (2

In(1
= exp (lim n( —|—x)) [exp is continuous at 1]
x—0 X
= expl=e.

Example 2.3.5 lim,_,o(1+ ax)% =expa for any a € R. In particular

a\n
lim (1+—> =expa.
n

n—yoo
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If a = 0, then lim,_,o(1 + ax))lc =limy,o1 =1=expO0. If a # 0, then

x—0 x—0 X

1
lim(1+ax)s = limexp (— In(1 + ax)) [By definition]

x—0 X

1
= exp (lim —In(1+ ax)) [Continuity of exp]

x—01+ax
= expa.

— exp (lim a ) [if the limit exists, L’ Hopital Rule]

Theorem 2.3.6 If f,g: (a,a+ 6) — R are differentiable, where § >0, g'(x) #0, f(x) — oo, g(x) — oo

as x | a, and limy, % exists (or oo or —), then

tim 2 _ i L)

m .
xla g(x)  xla g'(x)

f'(x)
g'(x) /
We may assume that g’ # 0 [That g’ # 0 near a is implied in the assumption that lim,, % exists].
Ve > 0 there is a number 0; (< ) such that

J'(x)
g (x)

Now we choose a number ¢ in (a,a+ ;) [c is fixed from now on]. For any x € (a,c) we apply
Cauchy’s MVT to f, g on [x,c]: there is a number &, € (x,¢) such that

fle)—fx) _ (&)
glc)—glx)  g(&)"

Since &, € (x,¢) C (a,a+ 1), by (2.3.1)

Proof. Suppose that lim,, = K is finite [Otherwise we may consider lim,, % instead].

—K‘<§ Vx € (a,a+8y) . (2.3.1)

‘%— ‘: géi‘;—K‘ <§ Vxe (a,c). 23.2)
[However, we cannot conclude from (2.3.2) that Z4=11) — K as x | a (although it does !1), as there
is no guarantee that &, will tend to a as x | a]. Now we consider

Jg% x - W —Jg‘§3+f(6) x

- . .

= et (i) -

= w0 G ) (=50 + (1-45) -

= 0 (oo ) (-565) 59

- ) (s
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[Why we are interested in this? Explained in the lecture], so that

fx) fle) —Kg(c) _ 8 || f) = fle)
o < Pl -l
LCRLCIR G
g(x) 21 glx)
for any x € (a,c). Since g(x) — oo as x | a so that
im /() —Kele) _
lxw g(x) 0

and

[Algebra of limits]. Thus there is 8, > 0 [and &, < min{&;,c — a}] such that

'1—@ <£—t and ’f—(c)—Kg(c) <E
gl)| 3 8(x) 3
for every x € (a,a+ &,). Therefore
f(x) e 4eg
L K| <=-+4=-== V. .
) <3t35=¢ x € (a,a+ &)
e 1) _
By definition, lim, |, o) = K. m

Theorem 2.3.7 Suppose f,g: (a,0) — R are continuous and differentiable, with f(x) — 0 and

8(0) = 0.as x = on. If g/(x) # 0 o (a,00) and L — 1, then tim, . L3 = 1

Proof. Apply L’Hopital Rule to functions F(x) = f (%) and G(x) = g()—lc) |

Inx

Example 2.3.8 lim, .. ;i = 0 [Z type] and limy_, ’% =0/[Z type] for any u > 0.

