B5.4 Waves \& Compressible Flow

Question Sheet 0 Solutions

1. See Chapter 1 of lecture notes.
2. (a) Change variables to t and $\eta=x-c t$ using the chain rule

$$
\begin{equation*}
\frac{\partial}{\partial t} \rightarrow \frac{\partial}{\partial t}-c \frac{\partial}{\partial \eta}, \quad \frac{\partial}{\partial x} \rightarrow \frac{\partial}{\partial \eta} \tag{1}
\end{equation*}
$$

to obtain

$$
\begin{equation*}
\frac{\partial u}{\partial t}=0, \quad u=f(\eta) \text { at } t=0 \tag{2}
\end{equation*}
$$

and so $u=f(\eta)=f(x-c t)$.
(b) Change variables to obtain

$$
\begin{equation*}
\frac{\partial^{2} \phi}{\partial t^{2}}-c^{2} \frac{\partial^{2} \phi}{\partial x^{2}}=0 \tag{3}
\end{equation*}
$$

and perform the change of variables $\xi=x+c t, \eta=x-c t$. By applying the chain rule to the derivatives, and substituting into the equation, we obtain

$$
\begin{equation*}
-4 c^{2} \frac{\partial^{2} \phi}{\partial \xi \partial \eta}=0 \tag{4}
\end{equation*}
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial \xi}=f(\xi) \tag{5}
\end{equation*}
$$

a constant w.r.t. η, and an arbitrary function of ξ. Therefore,

$$
\begin{equation*}
\phi=F(\xi)+G(\eta), \tag{6}
\end{equation*}
$$

where $G(\eta)$ is an arbitrary function of η and

$$
\begin{equation*}
F(\xi):=\int^{\xi} f(\zeta) \mathrm{d} \zeta \tag{7}
\end{equation*}
$$

3. See Chapter 1 of lecture notes for first part.

Entropy is defined by

$$
\begin{equation*}
S=S_{0}+c_{v} \log \left(p / \rho^{\gamma}\right) \tag{1}
\end{equation*}
$$

Start from conservation of energy and mass,

$$
\begin{align*}
\rho c_{v} \frac{\mathrm{D} T}{\mathrm{D} t} & =-p(\boldsymbol{\nabla} \cdot \mathbf{u})+\boldsymbol{\nabla} \cdot(k \boldsymbol{\nabla} T), \tag{2}\\
\frac{\mathrm{D} \rho}{\mathrm{D} t}+\rho(\boldsymbol{\nabla} \cdot \mathbf{u}) & =0 \tag{3}
\end{align*}
$$

together with the ideal gas law

$$
\begin{equation*}
p=\rho R T \tag{4}
\end{equation*}
$$

and the expression of the gas constant in terms of the specific heat,

$$
\begin{equation*}
R=c_{v}(\gamma-1) \tag{5}
\end{equation*}
$$

Eliminate p and $\boldsymbol{\nabla} \cdot \mathbf{u}$ from (2) using (3) and (4) to give

$$
\begin{equation*}
\rho c_{v} \frac{\mathrm{D} T}{\mathrm{D} t}=\rho R T \frac{1}{\rho} \frac{\mathrm{D} \rho}{\mathrm{D} t}+\nabla \cdot(k \nabla T) \tag{6}
\end{equation*}
$$

Eliminate R using (5) to give

$$
\begin{equation*}
\nabla \cdot(k \nabla T)=\rho c_{v} \frac{\mathrm{D} T}{\mathrm{D} t}-c_{v}(\gamma-1) T \frac{\mathrm{D} \rho}{\mathrm{D} t} \tag{7}
\end{equation*}
$$

Therefore,

$$
\begin{align*}
\frac{1}{\rho} \nabla \cdot(k \nabla T) & =c_{v} T\left(\frac{1}{T} \frac{\mathrm{D} T}{\mathrm{D} t}-\frac{\gamma-1}{\rho} \frac{\mathrm{D} \rho}{\mathrm{D} t}\right) \\
& =c_{v} T \frac{\mathrm{D}}{\mathrm{D} t}\left(\log T+\log \rho^{1-\gamma}\right) \\
& =T \frac{\mathrm{D}}{\mathrm{D} t}\left(c_{v} \log \frac{R T \rho}{\rho^{\gamma}}\right) \\
& =T \frac{\mathrm{D} S}{\mathrm{D} t} \tag{8}
\end{align*}
$$

Using the Reynolds Transport Theorem,

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} t} \iiint_{D} \rho S \mathrm{~d} V & =\iiint_{D} \rho \frac{\mathrm{D} S}{\mathrm{D} t} \mathrm{~d} V \\
& =\iiint_{D} \frac{1}{T} \boldsymbol{\nabla} \cdot(k \boldsymbol{\nabla} T) \mathrm{d} V \\
& =\iiint_{D} \boldsymbol{\nabla} \cdot\left(\frac{k \boldsymbol{\nabla} T}{T}\right)-k(\boldsymbol{\nabla} T) \cdot \boldsymbol{\nabla}\left(\frac{1}{T}\right) \mathrm{d} V \\
& =\iint_{\partial D} \frac{k}{T}(\boldsymbol{\nabla} T) \cdot \mathbf{n} \mathrm{d} S+\iiint_{D} \frac{k}{T^{2}}(\boldsymbol{\nabla} T) \cdot(\boldsymbol{\nabla} T) \mathrm{d} V
\end{aligned}
$$

For an insulating container there is no flux of heat through the walls so $\mathbf{n} \cdot \boldsymbol{\nabla} T=0$ on ∂D and so

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{~d} t} \iiint_{D} \rho S \mathrm{~d} V=\iiint_{D} \frac{k}{T^{2}}|\nabla T|^{2} \mathrm{~d} V \geq 0 \tag{9}
\end{equation*}
$$

Hence the entropy increases whenever the temperature is non-uniform.

