Waves and Compressible Flow

Lecture 3

2. Models for linear wave propagation

• Varias examples: a caustic waves in a gas granity waves an an interface internal granity waves in a stratified finid inertial waves in a rotating fluid elastic waves |P.1

. Key assumption is that waves are small amplitude, which allows linearization of the gavening equations.

A constic waves

· Consider barotropic flar with no body force:

P.2

- Stationary state: u = 2, $p = p_0$, $p = p_0 = P(p_0)$
- · Introduce small perturbation: U= 2+ U', P=Po+P', P=Po+P'

. Substitute into O-3 and linearize about stationary state by neglecting graduatic and higher order terms.

$$\begin{array}{c} O \Rightarrow & \frac{\partial p'}{\partial t} + (U' \cdot \nabla) p' = -(p + p') \nabla \cdot U' \longrightarrow & \frac{\partial p'}{\partial t} = -p \cdot \nabla \cdot U' \end{array}$$
 (linemizing) $\begin{array}{c} \partial p' = -p \cdot \nabla \cdot U' \end{array}$

p.3

$$(3) \Rightarrow P_0 + P' = P(P_0 + p') = P(P_0) + \frac{dP}{dP}(P_0)P' + \dots =) P' = C_0^2 C' (3)$$

$$(Taylor (timenizing))$$

$$(timenizing)$$

where
$$c_{0}^{2} = \frac{dP}{dp}(P_{0})$$
, e.g. homentropic two $p = (p^{*} \Rightarrow c_{0}^{2} = \frac{\nabla P_{0}}{P_{0}}$.

• $\nabla_{\Lambda} (D) \Rightarrow \frac{\partial}{\partial t} (\nabla_{\Lambda} y') = 0$, so if we assume $\nabla_{\Lambda} y' = 0$ initially, then $\nabla_{\Lambda} y' = 0$ for $t \ge 0$ and $\exists \phi(x, t) s. t. y' = \nabla \phi (D)$

10.4

• Then $\textcircled{D} \Rightarrow \nabla(p_0 \overset{\circ}{\Rightarrow} \overset{\circ}{f} + p') = \textcircled{D} \Rightarrow p_0 \overset{\circ}{\Rightarrow} \overset{\circ}{f} + p' = F(t) = O(5D)$ $w \log_{t}, which is a linearized Bernaulti equation.$

• Hence,
$$P_0 \neq_{tt} = -p_t$$
, $p_t = c_p' p_t$ and $p_t' = -p_0 \nabla \cdot y' = -p_0 \nabla \cdot y' = -p_0 \nabla \cdot y'$

=>
$$\phi_{tt} = c_0^2 \nabla^2 \phi$$
 (Wave equation, wave speed co)

• (1)
$$\Rightarrow p' = -\rho_0 \phi_t$$
, so $3\tau \oplus \Rightarrow p'_{tt} = c_0^2 \nabla^2 p'$
• (1) $\Rightarrow p' = c_0^2 p'$, so $p'_{tt} = c_0^2 \nabla^2 p'$
• (1) $\Rightarrow \mu' = \nabla \phi$, so $\nabla \oplus \Rightarrow \mu'_{tt} = c_0^2 \nabla^2 \mu'$
• After linearization everything is governed by the same wave equation.

p.5

• NB: For air $P = CP^*$ with $Y \simeq 1.4 \Rightarrow co \simeq 340 ms^2$, which agrees well with measurements.

•
$$p' = p'(x,t) \Rightarrow p'_{tt} = c_{o}^{2} p'_{ox} \Rightarrow p' = \frac{F(x-c_{o}t) + G(x+c_{o}t)}{ngWt tranding} \frac{F(x-c_{o}t) + G(x+c_{o}t)}{Wave}$$

· Consider a transducer at x= 0 imposing a periodic pressure functuation s.t.

p.6

$$P'(o,t) = acos wt + bsinwt = Re(Aeriwt)$$

where wis frequency and A=a+ib is complex amplitude.

• The separable time-harmanic ansatz $p' = f(x)e^{-iwt}$ (real part understood), where the complex-valued function f(x) is TBD.

• Wave equation =>
$$\frac{d^2f}{dx^2} + \frac{w^2}{c^2}f = 0 => f = x e^{iwx/co} + \beta e^{-iwx/co} (x, \beta \in \epsilon)$$

1p.7

· Condition at x= 0 satisfied if A = x+ F, so need are more piece of information to determine x and F.

