Waves and Compressible Flaw

Lecture 12

Shallow water theay

- This is an approximate model for the gravity-dniven irotational flow of a thin layer of inviscid fluid of constant density p.
- Setup:

- Governing equations:

$$
\begin{align*}
u_{x}+w_{z} & =0 \tag{1}\\
u_{z}-w_{x} & =0 \tag{2}\\
u_{t}+u u_{x}+w u_{z} & =-\frac{1}{\rho} p_{x} \tag{3}\\
w_{t}+u w_{x}+w \omega_{z} & =-\frac{1}{\rho} p_{z}-g \tag{4}
\end{align*}
$$

- Boundary conditions:

$$
\begin{array}{ll}
w=0 & \text { on } z=0 \\
w=h_{t}+u h_{x} & \text { on } z=h \\
p=P_{\text {atm }} & \text { on } z=h \tag{7}
\end{array}
$$

- Integrating (1) from $z=0$ to $z=h$ gives

$$
0=\int_{0}^{h} u_{x}+w_{z} d z=\frac{\partial}{\partial x} \int_{0}^{h} u d z-\left.u h_{x}\right|_{z=h}+[w]_{z=0}^{z=h}
$$

by Leibniz's integral rule.

- Hence, defining the average horizontal veloaty $\bar{u}(x, t)=\frac{1}{h} \int_{0}^{h} u d z$, we decluce from (5) and (6) that

$$
\begin{equation*}
h_{t}+(h \bar{h})_{x}=0 \tag{8}
\end{equation*}
$$

- In shallow water theory, we assume that the flaw is almost unidirectional, so that $\frac{|z|}{|x|} \sim \frac{|w|}{|u|} \ll 1$.
- This means that we may approxinde (2) by $u_{z}=0$ and (4) by $0=-\frac{1}{p} p_{z}-g$.
- $u z=0 \Rightarrow u=u(x, t) \Rightarrow h_{t}+(h u)_{x}=0$.
- $P_{z}=-\rho g$ and $(7) \Rightarrow p=P_{a t m}+\rho g(h-z)$, ie. the pressure is hydrostatic.
- Hence, (3) becomes $u_{t}+u_{x}+\omega y_{z}^{0}=-\frac{1}{\rho} p_{x}=-g h_{x}$.
- We hare derived the shallow-water equations

$$
h_{t}+u h_{x}+h u_{x}=0, \quad u_{t}+u u_{1}+g h_{x}=0,
$$

two coupled equations for $h(x, t)$ and $h(x, t)$.

- We have not assumed that the waves have small amplitude (ct. Stokes waves) - can therefore describe eng. Gid al bores.
- This is why the system is nonlinear!
- We define the ware speed $c=\sqrt{g h}$, which is the phase speed of Stokes waves on a shallow r fid layer of constant thickness h.

$$
\cdot h=\frac{c^{2}}{g} \Rightarrow 2\left(c_{t}+u c_{x}\right)+c u_{x}=0, u_{t}+u u_{x}+2 c_{x}=0
$$

- These are identical to the equations of gas dynamics in Last lecture with $r=2$, so the methods of gas dynamics can be applied directly here.
- In particular, adding/ subtracting $\Rightarrow\left(\frac{\partial}{\partial x}+(u \pm c) \frac{\partial}{\partial x}\right)(u \pm 2 c)=0$, i.e. the Riemann invanants $u \pm 2 c$ are constant along \pm characteristics on which $\frac{d x}{d t}=u \pm C$.

Example: dam break

- Stationary water with depth ho in $x>0$ is held by a dan at $x=0$.

At $t=0$, the dam is rem wed - what happens to the water?

- Equivalent to piston pulling problem in gas dynamics with instantaneous piston withdraural - hence can set $\gamma=2$ in solution from last lecture!
- We take opportunity to practice the derivation.
- Characteristic diagram:

$$
\ldots-\ldots+\text { charles }
$$

\qquad

Region I:

- Where \pm characteristics from $\{x>0, t=0\}$ intersect, $n \pm 2 c=0 \pm 2 c_{0}$ $\Rightarrow u=0, c=c_{0}$, so \pm charactenitics are straight lines with $\frac{d x}{d t}= \pm C_{0}$, and therefore map at $x>c o t, t>0$.

