B5.4 Waves \& Compressible Flow

Question Sheet 3: Solutions Optional Questions

(i) (a) Define

$$
\begin{equation*}
I=\int_{-R}^{R} \mathrm{e}^{ \pm \mathrm{is} s^{2}} \mathrm{~d} s \tag{1}
\end{equation*}
$$

and deform the contour into three components (see the figure):

$$
\begin{equation*}
\gamma_{1}: s=\operatorname{Re}^{i(\theta+\pi)}, \quad \gamma_{2}: s=\frac{(1 \pm i) t}{\sqrt{2}}, \quad \gamma_{3}: s=\operatorname{Re}^{i \theta} \tag{2}
\end{equation*}
$$

Figure 1: Contours for question (i)
Then,

$$
\begin{align*}
I= & \int_{0}^{ \pm \pi / 4} \mathrm{e}^{i R^{2}(\cos 2 \theta+i \sin 2 \theta)} 2 i R \mathrm{e}^{i(\theta+\pi)} \mathrm{d} \theta+\int_{-R}^{R} \mathrm{e}^{(\pm i)^{2} t^{2}} \frac{(1 \pm i)}{\sqrt{2}} \mathrm{~d} t \\
& +\int_{0}^{ \pm \pi / 4} \mathrm{e}^{ \pm i R^{2}(\cos 2 \theta+i \sin 2 \theta)} 2 i R \mathrm{e}^{i \theta} \mathrm{~d} \theta \\
= & I_{1}+I_{2}+I_{3} . \tag{3}
\end{align*}
$$

Now,

$$
\begin{equation*}
I_{1}=\int_{-\infty}^{\infty} \mathrm{e}^{-t^{2}} \mathrm{~d} t \frac{(1 \pm i)}{\sqrt{2}}=\sqrt{\pi} \frac{(1 \pm i)}{\sqrt{2}}=(1 \pm i) \sqrt{\frac{\pi}{2}} \tag{4}
\end{equation*}
$$

Also,

$$
\begin{equation*}
I_{2}=-2 \int_{R}^{\infty} \mathrm{e}^{-t^{2}} \mathrm{~d} r \frac{(1 \pm i)}{\sqrt{2}} \tag{5}
\end{equation*}
$$

so that (substituting $t=R+s$),

$$
\begin{equation*}
\left|I_{2}\right| \leq 2 \mathrm{e}^{-R^{2}} \int_{0}^{\infty} \mathrm{e}^{-R s} \mathrm{e}^{-s^{2}} \mathrm{~d} s \leq 2 \mathrm{e}^{-R^{2}} \frac{\sqrt{\pi}}{2}=\mathcal{O}\left(\mathrm{e}^{-R^{2}}\right) \tag{6}
\end{equation*}
$$

Finally,

$$
\begin{equation*}
I_{3}=4 i R \int_{0}^{ \pm \pi / 4} \mathrm{e}^{ \pm i R^{2}(\cos \theta+i \sin 2 \theta)} \mathrm{e}^{i \theta} \mathrm{~d} \theta \tag{7}
\end{equation*}
$$

so that (using $\sin 2 \theta \geq 2 \theta / \pi$),

$$
\begin{align*}
\left|I_{3}\right| & \leq 4 R \int_{0}^{ \pm \pi / 4}\left|\mathrm{e}^{ \pm R^{2} \sin 2 \theta}\right| \mathrm{d} \theta \\
& \leq 4 R \int_{0}^{\pi / 4} \mathrm{e}^{-R^{2} \cdot 2 \theta / \pi} \mathrm{d} \theta \\
& \leq 4 R \frac{\pi}{2 R^{2}}\left[\mathrm{e}^{-2 R^{2} \theta / \pi}\right]_{0}^{\pi / 4} \\
& =\mathcal{O}(1 / R) \tag{8}
\end{align*}
$$