• Since
$$p' = \alpha e^{i\omega(\alpha - cot)/c_0} + \beta e^{-i\omega(\alpha + cot)/c_0}$$
, the radiation
condition requires $\beta = 0$ for $\alpha > 0$ and $\alpha = 0$ for $\alpha < 0$.

 $\Rightarrow A = A, B = 0 \text{ for } x > 0$ x = 0, B = A for x < 0 $\Rightarrow P' = \begin{cases} Re(Ae^{iw(x+cot)/c_0}) \text{ for } x > 0 \\ Re(Ae^{iw(x+cot)/c_0}) \text{ for } x < 0 \end{cases} (+)$

Ip.8

• NB: If we'd used instead $p' = F(\alpha - cot) + G(\alpha + cot)$, then the radiation condition would require $p' = \begin{cases} F(\alpha - cot) & for \alpha > 0, \\ G(\alpha + cot) & for \alpha < 0; \end{cases}$

then the condition at $x = \phi$ gives $F(-c,t) = Ae^{-i\omega t}$, $G(c,t) = Ae^{-i\omega t}$ and hence (t).

Example: 3D spherically symmetric waves

$$p' = p'(r,t), r = (x^{2}+y^{2}+z^{2})^{1/2} \implies p'_{tt} = c_{0}^{2} \left(p'_{rr} + \frac{2}{r}p'_{r}\right) = \frac{c_{0}^{2}}{r} \frac{\partial^{2}}{\partial r^{2}} (rp')$$

$$\implies \frac{\partial^{2}}{\partial t^{2}} (rp') = c_{0}^{2} \frac{\partial^{2}}{\partial r} (rp')$$

$$\implies p' = \frac{F(r-c_{0}t) + G(r+c_{0}t)}{r}$$
o If waves are generated by a paint transducer at arigin, then

$$\lim_{r \to 0^{+}} rp'(r,t) = Ae^{-i\omega t} (red part understood)$$

• Now radiation condition => only outgoing waves, i.e. G = 0=> $F(-cot) = Ae^{-iwt} => p' = Ae^{iw(r-cot)/co}$

. Consider barotropic flow governed by D-3 but with base state

1P.10

given by
$$\mu = Uoi, p = Po, p = Po, where Uo EIRT$$

· Before
$$D_f = \overline{J}_f + \underline{U} \cdot \nabla$$
 replaced by \overline{J}_f upon linearization.

• Now
$$\beta_F = \frac{2}{3f} + (U_{0}i + y') \cdot \nabla$$
 replaced by $\frac{2}{3f} + U_{0}\frac{2}{3\alpha}$ in $(D - 3D)$,
so assuming instational $y' = \nabla \phi$ with $(\frac{2}{3f} + U_{0}\frac{2}{3\alpha})^2 \phi = c_0^2 \nabla^2 \phi$.

Example:
$$\phi = \phi(x,t)$$

•
$$\phi = \phi(x,t) \Rightarrow \frac{1}{A} + \frac{2}{2B} + \frac{2}{C} + \frac{1}{C} + \frac{1}{C}$$

• Characteristics: $\frac{dx}{dt} = \lambda$, $A\lambda^2 - 2B\lambda + c = 0 \Rightarrow \lambda = U_0 \pm c_0$

• Let
$$3 = x - (u_0 + c_0)t$$
, $m = x - (u_0 - c_0)t$, then $\phi_{3m} = 0 \Rightarrow \phi = F(3) + G(m)$

[P.1]

• Hence,
$$\phi = F(x - (u_0 + c_0)t) + G(x - (u_0 - c_0)t)$$

right travelling right travelling Uo > co (supersonic)
Left travelling Uo < co (subsonic)

· Transducer at x = 0 has "Zone of silence" upstream (2(20) in supersonicase!

Escample:
$$\phi = \phi(x, y)$$

•
$$\phi = \phi(x, y) \Longrightarrow (1 - M^2) \phi_{xx} + \phi_{yy} = 0$$
, $M = \frac{U_0}{C_0}$ is Mach number

[p.12

- · M c1 (subsanic) => elliptic PDE => (ocalized disturbances felt everywhere.
- M>1 (supersmic) => hyperbolic PDE => localized disturbances propete at finite speed along characteristics s.t. $\frac{dy}{dx} = \pm (1n^2 - 1)^{-1/2}$, the general solution being $\phi = F(y - (1n^2 - 1)^{-1/2}x) + G(y + (n^2 - 1)^{-1/2}x)$.
- · Explore Later on these dramatic differences a their implications. for the theory of flight.