Let g(x) = x* = exp(uInx). Then g'(x) = ux*~!. By L’Hbpital rule

1

1 S
lim o lim —& T [provided this limit exists]
x—yoo xM x—yoo LM
1
= lim—=0.
x—voo [LXH

Example 2.3.9 For any p > 0, lim,jgx*Inx=0. [0 type => Z type]

Again use L’Hopital Rule

|
limd*lnx = lim—
xJ0 xJ0 x™H
In’ e
= lim 7 [if this limit exists]
50 (xH)
1 u
= lim—=*— =lim~— =0
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Example 2.3.10 Show that
1
lim sinx \ T-cosx 1
im | — =—.
x—0 X \3/E

[Idea: first turn 1 type limits into exp (8 type) limits, then use the continuity of exp] Since

sinx Teass
fx) = <T)

is even function, so that we only need to show that lim, ¢ f(x) = -, According to definition

Ve

flx) = exp (1 —CoSx Smx)

Insinx —Inx
= exp| —— | .
p 1—cosx

By L’Hopital Rule,

cosx 1

Insinx —Inx snx X

im—— = lim>%
x0 1—cosx xJ0 sinx

XCOSX — sinx

[provided it exists]

= lim —
x0  xsin“x
COSX —Xsinx —cosx .. . o .
= lim [if exists, use L"Hopital again]
xl0 sin®x + 2xsinxcosx

X
= —lim —_—
xJ0 sinx + 2xcosx
1
= —lim -
xJ0 cosx+2cosx — 2xsinx
1
= 3
Since exp is continuous at — 3, so that

1
) sinx \ [-cosx Insinx —Inx
lim | — = limexp| ———
xJ0 X xJ0 1—cosx

Insinx —1
= exp (lim M) [by continuity of exp]
xJ0 1—cosx

= ().

There is a discrete version of the L”Hopital Rule, which was first discovered by O. Stolz.

Theorem 2.3.11 (O. Stolz) Suppose (x,) and (y,) are two sequences of real numbers such that
(i) y, —> o0 as n — oo,
(ii) (yn) is a strictly increasing sequence (for large n), and
(iii) the limit
. Xn—Xp—1
lim ————
= Yp — Yn—1
exists or tends to o or —oo, Then
. Xp . Xpn—Xn—1
lim — = lim ————.
n—eoy, n— Yy — Yp—1
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[The case that y,, = n was proved by A. L. Cauchy].
Proof. The proof is similar to the proof of Theorem 2.3.6. Consider the case that/ = lim,,_,c
is a number. Then for every € > 0 there is N such that for n > N we have

Xn—Xp—1
Yn—Yn—1

Xn — Xn—1
Yn—Yn-1

€
-l <=

Since (y,) is strictly increasing eventually, so we can choose N big enough such that so that y; —
Vik—1 > 0 for all £k > N and therefore

& &€

_E(Yk_)’k—l) <X = Yk—1 — Lk —yk—1) < E(Yk_)’k—l)~

Adding these inequalities over k =N+ 1,--- ,n, where n > N, we obtain that

€

—E(yn—yzv) <x,,—yN—l(y,,—yN) < i(yn—YN)

™

which can be written as, since y,, —yy > 0

Yn —YN

for all n > N. Next we use the identity (similar to that in the proof of Theorem 2.3.6)

Y, Ny (1—)ﬂ> (xn—XN_l)
Yn Yn Yn Yn— YN

so that
X xy—1 £
i l‘ <=t €
Yn Yn 2
for every n > N. Since y,, — oo so that
—1
INTON —0 asn— oo,
Yn
Therefore there is N > N such that
—1 €
INTON <= forn>N
Vn 2
and therefore
—1 £
@—l’ W L2 <e
Yn n 2
for every n > Nj. By definition
. Xn . Xn—Xp—1
Iim —=[/=lim ——
N Yn =0 Yp — Yn—1

and the proof is complete. m
As as example, if & is a positive integer, then we can show (Exercise) by Stolz’s theorem that

i I R AN |
Jlim —— =7




2.4. TAYLOR’S FORMULA 65

2.4 Taylor’s formula

If £ is a function defined on [a, b] (where a < b) which has (right-hand) derivatives f*)(a) at a, where
k=0,1,--- ,n—1 (n > 11s an integer, with convention that f () = £), then we may form a polynomial
of degree n — 1:

["(a)

(n-1)
\ P gy,

(n—1)!