Hence,

$$
\begin{equation*}
I=(1 \pm i) \sqrt{\frac{\pi}{2}}+\mathcal{O}(1 / R) \tag{9}
\end{equation*}
$$

(b) Define

$$
\begin{equation*}
I(t)=\int_{a}^{b} f(k) \mathrm{e}^{\mathrm{i} k t} \mathrm{~d} k \tag{10}
\end{equation*}
$$

We integrate by parts by setting $u=\mathrm{e}^{i k t} / i t$ and $v=f(k)$ to give

$$
\begin{equation*}
I(t)=\left[\frac{1}{i t} \mathrm{e}^{i k t} f(k)\right]_{a}^{b}-\int_{a}^{b} \frac{1}{i t} \mathrm{e}^{i k t} f^{\prime}(k) \mathrm{d} k \tag{11}
\end{equation*}
$$

Therefore

$$
\begin{equation*}
|I(t)| \leq \frac{1}{t}(|f(a)|+|f(b)|)+\frac{1}{t}(b-a) \sup _{k}\left\{\left|f^{\prime}(k)\right|\right\} \tag{12}
\end{equation*}
$$

and providing f and f^{\prime} are bounded,

$$
\begin{equation*}
|I(t)| \leq \frac{M}{t} \quad \text { for some } M \tag{13}
\end{equation*}
$$

Therefore $I(t)=\mathcal{O}(1 / t)$ as $t \rightarrow \infty$.
(c) See lecture notes.
(ii) The Fourier transform of $\epsilon /\left(x^{2}+\epsilon^{2}\right)$ is given by

$$
\begin{equation*}
\hat{f}(k)=\int_{-\infty}^{\infty} \frac{\epsilon}{x^{2}+\epsilon^{2}} \mathrm{e}^{-i k x} \mathrm{~d} x \tag{1}
\end{equation*}
$$

The integrand has poles at $x= \pm i \epsilon$, and can be written in the form

$$
\begin{equation*}
\frac{\epsilon \mathrm{e}^{-i k x}}{(x+i \epsilon)(x-i \epsilon)} . \tag{2}
\end{equation*}
$$

Therefore, the residues are

$$
\begin{equation*}
\frac{\epsilon \mathrm{e}^{ \pm k \epsilon}}{ \pm 2 i \epsilon}=\mp \frac{1}{2} i \mathrm{e}^{ \pm k \epsilon} \tag{3}
\end{equation*}
$$

For $k>0$ we close the contour in the lower half plane, and for $k<0$ we close the contour in the upper half plane (see figure 2). Jordan's Lemma tells us that the semi-circular contour doesn't contribute as $R \rightarrow \infty$, so we just pick up the residue at the pole. Therefore,

$$
\hat{f}(k)= \begin{cases}(-2 \pi i)\left(\frac{i}{2} \mathrm{e}^{-k \epsilon}\right) & \text { for } k>0, \tag{4}\\ (2 \pi i)\left(-\frac{i}{2} \mathrm{e}^{k \epsilon}\right) & \text { for } k<0,\end{cases}
$$

so that

$$
\begin{equation*}
\hat{f}(k)=\pi \mathrm{e}^{-|k| \epsilon} \tag{5}
\end{equation*}
$$

Also note that the case $k=0$ follows by continuity, or by direct integration:

$$
\begin{equation*}
\hat{f}(0)=\int_{-\infty}^{\infty} \frac{\epsilon}{x^{2}+\epsilon^{2}} \mathrm{~d} x=\left[\arctan \left(\frac{x}{\epsilon}\right)\right]_{-\infty}^{\infty}=\pi \tag{6}
\end{equation*}
$$

Figure 2: The contours for Question (ii).