Region II

- Still have - charactanistics from $\{x>0, t=0\}$, so $u-2 c=-2 c 0$ here
- Onat characteristic $u+2 c=$ constant, so ueccontant and it is straight
- Since thin occupies $x>0$ at $t=0$, the + characteristics must all start at $x=0, t=0$ to arad them crossing those that onginate from $\{x>0, t=0\}$
- Hence, we have an expansion fan, with the + characteristics having $\frac{d x}{d t}=u+c=\frac{x}{t}$.
- NB: Can also argue from scale invariance under transformation $x \mapsto \lambda x, t \rightarrow \lambda t(\lambda>0)$
- Solving $u-2 c=-26$ and $u+c=\frac{x}{F}$ gives

$$
u=\frac{2}{3}\left(\frac{x}{t}-c_{0}\right), c=\frac{1}{3}\left(\frac{x}{t}+2 c_{0}\right) \Rightarrow h=\frac{c^{2}}{9}=\frac{1}{99}\left(\frac{x}{t}+2 c_{0}\right)^{2}
$$

- Expansion tan terminates when $c=\sqrt{y^{n}}=0$, ie. at $x=-2 \cot$, so region II is $-2 \cot <x<\cot$
- Sketches similarity solution:

Multi-valned solutions

- Suppose instead the dam is pushed into the fluid intr constant speed U < Co.
- Expect to still have $u=0, c=c_{0}$ in $x>c_{0} t$.
- In $x<$ cot still have $u-20=-200$ from- characteristics.
- On a + characteristic originating from the dam, $u+2 c=$ constant, so $u e c$ are constant and therefore given by $u=U, c=c_{0}+\frac{U}{2}$; hence all such + ch aractenstios hare slope $\frac{d x}{d t}=u+c=c_{0}+\frac{3 u}{2}$, and therefore map out the region $U t<x<\left(10+\frac{3 u}{2}\right) t$.
- Hence, we have a multi-valued solution with $u=0, c=c_{0}$ and $u=U, c=c_{0}+\frac{3}{2} U$ in the region $c_{0} t<x<\left(c_{0}+\frac{3}{2} U\right) t$ where the + charadienstics intersect:

\qquad + Charactanisties from $\{x>0, t=0)$
+ characteristics from $\{x=4 t, t>0\}$
- This is umplysical - instead we must introdna a shock.
- Here solution broke down innechiatels at $t=0+$. See online notes for an example of break dom after a finite time.
- More generally, in a simple flow with $u-2 c=-2 c$ everywhere,

$$
c_{t}+u c_{x}+\frac{1}{2} c_{x}=0 \Rightarrow c_{t}+\left(3 c_{-2}-2 c_{0}\right) c_{x}=0 .
$$

- Hence, if $c(x, 0)=f(x)$, then $\frac{d c}{d t}=0$ on characteristics with $\frac{d x}{d t}=3 c-2 c_{0}$ with $x=\xi, c=f(\xi)$ at $t=0$.
- Thus, $c=f(\xi)$ an $x=\xi+(3 f(\xi)-2 c 0) t$.

$$
\text { - } \frac{\partial}{\partial x} \Rightarrow c_{x}=f^{\prime}(\xi) \xi_{x} \text { and } 1=\xi_{x}+3 f f^{\prime}(\xi) \xi_{x} \Rightarrow c_{x}=\frac{f^{\prime}(\xi)}{1+3 f f^{\prime}(\xi)} \text {. }
$$

- If $f^{\prime}(\xi)<0$ for some ξ initially, then $\left|c_{x}\right| \rightarrow \infty$ as $t \rightarrow t_{i}$, where $t_{c}=\min _{\xi: f^{\prime}(\xi)<0}\left(-\frac{1}{3 f^{\prime}(\xi)}\right)$.
- The solution breaks dour at $t=t_{c}$ because regions unth larger thickness trave more quickly than those with smaller thickness $\left(\right.$ recall $\left.h=c^{2} / \eta\right)$:

- To aroid a multi-valued solution for $t>t_{c}$, we mut introchue a shock.