P,_1(x) is the unique polynomial of degree n — 1 whose derivatives at a up to order n — 1 agree with
those of f at a. That is, Prgli)] (a) = f®)(a) for all k < n— 1. Here are some examples:

Pn—l(x):f(a)—i—f/(a)(x—a)—i— (x—a)2_|_..._|_

Py(x) = fl(a) [a constant function];
P (x) = f(a)+f(a)(x—a) [which is the linear approximation of f near al;

P(x) = fla)+f(a)(x—a)+ f”z('a) (x—a)? [quadratic approximation about a];
Let
Ey(x,a) = fx)=F1(x)
n—1 r(k)
= f(x)— foa) (x—a)k (2.4.1)
= K

be the error between f(x) and P,_;(x).
If f has derivatives at a of any order, then we may form a power series

f"(a)
2!

P(x) = fla)+f'(a)(x—a)+ (x—a)+---+

" (a)

!
= n!

(x—a)", (2.4.2)

which is called the Taylor expansion of f at a. The following lemma is obvious.

Lemma 2.4.1 Let f : [a,b] — R be differentiable up to any order, i.e. f (n) (a) exists for every n, R be
the convergence radius of the Taylor expansion (2.4.2), and x € [a,b]. Then

if and only if Ey(a,x) — 0 as n — oo. In this case, we must have |x —a| < R.

It is therefore quite important to derive a useful formula for the error E,(a,x), which is achieved
in the following Taylor’s theorem.

Theorem 2.4.2 (Taylor’s Theorem) Let f : [a,b] — R where b > a and n € N. Suppose f®)(x) exist
for every x € [a,b] and f¥) are continuous on [a,b] fork=0,--- ,n—1, and ") exists on (a,b). Then
there is a number & € (a,b) such that

n=1 (k) (g (n)
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That is, there is & € (a,b), the error term

En(a,b) = f(b) = Po1(b) = (b—a)"

(k)
(called the remainder in Lagrange form), where P,_(x) = ):Z;é i k!(a) (x—a)".

[There is a similar result for f : [b,a] — R, where baswell < a.]
Proof. We use the method of “varying a constant” to prove Taylor’s theorem. Regard a in the
definition of P,_(b) as a variable. We therefore consider the following function

N

1K)
Fo) = Y

£ (x)

(b—x)4---+ (=11

(b_x)n—l

for x € [a,b]. Then F(b) = f(b) and F(a) = P,_1(b). F is continuous on [a,b|, differentiable on
(a,b), and

n=1 p(k+1) n=1 p(k)
F'(x) = Z@(b—x)qu f’;c'(x) (=) k(b—x)*""  [Product Rule]
k=0 ) k=1 :
ol pUED () v e W () k-1
- ,;) a ) _kzl(k—l)!(b_x)
(n)
_ (n_<1x))‘ (b_x)n—l

The idea of the proof is to apply Cauchy’s Mean Value Theorem to F and G on [a, b], where G, to be
chosen later, is continuous on [a, b], differentiable in (a,b) and G'(x) # 0 for x € (a,b). According to
Cauchy’s MVT, there is a number & € (a,b) such that

F(b)—F(a) F'(&) {fl"_)(ﬁ? (b—&)"!

G(b)—G(a) G'(§) G'(8)
Substituting F(b) by f(b), F(a) = P,—1(b) and rearranging the above equation we obtain
FE) =)
CESNA)
That is to say the error term can be written as
) -8
(n=1)! G'(5)

This is a general form of the remainder in the Taylor’s theorem, where & € (a,b) depends on the
function G you have decided to use.
In particular, choosing G(x) = (b —x)", G'(x) = —n(b—x)""! and G(b) — G(a) = —(b—a)", so

that
M)

n!

f(b) =Poi(b)+ (G(b) = G(a)).

E,(a,b) =

(G(b) = G(a)).