Now we assume that fluid occupying the half-space $z<0$ starts from rest with the initial free surface profile $\eta_{0}(x)=-a \epsilon / \pi\left(x^{2}+\epsilon^{2}\right)$. The solution in the lecture notes gives

$$
\begin{equation*}
\hat{\eta}(k, t)=\hat{\eta}_{0}(k) \cos (w(k) t), \tag{7}
\end{equation*}
$$

with $w(k)=\sqrt{g|k|}$. Using the result above we have that $\hat{\eta}_{0}(k)=-a \mathrm{e}^{-\epsilon|k|}$. We invert the transform to get

$$
\begin{align*}
\eta(x, t) & =\frac{1}{2 \pi} \int_{-\infty}^{\infty} \hat{\eta}(k, t) \mathrm{e}^{i k x} \mathrm{~d} k \\
& =-\frac{a}{2 \pi} \int_{-\infty}^{\infty} \mathrm{e}^{-\epsilon|k|} \cos (t \sqrt{g|k|}) \mathrm{e}^{i k x} \mathrm{~d} k \\
& =I_{+}+I_{-} \tag{8}
\end{align*}
$$

where

$$
\begin{equation*}
I_{ \pm}=-\frac{a}{4 \pi} \int_{-\infty}^{\infty} \mathrm{e}^{-\epsilon|k|} \mathrm{e}^{i(k x / t \pm \sqrt{g|k|})} \mathrm{d} k \tag{9}
\end{equation*}
$$

The method of stationary phase tells us that the main contribution to the integral comes from $\psi^{\prime}(k)=0$ where

$$
\begin{equation*}
\psi(k)=\frac{k x}{t} \pm \sqrt{g|k|}, \tag{10}
\end{equation*}
$$

i.e. where

$$
\begin{equation*}
\frac{x}{t} \pm \frac{\sqrt{g\left|k^{\star}\right|}}{2 k^{\star}}=0 \quad \Rightarrow \quad k^{\star}=\mp \frac{g t^{2}}{4 x^{2}} \tag{11}
\end{equation*}
$$

Further,

$$
\begin{equation*}
\psi^{\prime \prime}\left(k^{\star}\right)=\mp \frac{\sqrt{g\left|k^{\star}\right|}}{4 k^{\star 2}}=\mp \frac{\sqrt{g}}{4} \frac{8 x^{3}}{g^{3 / 2} t^{3}}=\mp \frac{2 x^{3}}{g t^{3}} . \tag{12}
\end{equation*}
$$

Therefore the method of stationary phase gives

$$
\begin{equation*}
I_{ \pm} \sim-\frac{a}{4 \pi} \mathrm{e}^{-\epsilon\left|k^{\star}\right|} \mathrm{e}^{i\left(\psi\left(k^{\star}\right) t+\frac{\pi}{4} \operatorname{sgn}\left(\psi^{\prime \prime}\left(k^{\star}\right)\right)\right)} \sqrt{\frac{2 \pi}{\left|\psi^{\prime \prime}\left(k^{\star}\right)\right| t}} \tag{13}
\end{equation*}
$$

Now, for ϵ sufficiently small, $\mathrm{e}^{-\epsilon\left|k^{\star}\right|} \sim 1$, so

$$
\begin{align*}
I_{ \pm} & \sim-\frac{a}{4 \pi} \mathrm{e}^{i\left[\mp \frac{g t^{2}}{4 x} \pm \frac{g t^{2}}{2 x} \mp \frac{\pi}{4}\right]} \sqrt{\frac{2 \pi g t^{3}}{2 x^{3} t}} \\
& \sim-\frac{a t}{4} \mathrm{e}^{ \pm i\left[\frac{g t^{2}}{4 x}-\frac{\pi}{4}\right]} \sqrt{\frac{g}{\pi x^{3}}} \tag{14}
\end{align*}
$$

Therefore,

$$
\begin{equation*}
\eta(x, t)=I_{+}+I_{-} \sim-\frac{a t}{2} \sqrt{\frac{g}{\pi x^{3}}} \cos \left(\frac{g t^{2}}{4 x}-\frac{\pi}{4}\right) . \tag{15}
\end{equation*}
$$

