B5.4 Waves & Compressible Flow

Question Sheet 3: Solutions Optional Questions
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and deform the contour into three components (see the figure):
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Figure 1: Contours for question (i)

Then,
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so that (substituting ¢t = R + s),
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so that (using sin 26 > 260/7),
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(b) Define
I(t) = / ' f(k)e* dE.

We integrate by parts by setting u = e*** /it and v = f (k) to give
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and providing f and f’ are bounded,
M
| ()| < - for some M.
Therefore I (t) = O (1/t) as t — 0.
(c) See lecture notes.
(i) The Fourier transform of €/(z% + €2) is given by
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The integrand has poles at = +ie, and can be written in the form
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Therefore, the residues are
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For k > 0 we close the contour in the lower half plane, and for k& < 0 we close the contour in the upper half plane
(see figure 2). Jordan’s Lemma tells us that the semi-circular contour doesn’t contribute as R — 0o, so we just
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pick up the residue at the pole. Therefore,
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Also note that the case k = 0 follows by continuity, or by direct integration:
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Figure 2: The contours for Question (4i).

Now we assume that fluid occupying the half-space z < 0 starts from rest with the initial free surface profile
no(z) = —ae/m (2% + €). The solution in the lecture notes gives

7 (k,t) = 7jo (k) cos (w (k) t), (7)
with w (k) = \/g|k|. Using the result above we have that 7y (k) = —ae~“I¥l. We invert the transform to get
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The method of stationary phase tells us that the main contribution to the integral comes from v’ (k) = 0 where
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Therefore the method of stationary phase gives
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Now, for e sufficiently small, e

Therefore,
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