E,(a,b) = (b—a)"
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which gives the Lagrange form, and

The proof is completed. m

Remark 2.4.3 Choose a function G provided it is continuous in |a,b], differentiable in (a,b), and
G' # 0. According to Cauchy’s MVT, there is a number & between a and b, such that

F(b)—F(a) % (b—&)"

G(b)—Gla) G'(§)

so that

fM(E)

f(b) :Pnfl(b)‘f—m (b—&)"! G(b) —G(a)

G'(c)

You may derive Taylor’s Theorem with the remainder of different forms. For example, if we choose
G(x) =x—a, then % =b—a. Thus

f(&)
(n—1)!

f(b) =Py1(b)+ (b—a)(b—é)”_l

for some & € (a,b). You may for example try G(x) = (x — a)™ for a power m > 1 to see what kind of
Taylor’s formula you can get. Of course, if you choose different G, you will have different & between
a and b.

If we set b —a = h so b = a+ h then Taylor’s theorem may be stated as

v @) S at0h)
f(a+h)—k§6 TR ——

where 6 € (0,1) depending on a, h and n in general, and on the function f as well of course. For
example, the case that n = 2, Taylor’s theorem says that

Fla+h) = f(a)+ f(a)h+ % F(a+ O

as long as f” and f” exist on [a,a+ h] or [a+ h,a] (if h < 0), where 6 € (0,1) depending on h. This
formula is a powerful tool to study the stationary points of f.

Given a function f which has derivatives of any order near a, so that you may write down the
sequence of f (k) (a) and the power series [called the Taylor expansion of f at a]

@) A (243)

2! n!

fla)+f(a)(x—a)+

The power series has convergence radius R, so that (2.4.3) defines a function g on (¢ — R,a+ R) [and
in general, you have to use other methods to study the convergence at a — R and a + R]. That is

= £(n)
g(x) = Z / n'(a) (x—a)" Vx € (a—R,a+R). (2.4.4)
n=0 :
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If it happens R = 0, then the Taylor expansion (2.4.4) is useless for the study of f. Otherwise, all
derivatives of the Taylor expansion (2.4.4) g at a coincide with those of f at a: g (a) = f")(a) for
any n [Differentiating a power series term by term again and again]. We therefore have high hope that
f(x) = g(x) for all x € (a — R,a+ R). However, the Taylor expansion (2.4.4) relies only on the values
of f in an arbitrary small neighborhood about a, say (a — €,a + €) for whatever how small € > 0, thus
there is absolutely no reason why we should have f(x) = g(x) if x # a, unless f(x) can be determined
by the values of f near a [and through the Taylor expansion of course!] This is the concept of analytic
functions which will be studied in paper A2: Metric Spaces and Complex Analysis.

Example 2.4.4 Let f(x) = exp(—é) ifx# 0and f(0) = 0. Then f has derivatives of all order, and
F"(0) = 0 for all n. In fact, for x # 0, we have

) = u(w)exp(~)

for some polynomial Q,, of %, so that lim,_, £ (x) = 0 for any n [L’Hépital Rule]. Hence ™ (0)=0
[Example 2.2.27]. Thus
£(0)

F0+8) # £(0) 4 £ Ont-+ LDy

for any h # 0, since the right-hand side is identically zero. The remainder E,(0,h) = f(0+ h) for all
n, which does not tend to 0 as n — oo for any h # 0. Thus f is not analytic at 0.

Taylor’s Theorem also provides us with an explicit error estimate between f(x) and its Taylor
approximation

n—1 (k)a
k:ZE)f k!( )(x—a)k.

Corollary 2.4.5 Let f : [a,b] — R have continuous derivatives of all orders on |a,b], and

E, = (n)
- ,gzl[lfb] FARI(S]
Then L
n— k
f(x)—zf (@) (x—a)*| <E, forx€la,b].

k!

fx=Y / o (x—a)*  uniformly on [a,b] .
Theorem 2.4.6 We have

In(1+x) = i(—l)"‘l% forxe (—1,1]. (2.4.5)

In particular
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Proof. Consider f(x) = In(1+x). Then £ (x) = (=1)""'(n—1)!(1 +x)~", so that

where, by applying Taylor’s Theorem to f at a =0,

(n) A"

for some &, between 0 and x [which depends on x and n]. Since

n

1 X
E, =—|—
[En(x)] =~ T

and therefore, if ‘ﬁ’ <1 for all n, then |E,(x)| < 1, so for such x, E,(x) — 0.
Since the convergence radius of Y5, (— 1)k~ ”
in order that E,,(x) — 0.

Now analyze the condition that

is 1 [Ratio Test, Analysis I], we must have |x| <1

Hi’; ‘ < 1 by keeping in mind the facts that |x| < 1, |&,]| <1

and &, is between 0 and x. The inequality ‘ ‘ < 1 is thus equivalent to that |x| < 14 &,, that is,

X
1+,
&, > |x| — 1. The last inequality is true if x € [—3,1]. Thus

1 1
E, <-—=0 f —=, 1],
E ()] < orx € [~3.1

therefore

= xk 1
n(1 — forxe|—2,1 2.4.6
+x) = ; orx € | 5 ] ( )
and the convergence is uniform on [—1, 1].
However we are unable to prove that E,(x) — 0 for x € (—1 ) (it does tend to zero though!)
by using the argument above, because we lack of enough 1nf0rmat10n about &, to make a conclusion.
Therefore we employ a different approach. Let us consider the function given by the power series

Z k lx Vie (—1,1].

(which has a convergence radius 1). Then P(x) is differentiable on (—1,1) and P’(x) can be deter-
mined by differentiating the power series term by term [Theorem 2.1.15]:

/ - n—1 xnil
Px) = —1)"
0 = L
— i(_l)nflxnfl
n=1
1 1
= = V. —1,1).
1—(—x) 14x xe(=1L1)
/ _d / __ pl :
On the other hand f'(x) = 2 In(1+4x) = F on(—1,1), thus f'= P on (—1,1). By Identity Theorem

f(x) — P(x) = constant = f(0) — P(0) =0
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so that N .
In(14x) = Z(—l)"‘l% Vxe (—1,1).
n=1
Together with (2.4.6) we thus have
00 n
n(1+x)=Y (-2 wvre(—1,1].
n(l+x) = Y (-1 vee (-1

Theorem 2.4.7 (The Binomial Expansion) Let p be a real number, and let P(x) be the power series

~1 —1)---(p—n+1
p(pz' LT 41 )n‘(P )4

P(x)=1+px+

whose convergence radius R =1 unless p =0 or p € N. If p € N, P(x) is a polynomial of degree p.
1) For any real number p we have

(1+x)P =P(x) forxe(—1,1).

2)If p > 0 then
(1+x)? =P(x) forxe (—1,1].

Proof. If p =0or p € N, P(x) is reduced to a polynomial, 1) and 2) follow immediately from the
ordinary binomial formula.

Let us first show that P(x) is the Taylor expansion for the function f(x) = (1+x)? forx > —1 at
a=0. In fact

fo = p+xP
f) = plp=11+x)P2;

O = plp—1)-(p—(k=1)(1+x)P*

so f%(0) = p(p—1)---(p— (k—1)). Hence the Taylor expansion of f(x) at a = 0 is by definition
given by

b= 5 P21 (0= (k= 1)

= k!
If p£0,1,2,---, then, by ratio test, the convergence radius R = 1. For convenience, one may intro-
duce notation
p\_prp—1)-(p—(k—-1))
k k!

so that the Taylor’s expansion of (1 +x)” may be written as

P(x):i(’]:)x"

which is a polynomial of order p in the case that p is zero or a positive integer, as if p € N, then

k
expansion. In what follows, we may assume that p #£0,1,2,---.

( p ) = 0 for kK > p. Hence the case that p € N is trivial, and reduces to the elementary Binomial
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To prove 1), Taylor’s Theorem is not needed in fact, and the Identity Theorem does the job.
Proof of part 1). Let us apply the Identity Theorem to f(x) = (1 +x)” and its Taylor expansion
P(x) on the interval (—1,1). Both are differentiable on (—1, 1), and, by chain rule,

70 = Sexp(pin(1+2) = p(1+2)7 - = =2 1)

for x > —1, so that f satisfies the differential equation:

(1+x)f'(x) = pf(x)

where —1 < x < 1. One may expect that its Taylor expansion P(x) should satisfies the same differen-
tial equation. In fact, we may write

P(x):1+ip(p—1)--~(p—(n—1))xn
n=1

n!

which is a power series with convergence radius R = 1, so that P(x) is differentiable on (—1,1) and
its derivative can be evaluated by differentiating it term by term:
- pp=1)-(p=(n=1)) 4
P(x) = X
=Y (n—1)!

n=1

Hence

(1+0Px) = ¥ p(p_l)'”(l?—‘(”—l)) (1 4+x) !

= (n—1)!
_ ;p(p—l)m (p—n)anr;p(p—l) ,ff)_m_l))"f
_ p—i—;p(p_l) ’/E‘p_(n_l)) ((p_n)+n)xn

We apply the Identity Theorem to h(x) = P(x)/f(x) on (—1,1), which is differentiable as well as
f(x)#O0forxe (—1,1). Now

P/f_Pf/
f2
(14X)P'f = (14+x)£P
(1+x)f?
pPf—pfP _
(1+x)f?

W=

so that, according to Identity Theorem, P(x)/f(x) is constant in (—1, 1), and therefore

(X: (8 =1 forallxe(—1,1).

=
=

~—

~
~
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Hence

- pp—1)--(p—(n—1))
P n _
(1+x) _1+’;1 - ¥ forxe (—1,1).

Proof of 2). By 1) we only need to show that (1) = P(1) if p > 0. In fact, if p > 0, we prove that
f(x) = P(x) for x € [0,1] via Taylor’s Theorem.

We may assume that p € (0,1). Let us apply Taylor’s Theorem to f(x) = (1+x)” which has
derivatives of any order on (—1,%). Hence, for any x > —1, there is a number &, between 0 and x
such that

v Pp—1)(p—(k=1)) 4

(I+x)P =1+ Z T X'+ E,(x)
k=1 .
where .
E,(x) = ! n('én)x”
for some &, € (—1,1), where
f(’:!(X) _pp—1) n({?—(n—l))(lﬂ)p—n
Hence
p(p—1)--(p—(n—1)) x

E,(x) = py (1+&,)” <1+<§n)

If x € [0,1], then &, € (0, 1) so that
aver ()| <>

and therefore

p(p—1)---(p—(n—1))
Enx)] < 27 N
1-p)2—p)--(n—1—
_2pp( p)( p)'( p)
n!
_ o 1—p2—p n—1-pl
1 2 n—1 n
P
g—p—>0
n

so that, by the Sandwich lemma, E, converges to zero uniformly on [0, 1]. It follows that (1 +x)? =
P(x) for x € [0, 1]. Together with the first part 1), 2) now follows. m

For p > 0, we can show that (1 +x)” = P(x) for every x € [—1, 1], which will be the context of the
following theorem. Before doing this, we observe that, for o« > 0

lim x% =limexp (aInx) =0,
x>0,x—0 x}J0

so we naturally define 0% = 0 for & > 0. Hence the power function x% is continuous on [0, o) if the
power o > 0.
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Theorem 2.4.8 Let p be a real number; and P(x) denote the Taylor expansion of (1+x)’ at 0, that is

P(x):1+ip(p_1)"'({’_(”_l))x". 2.4.7)
n—1 n!

1)If p> —1 then (1+x)? = P(x) for all x € (—1,1].
2)If p >0, then (1+x)? = P(x) for all x € [—1,1], and the convergence of the power series P(x)
is uniform on [—1,1].

Proof. Assume that p #0,1,2,---. According to the Taylor Theorem, for every x > —1 andn € N,
there is &, between 0 and x such that

(1+x)P = 1+n§p(”_1)"'rff’_(”_1)>x"+En(x>

where the error term is given by, as we have seen in the theorem,

Ex) = P(P_1)"'(17_(”_1))(1+€n>p—nxn

n!
p(p—1)-(p—(n—1)) x \"
= 1+E&,)?P .
Step 1. If x € [0, 1], then ‘lfén’ < 1 so that

B (o)) <222 DL gy,

n!

where

pp—1)---(p—(n—1))
n!
(=p)(A=p)---((n—1)—-p) .

n!

= (-1

If p € (0,1) then

a@%:C4V4§O—%>O_§>”(hﬁfl)

p
a(pl <20

so that

which implies that E,, — 0 uniformly on [0, 1] for this case that p > 0.
If p € (—1,0) then 1+ p € (0,1) and we may rewrite

alp)y = (—1ypd=PrD)C- (pn+! 1) (n—(1+p))

= (—1)"(1—1%1) (1—1’7“)..(1—’?:1) ,

Let us prove the elementary inequality

1—t<e !’ fort>0. (2.4.8)
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Let g(t) =1—t—e"". Then g(0) =0and g'(t) = —1+e " <0 fort > 0. Hence g is decreasing on

[0,00) and therefore g(¢) < 0 for all t > 0.
By using this inequality we obtain, as0 < 1+ p < 1,

|a<p>n|s~exp( 1+pi )

asl+p>0and };_, % — oo, Therefore E,, — 0 as n — oo uniformly on [0, 1] and p > —1, so that,
together with Theorem 2.4.7, we thus have

(14+x)7 =1+ i p(p_l)"'lif’_(”_l))x" forx € (—1,1],

and the convergence is uniform on [—1+ 9, 1] for any 0 < § < 1. This proves 1) and part of 2).
Step 2. Now we prove 2), so that we assume that p > 0. Without losing generality, let us assume
that p € (0,1). We want to show that (1 +x)?” = P(x) for all x € [—1, 1] and the convergence is uniform
n [—1,1]. Note that

P(x)zl—i—px—kia(p)m" Vx e [—1,1],

n=2
e (p=1)--(p—(a=1)
p p —_ oo p —_ n J—
n!
Of course we only need to show that P(x) is convergent at —1. According to Abel’s theorem, we
only need to prove that the power series is convergent at x = —1, that is,
1—p+ Y (-
n=2

is convergent. As we have mentioned, we may rewrite

alph= (12 (1-2) (12 . (“L)
(—1)”a(1’)n:—§ (1—?) (1—%) (1_1151)

for n > 2, which has a definite sign (always negative) for p € (0,1). Using the elementary inequality
(2.4.8) one obtains that

so that

~1a(p),
|

5 { Zz}

= Lexp{—pp1 —pin(n—1))

:B 1 e Ph-1

n (1)

where
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the Euler constant. Hence e P%-1 — ¢7PY as n — oo, and therefore sequence e P! is bounded by
some constant C. Therefore

0<—(=1)"a(p)n < Pcm

for any n > 2. Since p > 0, Z 5 1s convergent, so that, by the comparison test for series,

[

Y (=1 a(p)n

n=2

is convergent. Since

pp=1)(p=(=1) ,
n!

< ()" alph < Ot

for every x € [—1,1] and for every n > 1, by M-test for uniform convergence, together with Abel’s
theorem, for p > 0, the power series

> - (p=(n—-1

5 p0=D =),

= n!

converges uniformly to (1 +x)” — 1 — px on [—1, 1], which proves 2). =
For example

Vitx=1+ i%%_n”'(%_(n_l))xn Ve [~1,1]

and the convergence of the Taylor expansion on [—1, 1] is uniform, and

_11+x i_% J(=3- 1)";;(_%_(”_1»;5’ Vxe (~1,1].



